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Preface 

This book is an outcome of the lectures delivered by the authors for 
engineering and management students at the Birla Institute of Tech­
nology and Science, Pilani, India. However, the text started when the 
author shifted to the Thapar Institute of Engineering and Technology, 
Patiala and the coauthor shifted to the Indian Institute of Technology, 
Kanpur. During the teaching of this course, the authors realized a 
need of a good text on "Optimization Research" and its applications 
which may give comprehensive idea of various concepts and can be 
used as a companion for problem solving techniques. 

The primary purpose of this text is to bring this new mathematical 
formalism into the education system, not merely for its own sake, but 
as a basic framework for characterizing the full scope of the concept 
of modern approach. The authors have tried all contents of this book 
utilizing four hours a week in one semester as a core course. The level 
of this book assumes that the reader is well acquainted with elementary 
calculus and linear algebra. Being a textbook, we have taken enough 
care so that the reader may attempt different type of problems. 

Anyone who aspires to some managerial assignment or who is 
a part of decision making body will find an understanding of opti­
mization techniques very useful. The book is applied in orientation 
with a concentration on engineering and management problems. Each 
concept has been discussed with sufficient mathematical background 
supported by examples. A set of problems has been added in the end 
of every chapter. 

Because of the imposed restriction of writing a relatively brief text­
book on an extensive subject area, a number of choices had to be made 
relating to the inclusion and exclusion of certain topics. No obvious 
way of resolving this problem exists. The basic thinking is centralized 
about the theme how the reader may continue to read advanced level 
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textbooks by self-study to develop research oriented thoughts. Hence, 
the fundamental techniques have been emphasized while highly spe­
cialized topics should be relegated to secondary one. 

During the course of writing this book we have received remarkable 
encouragement from our esteemed colleagues Prof. S. R. Yadava, and 
Dr. S. P. Yadava at BITS, Pilani, India. 

H. S. Kasana 
K. D. Kumar 
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Chapter 1 

Formulation 

We start with the introduction of linear programming and illustrate 
the preliminary concepts which form the basic foundation of optimiza­
tion. The concentration will remain focus on the formulation of lin­
ear programming problems. In the end, some nonlinear programming 
problems have also been formulated. 

1.1 The Scope of Optimization 

Optimization means the mathematical process through which best pos­
sible results are obtained under the given set of conditions. Initially, 
the optimization methods were restricted to the use of calculus based 
techniques. Cauchy made the first attempt by applying steepest de­
scent method for minimizing a function over the domain of definition. 
A contribution but very little was made by Newton, Leibniz and La­
grange in this direction. Also, as early as 1939, L. V. Kantorovich 
pointed out the practical significance of a restricted class of linear pro­
gramming models for production planning and proposed an algorithm 
for their solution. Unfortunately, Kantorovich's work remain neglected 
in the USSR, and unknown elsewhere until after programming had 
been well established by G. B. Dantzig and others. 

During the second world war the subject, 'Optimization Tech­
niques' in the name of 'Operations Research' gained a momentum. The 
development of famous simplex method for solving the linear program­
ming problems was first conceived by Dantzig in 1947 while he was 
working as mathematical adviser to the United States. This method 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004



2 CHAPTER 1. FORMULATION 

gave a real boost to the subject. In 1975, the topic came to public 
attention when the Royal Swedish Academy of Sciences awarded the 
noble prize in economic science to L. V. Kantorovich and T. C. Koop­
mans. Based on simplex algorithms various linear systems have been 
studied in detail. In 1979, Khachian proved the ellipsoid method of 
Shor which ultimately exhibited polynomial-time performance. The 
time performance of simplex method is exponential. The theoretically 
superior, ellipsoid method could not be popular in practical use, even 
though its time performance is better than the simplex method. In 
1984, a real breakthrough came from N. Karmarkar's "projective scal­
ing algorithm" for linear programming. The new algorithm not only 
outperforms the simplex method in theory but also shows its enor­
mous potential for solving large scale practical problems. Karmarkar's 
algorithm is radically different from simplex method-it approaches an 
optimal solution from the interior of the feasible region. However, this 
research was limited to linear optimization problems. 

The pioneer work by Kuhn and Tucker in 1951 on the necessary 
and sufficient conditions for the optimal solution laid the foundation 
for researchers to work on nonlinear systems. In 1957, the emergence of 
dynamic programming by Bellman brought a revolution in the subject 
and consequently, linear and nonlinear systems have been studied si­
multaneously. Although no universal techniques have been established 
for the nonlinear systems, the researches by Fiacco and McCornik 
proved to be significant. Geometric programming was developed by 
Duffin, Zener and Petersion in 1960. Later on, Dantzig and Charnes 
developed Stochastic programming. 

The process of optimizing more than one objective led to the devel­
opment of multi-objective programming. During the meantime prob­
lems on network analysis essentially useful for management control 
came into existence. Well known games theory has been successfully 
applied for different programming problems. Multi-objective problems 
with specified goals in the name of Goal programming has been the 
topic of recent interest. At the moment fuzzy logic is being extensively 
used for studying various linear and nonlinear systems. 

The subject has been fully exploited to solve various engineering, 
scientific, economics and management problems. We mention a few as 

1. Design of aircrafts and aerospace structures for tolerating envi­
ronment resistance. 

2. Setting up of pipelines and reservoirs for flow of different items 
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at required points. 

3. Decision making for maximizing industrial outputs. 

4. Selection of machining conditions in different industrial processes 
to minimize the production cost. 

5. Optimal production planning, controlling and scheduling of projects. 

6. Optimal designing of chemical processing equipment and plants. 

7. Shortest route problems under varying conditions. 

8. Planning the best strategies to obtain maximum profit. 

9. Design of pumps, electric machines, computers etc., for mini­
mizing the cost. 

10. Transportation of materials from places of manufacture to places 
of requirement so that the cost of transportation is minimized. 

11. How the jobs should be assigned to workers so as to have optimal 
efficiency of the system. 

12. Allocation of resources and services among several activities to 
maximize the profit. 

13. Inventory problem deals with the demands at specific time, here 
we have to decide how much and what to order. 

14. Queuing problems deal with customers at service stations. The 
direct increase in service stations increases the service cost but 
waiting time in queue is reduced. However, waiting time also 
involves cost. In such type of problems we seek optimal number 
of services so that cost of service and waiting time is minimized. 

Least to say, in every walk of life, optimization techniques are be­
ing extensively applied in day to day practice. Operations Research 
Society, USA defined OR as 

"Operations research is the systematic applications of quan­
titative methods, techniques, tools to the analysis of prob­
lems involved in the operation of systems" 
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1.2 Introduction 

The mathematical formulation of our thoughts to optimize profit, loss, 
production etc. , under given set of conditions is called mathematical 
programming. 

The mathematical programming problem (MPP) is written as 

opt = f(X) 
subject to 9i(X):2, = < 0, i = 1,2, ... ,m (1.1) 

X :2 0, (1.2) 

where X = (Xl, X2, .. . , xnf is the column vector in n-dimensional real 
linear space ]Rn. 

Thus, XT = (Xl, X2, ... ,xn ) is the row vector. In the text, column 
vectors and row vectors will be represented by a column matrix and 
row matrix, respectively. 

Now, we define 

(i) The function f(X) to be optimized is termed as objective func­
tion; 

(ii) The relations in (1.1) are constraints; 

(iii) The conditions in (1.2) are nonnegative restrictions; 

(iv) Variables Xl, X2, ... , Xn are decision variables. 

(v) The terminology opt (optimize) stands for minimize or maximize. 

The symbol :2, =,:S means that one and only one of these is involved 
in each constraint. 

The mathematical programming problem (MPP) is further classi­
fied into two classes, viz., 

1. Linear programming problem. If the objective function 
f(X) and all the constraints 9i(X) are linear in a mathematical pro­
gramming problem, we call the problem a linear programming problem 
(LPP). 

2. Nonlinear programming problem. If the objective function 
f(X) or at least one of the constraints 9i(X) or both are nonlinear 
functions in a mathematical programming problem, then the problem 
is termed as a nonlinear programming problem (NLPP). 
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Remarks. An integer programming problem is a particular case of the 
LPP or NLPP in which some or all the decision variables Xl, X2,·· . , Xn 

are integers. A quadratic programming problem is also a particular 
NLPP in which the objective function f(X) is a quadratic but all the 
constraints gi(X) are linear functions. 

Let us discuss the linear programming problems in detail. Any 
LPP has the general form: 

opt Z = CIXI + C2X2 + ... + CnXn 

S.t. ailXI + ai2X2 + ... + ainXn 2:, 
XI,X2,···,Xn 2: 0, 

<5: bi , i = 1,2, ... , m 

where Ck, k = 1,2, ... , nand bi , i = 1,2, ... , m are real numbers (may 
be negative). 

From now onward "s.t." stands for "subject to" in the whole text. 

Standard form of linear programme. The standard form of a 
LPP is written as 

or 

opt Z = CIXI + C2X2 + ... + CnXn 

s.t. ailxI + ai2X2 + ... + ainXn = bi , i = 1,2, ... , m 

XI,X2,···,Xn 2: 0, bl ,b2 , ... ,bm 2: ° 

opt Z = CIXI + C2X2 + ... + CnXn 

s.t. an Xl + al2x2 + ... + alnXn = bl 

a2l X I + a22 x 2 + ... + a2nXn = b2 

amlXI + a m 2X 2 + ... + amnXn = bm 

Xl, X2,··· , Xn 2: 0, h, b2 ,· .. , bm 2: ° 
or, in the matrix form: 

opt Z = CTX 

S.t. AX = b 

X 2: 0, b 2: 0, 
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where 

C = (ct, C2, ..• , enf (cost vector), 

X = (Xl, X2, ... , xn)T, 

A = (aij)mxn, the coefficient matrix of order m by nand 

b = (b l , b2 , ... , bmf. 

Converting to standard form. The standard form of a linear pro­
gramme deals with nonnegative decision variables and linear equality 
constraints. Here we explain the means how to convert the linear pro­
gramme into the standard form in case any or both of these conditions 
are not available in the LPP. 

Linear inequalities. A linear inequality can easily be converted 
into an equation by introducing slack and surplus variables. If the ith 
constraint has the form 

we can add a nonnegative variable Si 2 0 to have 

Here, the variable Si is called the slack variable. 

Similarly, if ith constraint has the form 

a nonnegative variable Si 2 0 is subtracted to have 

This time Si is termed as the surplus variable. 

Note that bi 20 in the above inequalities. If bi ~ 0, then multiply 
by -1 before introducing the slack or surplus variables. 

Restricted and unrestricted variables. If a variable X is 
restricted, i.e., for X 2 p, this implies X - P 2 o. Taking, x' = X - P 
implies x' 2 o. So, we replace x by x' + p, and in a similar way, for 
the case x ~ p, replace x by -x' + p to have x' 2 o. 

However, if a variable x is unrestricted in sign, i.e., x E lR. (may 
be positive or negative), we write x = x+ - x-, where x+ and x- are 
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defined by 

X+ = {
X, 

0, 

x 2: 0, 

x ::; 0, 
and 

7 

_ {o, 
x = 

-x, 

x 2: 0, 

x ::; 0. 

Obviously, for each real number x we can find nonnegative real 
number u and v such that Ixi = u + v and x = u - v. Here, u and v 
play the role of x+ and x-, respectively. 

Example 1. Write the following linear programme into the standard 
form: 

opt z = Xl + 2X2 - X3 

s.t. - Xl + 2X2 + 3X3 2: -4 

2X1 + 3X2 - 4X3 2: 5 

Xl + X2 + X3 = 2 

Xl 2: 0, X2 2: 1 and X3 is unrestricted in sign. 

Here X2 and X3 are restricted and unrestricted variables, respec­
tively. Replacing X2 by x~ + 1 and X3 by xt - x 3 ' the above LPP is 
written in the standard form as 

opt z = Xl + 2x~ - xt + x3 + 2 

s.t. Xl - 2x~ - 3xt + 3x3 + 81 = 6 

2X1 + 3x~ - 4xt + 4x3 - 82 = 2 

Xl + x~ + xt - x3 = 1 

, + - > ° X1,X2,x3 ,X3 ,81,82_ . 

Note that Xl, X~, xt and x3 are now the decision variables, 81 slack 
variable and 82 surplus variable when the LPP has been written in the 
standard form. 

From now onward it will be understood that the slack or surplus 
variable 8i means it is associated with the ith constraint. 

The above discussion reveals that, in general k unrestricted variable 
produce 2k nonnegative variables to write the problem in the standard 
form. This will substantially increase the size ofthe problem. However, 
under certain conditions we develop a better technique in which k 
unrestricted variable can be replaced by k + 1 nonnegative variables 
to express the LPP into the standard form. 
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Proposition. In a LPP, let k variables out of n variables be unre­
stricted in sign and are bounded. Then the problem can be converted 
into the standard form by using k + 1 nonnegative variables in place 
of these k unrestricted variables. 

Proof. Let Xl, X2, ... , Xn be n variables of a LPP. Given that k of 
these variables are unrestricted in sign. Without loss of generality we 
may assume Xl, X2, . .. , Xk are unrestricted in sign. 

Define Y = I min{xI, X2, ... , xdl. Then we observe that 

YI = Xl + Y ~ 0 

Y2 = X2 + Y ~ 0 

Yk = Xk +y ~ 0 
y~o 

This implies, Xl = YI - Y, X2 = Y2 - Y, ... , Xk = Yk - Y, and the 
constraints 

are converted into 

ailYI + ... + aikYk - (ail + ... + aik)Y 

+ ai,k+lxk+l + ... + ainXn ± Si = bi 

YI,Y2, ... ,Yk,y,Xk+I, ... ,Xn ~ o. 

Here, i = 1,2, ... , m and Si is a slack or surplus variable and in case 
of equality constraint Si = o. 
Example 2. Illustrate the above proposition by taking a particular 
LPP: 

max z = Xl + X2 + X3 

s.t. Xl - X2 + X3 ~ 5 

2XI - X2 + 2X3 ~ 7 

Xl - X2 - 3X3 ~ 9 

X3 ~ 0 and Xl, X2 are unrestricted in sign. 

Let Y = Imin{xI,x2H Then YI = Xl +y ~ 0, Y2 = X2 +y ~ 0, 
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and we have 

max z = Yl + Y2 + X3 - 2y 

s.t. YI-Y2+X3+81=5 

2Yl - Y2 + 2X3 - Y - 82 = 7 

Yl - Y2 - 3X3 + 83 = 9 

Yl,Y2,Y,X3,81,82,83 ~ o. 

Example 3. Linearize the following objective function: 

Y ~ 12xl + 5X21 * Ul + VI ~ Y for some variables ul, VI ~ o. 
and 

9 

Combining the above inequalities, the given objective function can be 
written in the form of LPP as 

max z=y 
s.t. Ul + VI - Y ~ 0 

U2 + V2 - Y ~ 0 

Ul,Vl,U2,V2,Y ~ o. 
Note that 2Xl + 5X2 and 7Xl - 3X2 may be nonnegative or nonpositive, 
since we are silent about the nature of Xl and X2. 

1.3 Formulation of Models 

Learning to formulate the mathematical programming problem using 
the given data is the first step for optimizing any system. If we fail 
at this stage, then it bears no fruitful results. The modeling of the 
problem includes 

(i) Decision variables that we seek to determine. 

(ii) Construction of the objective function to be optimized. 
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(iii) Constraints that satisfy various conditions. 

(iv) Nonnegative restrictions and their nature. 

The proper definition of the decision variables is the most sensitive 
part toward the development of a model. Once the decision vari­
ables are defined the construction of the objective function and the 
constraints from the given data is not laborious. For incorporating 
~,=, ::; in the constraints one has to be careful about the phrases: at 
least or minimum, exactly satisfied, at most or maximum or no longer 
than, etc. 

In this section we have formulated various problems which are in 
common use. 

Linear models. Here we formulate some well known problems as 
linear programming problems. 

Diet problem. A medical practitioner recommends the constituents 
of a balanced diet for a patient which satisfies the daily minimum 
requirements of Proteins P units, Fats F units, and Carbohydrates C 
units at a minimum cost. Choice from five different types of foods can 
be made. The yield per unit of these foods are given by 

Food type Protein Fats Carbohydrates Cost/unit 

1 PI h CI dl 

2 P2 h C2 d2 

3 P3 13 C3 d3 

4 P4 14 C4 d4 

5 P5 15 C5 d5 

How the patient should select the items so that he has to pay minimum. 

Suppose Xi = the number of units of the ith food which the patient 
selects. The objective function is 
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and the constraints are 

PlXl + P2 X 2 + ... + P5 X 5 ?: P 

hXl + hX2 + ... + !5X5 ?: F 

ClXl + C2X2 + ... + C5X5 ?: C 

Xi ?: 0, i = 1,2, ... ,5. 

Product mix problem. A manufacturing process requires three 
different inputs viz., A, Band C. A sandal soap of the first type requires 
30 gm of A, 20 gm of Band 6 gm of C, while this data for the second 
type of soap is 25, 5 and 15, respectively. The maximum availability 
of A, Band Care 6000, 3000 and 3000 gm, respectively. The selling 
price of the sandal soap of the first and second type are $ 14 and 
15, respectively. The profit is proportional to the amount of soaps 
manufactured. How many soaps of the first and second kinds should 
be manufactured to maximize the profit. Assume that the market has 
unlimited demand. 

Let us put the data in the tabular form: 

Type Inputs/unit Selling price/unit 

A B C 

I 30 20 6 14 

II 25 5 15 15 

Max availability 6000 3000 3000 

Let Xl and X2 be the number of the first and second types of soaps 
to be manufactured. The profit from selling is given by z = 14xl + 15x2. 

This is subjected to the availability constraints given by 30Xl + 25x2 ::; 

6000, 20Xl + 5X2 ::; 3000, 6Xl + 15xl ::; 3000. The decision variables 
are Xl, X2 ?: 0, and in addition, these must be integers. 

Thus, the required LPP is 

max z = 14xl + 15x2 

s.t. 30Xl + 25x2 ::; 6000 

20Xl + 5X2 ::; 3000 

6Xl + 15x2 ::; 3000 

Xl, X2 ?: 0 and are integers. 
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Bus scheduling problem. IP Depo runs buses during the time 
period 5 AM to 1 AM. Each bus can operate for 8 hours successively, 
and then it is directed to workshop for maintenance and fuel. The 
minimum number of buses required fluctuate with the time intervals. 
The desired number of buses during different time interval are given 
in the following table: 

Time intervals Minimum number of buses required 

5 AM-9 AM 5 

9 AM-1 PM 13 

1 PM-5 PM 11 

5 PM-9 PM 14 

9 PM-1 AM 4 

The depo keeps in view the reduction of air pollution and smog prob­
lem. It is required to determine the number of buses to operate during 
different shifts that will meet the minimum requirement while mini­
mizing the total number of daily buses in operation. 

Let Xi be the number of buses starting at the beginning of the ith 
period, i = 1 to 5. Note that each bus operates during two consecu­
tive shifts. Buses which join the crew at 5 AM and 9 AM will be in 
operation between 9 AM and 1 PM. As the minimum number of buses 
required in this interval is 13, we have Xl + X2 2': 13, and similarly 
others. 

The LPP formulation is 

mIll Z = Xl + X2 + X3 + X4 + X5 

s.t. Xl + X2 2': 13 

X2 + X3 2': 11 

X3 + X4 2': 14 

X4 + X5 2': 4 

X5 + Xl 2': 5 

Xl, X2, X3, X4, X5 2': 0 and are integers. 

The warehousing problem. A warehouse has a capacity of 2000 
units. The manager of the warehouse buys and sells the stock of 
potatoes over a period of 6 weeks to make profit. Assume that in 
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the jth week the same unit price Pj holds for both purchase and sale. 
In addition, there is unit cost $15 as weekly expenses for holding stock. 
The warehouse is empty at the beginning and is required to be empty 
after the sixth week. How should the manager operate? 

The major activities involve buying, selling, and holding the stock 
for a week. Define the variables 

Xj = the level of the stock at the beginning of the jth week; 

Yj = the amount bought during the jth week; 

Zj = the amount sold during the jth week. 

Then the manager tries to maximize 

6 

LPj(Zj - Yj) - 15Xj 

j=l 

subject to the stock balance constraints 

Xj+1 = Xj + Yj - Zj, j = 1,2, ... ,5 

the warehouse capacity constraints 

Xj S; 2000, j = 1,2, ... ,6 

the boundary conditions 

Xl = 0, X6 + Y6 - Z6 = 0 

and the nonnegative restrictions 

Xj 2: 0, Yj 2: 0, Zj 2: 0, j = 1,2, ... ,6. 

Caterer problem. TIET has to organize its annual cultural festival 
continuously for next five days. There is an arrangement of dinner for 
every invited team. The requirement of napkins during these five days 
is 

Days 1 2 3 4 5 

Napkins required 80 50 100 80 150. 

Accordingly, a caterer has been requested to supply the napkins ac­
cording to the above schedule. After the festival is over caterer has 
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no use of napkins. A new napkin costs $2. The washing charges for 
a used napkin is $0.5 by ordinary services and $1, if express service 
is used. A napkin given for washing by ordinary service is returned 
third day, while under express service it is return next day. How the 
caterer should meet the requirement of the festival organizers so that 
the total cost is minimized. 

Define the decision variables as 

Xi = number of napkins purchased on the ith day, i = 1 to 5. 

Yj = number of napkins given for washing on jth day under express 
service, j = 1 to 4. 

Zk = number of napkins given for washing on kth day under ordinary 
service, k = 1 to 3. 

Ve = number of napkins left in the stock on fth day after the napkins 
have been given for washing, f = 1 to 5. 

The data is tabulated as 

Type Number of napkins required on days 

1 

New napkins 

Express service 

Ordinary service 

Napkins required 80 

We have to minimize 

2 

YI 

50 

3 4 5 

Y2 Y3 Y4 

100 80 150 

2(XI + X2 + X3 + X4 + X5) + YI + Y2 + Y3 + Y4 + 0.5(ZI + Z2 + Z3). 

From the table: 

Xl = 80, X2 + YI = 50, X3 + Y2 + Zl = 100, X4 + Y3 + Z2 = 80, 
X5 + Y4 + Z3 = 150. 

Also, there is another set of constraints which shows the total num­
ber of napkins which may be given for washing and some napkins which 
were not given for washing just on the day these have been used. These 
constraints are:YI + Zl + VI = 80, Y2 + Z2 + V2 = 50 + VI, Y3 + Z3 + V3 = 
100 + V2, Y4 + V4 = 80 + V3, V5 = 150 + V4· 
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Thus, the desired LPP model is 

min Z = 160 + 2(X2 + X3 + X4 + X5) + Yl + Y2 + Y3 + Y4 

+ 0.5(Zl + Z2 + Z3) 
s. t. X2 + YI = 50 

X3 + Y2 + Zl = 100 

X4 + Y3 + Z2 = 80 

X5 + Y4 + Z3 = 150 

Yl + Zl + VI = 80 

Y2 + Z2 + V2 - VI = 50 

Y3 + Z3 + V3 - V2 = 100 

Y4 + V4 - V3 = 80 

V5 - V4 = 150 

all var 2: O. 

15 

Trim-loss problem. Paper cutting machines are available to cut 
standard news print rolls into the subrolls. Each standard roll is of 
180 cm width and a number of them must be cut to produce smaller 
subrolls at the current orders for 30 of width 70 cm, 60 of width 50 cm 
and 40 of width 30 cm. Formulate the problem so as to minimize the 
amount of wastes. Ignoring the recycling or other uses for the trim, 
assume that the length of each required subroll is the same as that of 
the standard roll. 

A standard roll may be cut according to the following patterns. 

Widths ordered Number of subrolls cut 

In cm on different patterns 

PI P2 P3 P4 P5 P6 P7 Ps 

30 6 4 3 2 2 1 1 0 

50 0 1 0 1 2 0 3 2 

70 0 0 1 1 0 2 0 1 

Trim loss 0 10 20 0 20 10 0 10 
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Let Xi be the number of the standard news print rolls pieces to cut on 
the pattern Pi, i = 1,2, ... ,8. Thus, the required LPP is 

min z = 10x2 + 20X3 + 20X5 + 10X6 + 10xs 

s.t. 6Xl + 4X2 + 3X3 + 2X4 + 2X5 + X6 + X7 = 40 

X2 + X4 + 2X5 + 3X7 + 2xs = 60 

X3 + X4 + 2X6 + X7 + Xs = 30 
Xi 2: 0, i = 1,2, ... ,8 and are integers. 

Here, in the constraints the equality is desired due to the fact any 
thing left is of no use. 

Example 4. Two alloys, A and B are made from four different metals, 
I, II, III, and IV, according to the following specifications: 

Alloy Specifications Selling price ($) /ton 

A at most 80% of I 200 

at least 30% of II 

at least 50% of IV 

B between 40% & 60% of II 300 

at least 30% of III 

at most 70% of IV 

The four metals, in turn, are extracted from three different ores with 
the following data: 

Ore Max. Quantity Constituents(% ) Purchase 

(tons) I II III IV others Price ($)/ton 

1 1000 20 10 30 30 10 30 

2 2000 10 20 30 30 10 40 

3 3000 5 5 70 20 0 50 

How much of each alloy should be produced to maximize the profit. 
Formulate the problem as a LP model. 
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Define 

Xij = tons of ore i allocated to alloy j; i = 1,2,3; j = A, B 

Wj = tons of alloy j produced 

Specification constraints: 

Ore constraints: 

Alloy constraints: 

0.2XIA + 0.lX2A + 0.05X3A ::; 0.8WA 

O.lXIA + 0.2X2A + 0.05X3A ~ 0.3w A 

0.3XIA + 0.3X2A + 0.2X3A ~ 0.5WA 

O.lXIB + 0.2X2B + 0.05X3B ~ O.4WB 

O.lXIB + 0.2X2B + 0.05X3B ::; 0.6WB 

0.3XIB + 0.3X2B + 0.7X3B ~ 0.3WB 

0.3XlB + 0.3X2B + 0.2X3B ::; 0.7WB 

XIA + XIB ::; 1000 

X2A +X2B::; 2000 

X3A +X3B::; 3000 

XIA +X2A +X3A ~ WA 

XlB + X2B + X3B ~ WB 

17 

XiA ~ O,XiB,Wj ~ 0 i = 1,2,3, j = A, B. 

Nonlinear models. The formulation of nonlinear problems requires 
little more efforts in comparison to the linear models. In this section, 
we formulate some nonlinear programming problems. 

Gambler problem. A gambler has $24,000 to playa game. In the 
game there are three places for stake. He divides his total money 
among three choices. There are three outcomes in the game. The 
return per unit deposited at each choice can be read from the table: 
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Gain or loss per rupee at choice 

Outcomes 1 2 3 

1 -5 1 1 

2 -7 6 10 

3 13 -2 6 

The probabilities of different outcomes are not known. The gambler 
wants least risk as far as loss is concerned. He decides to divide his 
money among three choices in such a way if there is any loss, then it 
is least. Any way he maximizes the minimum return. 

Suppose that Xl, X2, X3 dollars are invested by the gambler on the 
choices 1,2,3, respectively. Then the returns depending upon outcomes 
1,2,3 are 

The problem is formulated as 

max z = min{ -5XI + X2 + X3, -7XI + 6X2 + 10X3, 13xI - 2X2 + 6X3} 

s.t. Xl + X2 + X3 = 24000 

Xl, X2, X3 2: 0 and are integers. 

Remark. This is a nonlinear programming problem (NLPP). However, 
it may be converted into an LPP as follows: 

Let y = min{-5xI +X2+X3, -7XI +6x2+lOx3, 13xl-2x2+6x3}. 

Then 

y ~ -5XI + X2 + X3 

Y ~ -7XI + 6X2 + lOX3 

y ~ 13xI - 2X2 + 6X3 

The required LPP is 

max z=y 
s.t. 5XI - X2 - X3 + Y ~ 0 

7XI - 6X2 - 10x3 + Y ~ 0 

- 13xI + 2X2 - X3 + Y ~ 0 

Xl + X2 + X3 = 24000 

Xl, X2, X3, Y 2: 0 and are integers. 
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Production planning problem. The municipal corporation of Pa­
tiala decides to clean the water system of open wells in urban ar­
eas, and for this purpose a medicated product is made by mixing two 
parts of potassium permagnate and three parts of bleaching powder. 
These products are processed in departments of Chemical, Chemistry 
and Biotechnology operating in Ranbaxy laboratories. Departments 
have limited number of production hours available, viz." 100, 150 and 
200, respectively. The production rate of potassium permagnate and 
bleaching powder in each department is given in the following table 

Production rate(no. of units/hour) 

Department Potassium Bleaching 

permagnate powder 

Chemical 20 25 

Chemistry 25 20 

Biotechnology 20 5 

The objective is to determine the number of hours to be assigned to 
each department to maximize the completed units of the medicated 
product. Formulate the appropriate model. 

Writing the given data in the tabular form as 

Department Production rate(no. of units/hour) Limited 

Potassium Bleaching hours 

permagnate powder 

Chemical 20 25 100 

Chemistry 25 20 150 

Biotechnology 20 5 200 

Let Xij be the number of hours assigned to ith department for jth part, 
i = 1,2,3 and j = a, b, where suffixes 1 = Chemical, 2 = Chemistry, 
3 = Biotechnology and a = Potassium permagnate and b = bleaching 
powder. 

Total number of parts of a manufactured = 20Xla + 25x2a + 20X3a. 

Total number of parts of b manufactured = 25xlb + 20X2b + 5X3b. 
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Complete units of the final product are 

_ . {20Xla + 25x2a + 20X3a 25xlb + 20X2b + 5X3b } 
y-mm 2 ' 3 . 

Thus, 

max z=y 
s.t. Xl a + Xlb :s; 100 

X2a + X2b :s; 150 

X3a + X3b :s; 200 
Xij 2: 0, i = 1,2,3; j = a, b, and are integers. 

The problem is formulated as a nonlinear programming problem. 

Remark. The formulation of this problem can be done as LPP, see 
Problem 19, Problem set 1. 

Example 5. A firm produces two products A and B using two limited 
resources. The maximum amount of Resource 1 available per week is 
3000, while for Resource 2 is 2500. The production of one unit of A 
requires 3 units of Resource 1 and 1 unit of of Resource 2, and the 
production of B requires 2 units of Resource 1 and 2 units of Resource 
2. The unit cost of Resource 1 is (1.5- .00lud, where Ul is the number 
of units of Resource 1 used. The unit cost of Resource 2 is (2 - .004U2), 
where U2 is the number of units of Resource 2 is used. The selling price 
per unit of A and B are fixed as 

PA = 8 - .00lXA - .005XB, 

PB = 9 - .002XA - .004XB, 

where x A and x B are the number of units sold for product A and 
B, respectively. Assuming that how much has been manufactured is 
disposed off, formulate the above problem to maximize the profit over 
a week. 

Let XA and XB be number of units of the products A and B pro­
duced per week. The requirement of Resource 1 per week is (3XA + 
2XB), while that of Resource 2 is (XA + 2XB) and the constraints on 
the resources availability are 3XA + 2XB :s; 3000 and XA + 2XB :s; 2500. 

The total cost of Resource 1 and 2 per week is 
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and the total return per week from selling of A and B is 

xA(8 - .001XA - .005XB) + xB(9 - .002XA - .004XB)' 

21 

As the total profit is the difference of total cost and total return, the 
formulation of model is 

max z = .012x~ + .016x~ + .021xAXB + 1.5xA + 2XB 

s.t. 3XA + 2XB ::; 3000 

XA + 2XB ::; 2500 

XA,XB ~ 0 

This is a quadratic programming problem. 

Problem Set 1 

1. Write the following LPP into the standard form: 

opt z = 2XI + X2 - X3 

s.t. 2XI + X2 - X3 ::; 5 

- 3XI + 2X2 + 3X3 ~ -3 

Xl - 3X2 + 4X3 ~ 2 

Xl + X2 + X3 = 4 

Xl ~ 0, X2 ~ 1 and X3 is unrestricted in sign. 

2. Write the standard form of the LPP 

max z = 2XI + X2 + X3 

s. t. Xl - X2 + 2X3 ~ 2 

12xI + X2 - x31 ::; 4 
3XI - 2X2 - 7X3 ::; 3 

XI, X3 ~ 0, X2 ::; O. 

3. Write the following linear programme into a standard form: 

opt z = Xl + 2X2 - X3 

s.t. Xl + X2 - X3 ::; 5 

- Xl + 2X2 + 3X3 ~ -4 

2XI + 3X2 - 4X3 ~ 3 

Xl + X2 + X3 = 2 
Xl ~ 0, X2 ~ P and X3 is unrestricted in sign. 

Mention the range of p in the standard LPP. 
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4. Consider the following optimization problem: 

min z = IXII + 21x21- X3 

s.t. Xl + X2 - X3 :S 9 

Xl - 2X2 + 3X3 = 11 

X3 ~ 0 

(a) Is this a linear programming problem? 

(b) Can you convert it into LPP? If yes, write the standard form. 

5. Convert the following problem into a standard linear programme 
by using only three nonnegative variables in place of Xl and X2 

and the objective function must be free of the constant term. 

min z = Xl + X2 - 1 

s.t. Xl + x2 :S 7 

Xl - 2X2 ~ 4. 

Suggestion. At first, replace Xl by Xl + 1 and then use the 
proposition. 

6. Convert the following problem into an equivalent linear model 

-3 + 2XI + 4X2 - 5X3 
max 

s.t. 
6 + 3XI - X2 

Xl - X2 ~ 0 

7XI + 9X2 + lOx3 :S 30 

Xl ~ 0, X2 ~ 1, X3 ~ 0 

Suggestion. This is a linear fractional programming problem. To 
avoid various possibilities, assume r = (6 + 3XI - X2)-1 > 0, and 
define rXj = Yj, j = 1,2,3. 

7. Suppose n different food items are available at the market and 
the selling price for the jth food is Cj per unit. Moreover, there 
are m basic nutritional ingredients for the human body and min­
imum bi units of the ith ingredient are required to achieve a bal­
anced diet for good health. In addition, a study shows that each 
unit of the jth food contains aij units of the ith ingredients. A 
dietitian of a large group may face a problem of determining the 
most economical diet that satisfies the basic nutritional require­
ment for good health. Formulate the problem so that problem 
of dietitian is solved. 
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8. A small manufacturing plant produces two products, A and B. 
Each product must be worked on by a bank of CNC lathe ma­
chines and then, in succession, by a group of CNC milling ma­
chines. Product A requires 1 hr on CNC lathe machines and 3 
hrs on CNC milling machines. Product B requires 5 hrs on CNC 
lathe machines and 1 hr on CNC milling machines. A total of 
10000 hrs is available per week on CNC lathe machines and 7000 
hrs on CNC milling machines. The net profit is $5 per unit for 

. product A and $10 per unit for product B. Formulate the prob-
lem so as to maximize the weekly profit. Assume that all the 
quantities manufactured are disposed off. 

9. A company makes two kinds of leather belts. Belt A is a high 
quality belt, and belt B is of lower quality. Each belt of type 
A requires twice as much time as a belt of type B, and if all 
belts were of type B, the company could make 1500 per day. 
The supply of leather is sufficient for only 1000 belts per day 
(both A and B combined). Belt A requires a fancy buckle, and 
only 500 per day are available. There are only 800 buckles a day 
available for belt B. The profits in belt A and Bare $3 and $2 per 
belt, respectively. Formulate the linear programming problem to 
maximize the profit. 

10. The New Delhi Milk Corporation (NDMC) has two plants each 
of which produces and supplies two products: Milk and Butter. 
Plants can each work up to 16 hours a day. In Plant-I, it takes 
3 hours to prepare from powder and pack 1000 liters of milk 
and 1 hour to prepare and pack 100 kg of butter. In Plant­
II, it takes 2 hours to prepare and pack 1000 liters of milk and 
1.5 hours to prepare and pack 100 kg of butter. In Plant-I, it 
costs $15,000 to prepare and pack 1000 liters of milk and $28,000 
to prepare and pack 100 kg of butter, whereas these costs are 
$18,000 and $26,000, respectively for Plant-II. The NDMC is 
obliged to produce daily at least 10,000 liters of milk and 800 kg 
of butter. Formulate this as LPP to find as to how should the 
company organize its production so that the required amount of 
the products be obtained at minimum cost. 

Suggestion. Let mi = units of milk produced in ith plant per day 
and bi = units of butter produced in ith plant per day, i = 1,2. 
1000 liters = one unit and 100 kg = one unit. Note that one 
unit of milk is produced by Plant-I in 3 hours and hence ml is 
produced in 3ml hours and so on. 
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11. A farmer has to plant two kinds of trees, say A and B on a land 
with 4400 sq m area. Each A tree requires at least 25 sq m of 
land, and B requires 40 sq m. The annual water requirement 
of tree A is 30 units and that of B is 15 units, while at most 
3300 units water is available. It is estimated that the ratio of 
the number of B trees to the number of A trees should not be 
less than 6/19 and not be more that 17/8. The return from one 
B tree is $50, while from one A tree is one and a half times that 
of return from B. Describe the plantation project of the farmer 
in terms of LPP so that the return is maximum. 

12. A metal slitting company cuts master rolls with width 200 cm 
into subrolls of small width. Customers specify that they need 
sub rolls of different widths given in the following table 

Width of sub rolls (in cm) Number required 

35 200 

80 90 

90 350 

120 850 

The objective is to use a minimum number of master rolls to 
satisfy a set of customers' orders. Formulate the problem as 
LPP. 

13. The Materials Science Division of TIET needs circular metallic 
plates of diameters 3 cm and 6 cm to perform experiments on 
heat treatment studies, and requirement of these plates are 2500 
and 1500, respectively. These are to be cut from parent metallic 
sheets of dimension 6 x 15 cm2 . Formulate the problem as a 
linear programming problem so that the minimum number of 
parent metallic sheets are used. 

14. Martin furniture company manufactures tables and chairs using 
wood and labour only. Wood required for one table is 30 units 
and for one chair is 20 units, and the labour spent on table is 10 
units and for chair is 5 units. Total units of wood available are 
381 and oflabour are 117. The unit profit for table is $9 and for 
chair is $6. How many tables and chairs should be made to get 
maximum profit? 
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15. IBM produces two kinds of memory chips (Chip-l and Chip-2) 
for memory usage. The unit selling price is $15 for Chip-l and 
$25 for Chip-2. To make one Chip-I, IBM has to invest 3 hours 
of skilled labour, 2 hours of unskilled labour and 1 unit of raw 
material. To make one Chip-2, it takes 4 hours of skilled labour, 
3 hours of unskilled labour, and 2 units of raw material. The 
company has 100 hours of skilled labour, 70 hours of unskilled 
labour and 30 units of raw material available, and is interested 
to utilize the full potential of skilled labour. The sales contract 
signed by IBM requires that at least 3 units of chip-2 have to be 
produced and any fractional quantity is acceptable. Formulate 
a linear programme to help IBM determine its optimal product 
mix. 

16. A manufacturer produces three models (I, II and III) of a certain 
product. He uses two types of raw material (A and B) of which 
2000 and 3000 units are available, respectively. The raw material 
requirement can be read from the following table 

Raw material Requirement per unit of given model 

A 

B 

I 

2 

4 

II 

3 

2 

III 

5 

7 

The labour time for each unit of model I is twice that of model 
II and three times that of model III. The entire labour force can 
produce the equivalent of 700 units of model I. A market survey 
indicates that the minimum demand of three models are 200, 200 
and 150 units, respectively. Formulate the LPP to determine the 
number of units of each product which will maximize the profit. 
Assume that the profit per unit of models I, II, III are $30, $20, 
and $60, respectively. 

17. There are m machines and n products, and the time aij is re­
quired to process one unit of product j on machine i. The Xij 

is the number of units of product j produced on machine i and 
Cij is the respective cost of processing them. The bi is the total 
time available on machine i whereas dj is the number of units 
of product j which must be processed. Formulate the problem 
with an objective of minimizing the total cost. 
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18. A ship has three cargo loads, forward, after and centre; the ca­
pacity limits are 

Placement Weight (tonnes) Capacity in m 3 

Forward 2000 100,000 

Centre 3000 135,000 

After 1500 30,000 

The following cargoes are offered, the ship owner may accept all 
or any part of each commodity: 

Commodity Weight Volume Profit 

(tonnes) per ton (m3 ) per ton($) 

A 6000 60 60 

B 4000 50 80 

C 2000 25 50 

In order to preserve the trim of the ship, the weight in each 
load must be proportional to the capacity. The objective is to 
maximize the profit. Formulate the linear programming model 
for this problem. 

19. Convert the nonlinear problem obtained in the production plan­
ning problem of Section 1.3 into a linear programming problem. 

20 Reformulate the LPP of Problem 16 with the modification: "The 
labour time for each unit of model-I is twice that of model-II and 
labour time for each unit of model-II is thrice that of model-III" . 
The remaining data is same as given in Problem 16. 

21. A company manufactures a product which consists of n type of 
ingredients that are being produced in m departments. Each 
department has limited number of production hours, viz." the 
ith (i = 1,2, ... , m) department has bi hours available. The pro­
duction rate of jth (j = 1,2, ... , n) ingredient is aij units per 
hour in the ith department. The final product is made just by 
mixing one part of the first ingredient, two parts of the second 
ingredient, and so on n parts of the nth ingredients. The objec­
tive is to determine the number of hours of each department to 
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be assigned to each ingredient to maximize the completed units 
of the product. Formulate the problem as NLPP. 

Suggestion. Xij = the number of hours assigned to ith depart­
ment for the production of jth ingredient. This is a generaliza­
tion of the production planning problem of Section 1.3. 

22. A canteen of an institute which remains functional only for five 
days in a week has to recruit waiters. A waiter has to work 
continuously for three days and have two days off. The minimum 
number of waiters required on individual days are 

Days 1 2 3 4 5 

N umber of waiters required 25 35 40 30 20 

Not more than 30 waiters can be recruited on any day. Formulate 
the LPP model to minimize the number of waiters recruited. 

23. A transporter company assigns three type of buses to four cities 
Bombay, Calcutta, Chennai and Delhi for tourists according to 
the following data 

Bus Capacity of No. of 

type passengers buses 

1 100 5 

2 70 8 

3 50 10 

Bus No. of weekly trips to 

type Bombay Calcutta Chennai Delhi 

1 3 2 2 1 

2 4 3 3 2 

3 5 5 4 2 

Number of 1000 2000 900 1200 

tourists 
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The associated costs, including the penalties for losing customers 
because of space limitation, are 

Operating cost($) per trip for cities 

Bus type Bombay Calcutta Chennai Delhi 

1 1000 1100 1200 1500 

2 900 1000 1100 1200 

3 700 900 900 1000 

Penalty($) per 40 50 45 70 

lost customer 

Formulate the LPP model that determines the optimum alloca­
tion of the buses to different cities and the associated number of 
trips. 

24. A retired employee wants to invest $200,000 which he received 
as provident fund. He was made acquainted with two schemes. 
In scheme-A he is ensured that for each rupee invested will earn 
$0.6 a year, and in scheme-B each rupee will earn $1.4 after two 
years. In scheme-A investments can be made annually, while in 
scheme-B investments are allowed for periods that are multiples 
of two years only. How should the employee invest his hard 
earn money to maximize the earnings at the end of three years? 
Formulate the LP model for the problem. 

25. A factory is to produce two products PI and P2 . The product 
requires machining on two machines MI and M 2 . Product PI 
requires 5 hours on machine MI and 3 hours on machine M 2 . 

Product P2 requires 4 hours on machine MI and 6 hours on 
machine M 2 . Machine MI is available for 120 hours per week 
during regular working hours and 50 hours on overtime. Weekly 
machine hours on M2 are limited to 150 hours on regular working 
hours and 40 hours on overtime. Product PI earns a unit profit 
of $8 if produced on regular time and $6, if produced on regular 
time on MI and on overtime on M2 , and $4 if produced on over­
time on both the machines. Product P2 earns a unit profit of $10 
if produced on regular time and $9, if produced on regular time 
on MI and on overtime on M 2 , and $8 if produced on overtime 
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on both the machines. Formulate the LPP model for designing 
an optimum production schedule for maximizing the profit. 

Suggestion. Define the variables as 

Xl = number of units of PI made on regular time 

X2 = number of units of P2 made on regular time 

X3 = number of units of PI made on overtime 

X4 = number of units of P2 made on overtime 

X5 = number of units of PI made on regular time on MI and 
overtime on M 2 

X6 = number of units of P2 made on regular time on MI and 
overtime on M2 

The objective function is 8XI + 10x2 + 4X3 + 8X4 + 6X5 + 9X6 and 
to find the constraints, construct the table: 

Machine Product type Available time 

type Time Time Regular time Overtime 

for PI for P2 

MI 5 4 120 50 

M2 3 6 150 40 

5XI + 4X2 + 5X5 + 4X6 ~ 120 (regular time of MI) 

5X3 + 4X4 ~ 50 (overtime of M I ) 

3XI + 6X2 ~ 150 (regular time on M2) 

3X3 + 6X4 + 3X5 + 6X6 ~ 40 (overtime on M 2 ) 

Xj ~ 0, j = 1,2, ... , 6. 

26. A chemical company has been requested by its state govern­
ment to install and employ antipollution devices. The company 
makes two products; for each of these products, the manufac­
turing process yields excessive amount of irritant gases and par­
ticulates (airborne solids). The table shows the daily emission, 
in pounds, of each pollutant for every 1000 gallons of product 
manufactured. The company is prohibited from emitting more 
than G I , G2 and PI pounds of gas eM, gas SD, and Particulates, 
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respectively. The profit for each thousand gallons of Products 1 
and 2 manufactured per day is PI and P2, respectively. 

Type of Pounds of pollution emitted 

Pollutant Per 1000 gallons Per 1000 gallons 

of Product 1 of Product 2 

Gas eM 24 36 

Gas SD 8 13 

Particulates 100 50 

The production manager has approved the installations of two 
antipollution devices. The first device removes 0.75 of gas eM, 
0.5 of gas SD and 0.9 of the Particulates, regardless of the prod­
uct made. The second device removes 0.33 of gas eM, none of 
gas SD, and 0.6 of the Particulates for Product 2. The first de­
vice reduces profit per thousand gallons manufactured daily by 
CI, regardless of the product; similarly, the second device reduces 
profit by C2 per thousand gallons manufactured, regardless of the 
product. Sales commitments dictate that at least RI thousand 
gallons of Product 1 be produced per day, and R2 thousand of 
gallons of Product 2. Formulate the appropriate optimization 
model. 

Suggestion. Define the decision variables as Xl = 1000 gallons 
of Product 1 made per day without using any control device; 
Xl1 = 1000 gallons of Product 1 made per day using the first 
control device; Xl2 = 1000 gallons of Product 1 made per day 
using the second device. Define the similar variables YI, Yl1, Yl2 
for Product 2. 

27. A company produces two products PI and P2 . The sales volume 
for PI is at least 40% of the total sales of both PI and P2 . The 
market survey ensures that it is not possible to sell more than 
100 unit of PI per day. Both product use one raw material whose 
availability to 120 lb a day. The usage rates of the raw material 
are 1 lb per unit for PI and 2 lb for per unit for P2 . The unit 
prices for PI and P2 are $10 and $30, respectively. Formulate 
the LPP model to optimize the product mix for the company. 

28. A farming organization operates three farms of comparable pro­
ductivity. The output of each farm is limited both by the usable 
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acreage and the water available for irrigation. The data for the 
upcoming season are 

Farm Usable acreage Water available (acre feet) 

1 400 1500 

2 600 2000 

3 300 900 

The organization is interested in three crops for planting which 
differ primarily in their expected profit per acre and their con­
sumption of water. Furthermore, the total acreage that can be 
devoted to each of the crops is limited by the amount of appro­
priate harvesting equipment available 

Crop Maximum Water consumption Expected profit 

A 

B 

C 

acreage 

700 

800 

3000 

in acre feet 

5 

4 

3 

per acre ($) 

4000 

3000 

1000 

In order to maintain a uniform workload among farms, the policy 
of the organization is that the percentage of the usable acreage 
planted be the same at each farm. However, any combination of 
the crops may be grown at any of the farms. The organization 
wishes to know how much each crop should be planted at the 
respective farms to maximize the expected profit. 

Suggestion. Xij = number of acres of ithe farm to be allotted to 
jth crop, i = 1,2,3 and j = A, B, C. 

29. Weapons of three types are to be assigned to 8 different targets. 
Upper limits on available weapons and lower limits on weapons 
to be assigned are specified. The characteristics of the three 
weapons type are as follows 

(a) WI : Fighter bombers 

(b) W 2 : Medium-range ballistic missiles 

( c) W3 : Intercontinental ballistic missiles 
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Table 1 gives the values of the parameters needed for the model: 
probabilities that target will be undamaged by weapons, total 
number of weapons available, minimum number of weapons to 
be assigned (bj ), and military value of targets (Uj). 

Table la 
Targets TI T2 T3 T4 T5 T6 T7 Ts 

WI 1.00 0.90 1.00 0.95 1.00 0.90 1.00 0.95 

W2 0.85 0.85 0.90 1.00 0.95 1.00 0.95 0.90 

W3 0.95 1.00 0.95 0.90 0.90 0.95 0.85 1.00 

b· J 30 100 50 40 60 70 50 10 

U· J 60 50 75 80 40 200 100 150 

Table Ib 
Targets Weapons Available 

WI 200 

W2 100 

W3 300 

Formulate the model for maximizing the expected target damage 
value. 



Chapter 2 

Geometry of Linear 
Programming 

The intent of this chapter is to provide a geometric interpretation of 
linear programming problems. To conceive fundamental concepts and 
validity of different algorithms encountered in optimization, convexity 
theory is considered the key of this subject. The last section is on the 
graphical method of solving linear programming problems. 

2.1 Geometric Interpretation 

Let ]Rn denote the n-dimensional vector space (Euclidean) defined over 
the field of reals. Suppose X, Y E ]Rn. For X = (Xl, X2, ... ,xnf and 
Y = (YI, Y2, . .. ,Yn)T we define the distance between X and Y as 

Neighbourhood. Let Xo be a point in ]Rn. Then 6-neighbourhood 
of Xo, denoted by No(Xo) is defined as the set of points satisfying 

No(Xo) = {X E ]Rn : IX - Xol < 6, c5 > O}. 

No(Xo) \Xo = {X E]Rn: 0 < IX -Xol < c5} will be termed as deleted 
neighbourhood of Xo. 

In ]R2, No(Xo) is a circle without circumference, and in ]R3, No(Xo) 
is sphere without boundary, and for ]R, an open interval on the real 
line. For n > 3, figures are hypothetical. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Let S c ]Rn. We give few elementary definitions. 

Boundary point. A point Xo is called a boundary point of S if 
each deleted neighbourhood of Xo intersects S and its compliment Sc. 

Interior point. A point Xo E S is said to be an interior point of 
S, if there exists a neighbourhood of Xo which is contained in S. 

Open set. A set S is said to be open if for each XES there 
exists a neighbourhood of X which is contained in S. 

For example, S = {X E ]Rn : IX - Xol < 2} is an open set. The 
well known results: (i) A set is open ¢=:::} it contains all its interior 
points, and (ii) The union of any number of open sets is an open set, 
are left as exercises for the reader. 

Close set. A set S is closed if its compliment SC is open. 

For example, S = {X E ]Rn : IX -Xol S 3} is a closed set. Again a 
useful result arises: intersection of any number of closed sets is closed. 

A set S in ]Rn is bounded if there exists a constant M > Osuch 
that IXI S M for all X in S. 

Definition 1. A line joining Xl and X2 in ]Rn is a set of points given 
by the linear combination 

Obviously, 

L+ = {X : X = cqXl + 0:2X2, 0:1 + 0:2 = 1 ,0:2 2: O} 

is a half-line originating from Xl in the direction of X2 as, for 0:2=0, 
X = Xl and 0:2=1, X = X 2 . 

Similarly, 

is a half-line emanating from X2 in the direction of Xl as, for 0:1 =0, 
X = X2 and 0:1=1, X = Xl. 

Definition 2. A point X E ]Rn is called a convex linear combination 
(clc) of two points Xl and X 2 , if it can be expressed as 

Geometrically, speaking convex linear combination of any points Xl 
and X2 is a line segment joining Xl and X 2 . 
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For example, let Xl = (1,2) and X2 = (3,7). Then, 

is a point lying on the line joining Xl and X 2. 

Convex set. A set S is said to be convex if dc of any two points 
of S belongs to 8 , i.e., 

Geometrically, this definition may be interpreted as the line seg­
ment joining every pair of points Xl, X 2 of S lies entirely in S. For 
more illustration, see Fig. 2.1. 

• 0 ~ 
convex convex nonconvex convex 

Figure 2.1 

By convention empty set is convex. Every singleton set is convex. 
A straight line is a convex set , and a plane in ]R3 is also a convex set. 
Convex sets have many pleasant properties that give strong mathe­
matical back ground to the optimization theory. 

Proposition 1. Intersection of two convex sets is a convex set. 

Proof. Let 8 1 and 8 2 be two convex sets. We have to show that 
8 1 n 8 2 is a convex set. If this intersection is empty or singleton there 
is nothing to prove. 

Let Xl and X 2 be two arbitrary points in 8 l n82 . Then Xl, X 2 E 81 
and Xl, X 2 E 82 . Since 81 and 82 are convex, we have 

Thus, 
(XlXl + (X2X2 E 81 n 82 , 

and hence 8 1 n 8 2 is convex. 
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Remarks. 1. Moreover, it can be shown that intersection of any num­
ber of convex sets is a convex set, see Problem 3. 

2. The union of two or more convex sets may not be convex. As an 
example the sets 8 1 = {(Xl,O) : Xl E IR} and 8 2 = {(O,X2) : X2 E IR} 
are convex in xy-plane, but their union 8 1 U 8 2 = {(Xl, 0), (0, X2) 
Xl, X2 E IR} is not convex, since (2,0), (0,2) E 81 U 82, but their clc, 

(l) (2,0) + (l) (0,2) = (1,1) fj. 8 1 U82 . 

Hyperplanes and Half-spaces. A plane is IR3 is termed as a hyper­
plane. The equation of hyperplane in IR3 is the set of points (Xl, X2, X3)T 
satisfying 

alXl + a2X2 + a3x 3 = (3. 

Extending the above idea to IRn , a hyperplane in IRn is the set of points 
(Xl, X2, ... , xn)T satisfying the linear equation 

or aT X = (3, where a = (aI, a2,'" ,an)T. Thus, a hyperplane in IRn is 
the set 

(2.1) 

A hyperplane separates the whole space into two closed half-spaces 

Removing H results in two disjoint open half-spaces 

From (2.1), it is clear that the defining vector a of hyperplane H is 
orthogonal to H. Since, for any two vectors Xl and X 2 E H 

Moreover, for each vector X E Hand W E H~, 

This shows that the normal vector a makes an obtuse angle with any 
vector that points from the hyperplane toward the interior of H L. In 
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Figure 2.2 

other words, a is directed toward the exterior of HL. Fig. 2.2 illustrates 
the geometry. 

Proposition 2. A hyperplane in ~n is a closed convex set. 

Proof. The hyperplane in ~n is the set 8 = {X E ~n : aTX = o:}. 
We prove that 8 is closed convex set. First, we show that 8 is closed. 
To do this we prove 8 e is open, where 

8 e = {X E ~n : aT X < o:} U {X E ~n : aT X > o:} = 8 1 U 8 2 . 

Let Xo E 8 e . Then Xo fj. 8. This implies 

Suppose aT Xo < 0:. Let aT Xo = {3 < 0:. Define 

No(Xo) = {X E ~n : IX - Xol < 15, 15 = 0:1:1{3}. 

If Xl E No(Xo), then in view of (2.2), 

aT Xl - aTXo ~ laTX1 - aTXol = laT(Xl - Xo)1 

= laT llXl - Xol < 0: - {3. 

(2.2) 

But aT Xo = {3. This implies aT Xl < 0: and hence Xl E 8 1. Since Xl 
is arbitrary, we conclude that No(Xo) c 8 1. This implies 81 is open. 

Similarly, it can be shown that 8 2 = {X : aT Xo > o:} is open. 
Now, 8 e = 8 1 U 8 2 is open (being union of open sets) which proves 
that 8 is closed. 

Let Xl, X 2 E 8. Then aT Xl = 0: and aT X 2 = 0:, and consider 



38 CHAPTER 2. GEOMETRY OF LINEAR PROGRAMMING 

and operating aT, note that 

Thus, XES and hence S is convex. 

Proposition 3. A half-space S = {X E IRn : aT X ::; a} is a closed 
convex set. 

Proof. Let S = {X E IRn : aTX ::; a}. Suppose Xo ESc. Then 
aT Xo > a. Now, aT Xo = (3 > a. Consider the neighbourhood No (Xo) 
defined by 

{ 
n (3-a} 

No(Xo) = X E IR : IX - Xol < <5, <5 = -I-al- . 

Let Xl be an arbitrary point in No(Xo). Then 

Since aT Xo = (3, we have 

This implies SC is open and hence S is closed. 

Take Xl, X 2 E S. Hence aT Xl ::; a, aT X2 ::; a. For 

note that 

aT X = aT (alXl + a2X2) = alaT Xl + a2aT X2 

::; ala + a2a = a(al + (2) = a. 

This implies XES, and hence S is convex. 

Polyhedral set. A set formed by the intersection of finite number of 
closed half-spaces is termed as polyhedron or polyhedral. 

If the intersection is nonempty and bounded, it is called a polytope. 
For a linear programme in standard form, we have m hyperplanes 

Hi = {X E IRn : aT X = bi , X 2: 0, bi 2: 0, i = 1,2, ... , m} , 

where aT = (ail, ai2, . .. , ain) is the ith row of the constraint matrix 
A, bi is the ith element of the right-hand vector b. 
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Moreover, for a linear program in standard form, the hyperplanes 
H = {X E lRn : CT X = {3, {3 E lR} depict the contours of the 
linear objective function, and cost vector CT becomes the normal of 
its contour hyperplanes. 

Set of feasible solutions. The set of all feasible solutions forms a 
feasible region, generally denoted by Pp, and this is the intersection 
of hyperplanes Hi, i=1,2, ... ,m and the first octant of lRn. 

Note that each hyperplane is intersection of two closed half-spaces 
H Land H u, and the first octant of lRn is the intersection of n closed 
half-spaces {Xi E lR : Xi 20}. Hence the feasible region is a polyhedral 
set, and is given by 

When Pp is not empty, the linear programme is said to be con­
sistent. For a consistent linear programme with a feasible solution 
X* E Pp, if CT X* attains the minimum or maximum value of the 
objective function CT X over the feasible region Pp, then we say X* 
is an optimal solution to the linear programme. 

Moreover, we say a linear programme has a bounded feasible re­
gion, if there exists a positive constant M such that for every X E Pp, 
we have IXI ~ M. On the other hand for minimization problem, if 
there exists a constant K such that CT X 2 K for all X E Pp , then 
we say linear programme is bounded below. Similarly, we can define 
bounded linear programme for maximization problem. 

Remarks. 1. In this context, it is worth mentioning that a linear 
programme with bounded feasible region is bounded, but the converse 
may not be true, i.e., a bounded LPP need not to have a bounded 
feasible region, see Problem 2. 

2. In lR3 , a polytope has prism like shape. 

Converting equalities to inequalities. To study the geomet­
ric properties of a LPP we consider the LPP in the form, where the 
constraints are of the type ~ or 2, i.e., 

opt z = CTX 

s.t. 9i(X)::; or 20, i = 1,2, ... , m 

X20. 

In case there is equality constraint like Xl + X2 - 2X3 = 5, we can 
write this as (equivalently): Xl + X2 - 2X3 ::; 5 and Xl + X2 - 2X3 2 5. 
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This tells us that m equality constraints will give rise to 2m inequal­
ity constraints. However, we can reduce the system with m equality 
constraints to an equivalent system which has m + 1 inequality con­
straints. 

Example 1. Show that the system having m equality constraints 

n 

LaijXj=bi, i=1,2, ... ,m 

j=l 

is equivalent to the system with m + 1 inequality constraints. 

To motivate the idea, note that x = 1 is equivalent to the combina­
tion x ::; 1 and x 2:: 1. As we can check graphically, the equations x = 1 
and y = 2 are equivalent to the combinations x ::; 1, y ::; 2, x + y 2:: 3. 
The other way to write equivalent system is x 2:: 1, Y 2:: 2, x + y ::; 3. 
This idea can further be generalized to m equations. Consider the 
system of m equations 

n 

L aijXj = bi , i = 1,2, ... , m. 
j=l 

This system has the equivalent form: 

or 
n 

n 

L aijXj ::; bi and 
j=l 

L aijXj ::; bi and 
j=l 

n 

L aijXj 2:: bi 
j=l 

If we look at the second combination, then the above system is 
equivalent to 

n 

L aijXj 2:: bi , 

j=l 

and 

Consider the constraints and nonnegative restrictions of a LPP in its 
standard form 

Xl + X2 + 81 = 1 

- Xl + 2X2 + 82 = 1 

Xl, X2, 81, 82 2:: O. 
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Although it has four variables, the feasible reason PF can be repre­
sented as a two dimensional graph. Write the basic variables 81 and 82 

in terms of nonbasic variables, see Problem 28, and use the conditions 
81 ::::: 0, 82 ::::: ° to have 

Xl + X2 :S 1 
- Xl + 2X2 :S 1 

Xl, X2 ::::: ° 
and is shown in Fig. 2.3. 

(-1,0) (0,0) 

(2// Xl +X2 = 1 

(1,0) 

Figure 2.3 

Remark. If a linear programming problem in its standard form has 
n variables and n - 2 nonredundant constraints, then the LPP has a 
two-dimensional representation. Why?, see Problem 28. 

Proposition 4. The set of all feasible solutions of a LPP (feasible 
region PF ) is a closed convex set. 

Proof. By definition PF = {X : AX = b, X ::::: O}. Let Xl and 
X2 be two points of PF. This means that AX1 = b, AX2 = b, Xl ::::: 
0, X2 ::::: 0. Consider 

Z = aX1 + (1 - a)X2' ° :S a :S 1. 

Clearly, Z ::::: ° and AZ = aAX1 + (1 - a)AX2 = ab + (1 - a)b = b. 
Thus, Z E PF, and hence PF is convex. 

Remark. Note that in above proposition b may be negative, i.e., the 
LPP may not be in standard form. The only thing is that we have 
equality constraint. 

Alternative proof. Each constraint aT X = bi, i = 1,2, ... m is 
closed (being a hyperplane), and hence intersection of these m hyper­
planes (AX = b) is closed. Further, each nonnegative restriction Xi 2:: 0 
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is a closed (being closed half-spaces) is closed, and hence their inter­
section X 2: 0 is closed. Again, intersection PF = {AX = b, X 2: O} is 
closed. This concludes that PF is a closed convex set. 

Clc's of two or more points. Convex linear combination of two 
points gives a line segment The studies on different regions need the 
clc of more than two points. This motivates the idea of extending the 
concept. 

Definition 3. The point X is called a clc of m points Xl, X 2, ... , Xm 
in ]Rn, if there exist scalars D:i, i = 1, 2, ... , m such that 

Remark. This definition includes clc of two points also. Henceforth, 
whenever we talk about clc, it means clc of two or more points. 

Theorem 1. A set S is convex {::=} every clc of points in S belongs 
to S. 

Proof. (~) Given that every clc of points in S belongs to S includes 
the assertion that every clc of two points belongs to S. Hence S is 
convex. 

(=?) Suppose S is convex. we prove the result by induction. S 
is convex =? clc of every two points in S belongs to S. Hence the 
proposition is true for clc of two points. Assume that proposition is 
true for clc of n points. we must show that it is true for n + 1 points. 
Consider 

such that 
(31 + (32 + ... + (3n+1 = 1, (3i 2: O. 

If (3n+1 = 0, then X, being clc of n points belongs to S (by assump­
tion). If (3n+1 = 1, then (31 = (32 = ... = (3n = 0 and X = 1.Xn+1, the 
proposition is trivially true. Assume, (3n+l =1= 0 or 1, i.e., 0 < (3n+1 < 1. 
Now, (31 + (32 + ... + (3n =1= O. 

(31 + (32 + ... + (3n 
X = (3 (3 (3 ((31X1 + (32 X 2 + ... + (3n X n) + (3n+1 X n+1 

1+ 2+"'+ n 

or 
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where, OOi = (3d((31 + (32 + ... + (3n), i = 1,2, ... , n. Clearly, OOi :::: ° 
and 001 + 002 + ... + an = 1. Hence, by assumption 00lX1 + 002X2 + 
... + oonXn = Y (say) belongs to S. Again, 

X = ((31 + (32 + ... + (3n)Y + (3n+1 X n+1 

such that 

n+1 
(31 + (32 + ... + (3n:::: 0, (3n+1 :::: 0, L(3i = 1. 

i=l 

Thus, X is the clc of two points and hence belongs to 8. 

Convex hull. Let S be a nonempty set. Then convex hull of S, 
denoted by [8] is defined as all clc's of points of 8, 

[8] = {X E]Rn : X is clc of points in 8}. 

Remarks. 1. By convention [0] = {O}. 

2. The above discussion reveals that the convex hull of finite 
number of points Xl, X 2, ... , Xm is the convex combination of the 
m points. This is the convex set having at most m vertices. Here, 
at most means some points may be interior points. Moreover, convex 
hull generated in this way is a closed convex set. 

3. The convex hull of m points is given a special name as convex 
polyhedron. 

Theorem 2. Let S be a nonempty set. Then the convex hull [8] is 
the smallest convex set containing S. 

Proof. Let X, Y E [8]. Then 

n 

X = OOIXI + 002X2 + ... + oonXn, OOi :::: 0, L OOi = 1, 
i=l 
m 

Y = (3IYI + (32Y2 + ... + (3mYm, (3j:::: 0, L(3j = 1. 
j=l 

Consider the linear combination aX + (3Y, a, (3 :::: 0, 00+(3 = 1, and 
note that 

+ (3((3IYI + (32 Y2 + ... + (3mYm) 

= (OOOOdXl + ... + (oooon)Xn + ((3(3dYI + ... + ((3(3m)Ym. 
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Now, each aai 2 0, {3{3j 2 0 and 

n m n m 

~)aai) + ~){3{3j) = aLai + {3L{3j = a + {3 = 1, 
i=l j=l i=l j=l 

i.e., aX + {3Y is a dc of points Xl, X 2 , ... , X n , YI , Y2 , •.. , Ym . This 
implies that aX + {3Y E [SJ and hence [SJ is convex. 

Clearly, it contains S because each XES can be written as X = 
1.X + O.Y, i.e., dc of itself. To prove that [SJ is the smallest convex 
set containing S, we show that if there exists another convex set T 
containing S, then [SJ CT. 

Suppose T is a convex set which contains S. Take any element 
X E [SJ. Then 

n 

X = aIXI+a2X2+' +anXn, ai 20, I:ai = 1 V X I,X2, ... ,Xn E S. 
i=l 

Since SeT, it follows that Xl, X 2 , ... , Xn E T and, moreover con­
vexity of T ensures that 

Hence [SJ CT. 

Remark. If S is convex, then S = [SJ. 

For convex set S C ]Rn, a key geometric figure is due to the follow­
ing separation theorem. The proof is beyond the scope of the book. 

Theorem 3(Separation Theorem). Let S eRn and X be a bound­
ary point of S. Then there is a hyperplane H containing X with S 
contained either in lower half-plane or upper half-plane. 

Based on this theorem we can define a supporting hyperplane H 
to be the hyperplane such that (i) the intersection of Hand S is 
nonempty; (ii) lower half-plane contains S, see Fig. 2.4. 

One very important fact to point out here is that the intersection 
set of the polyhedral set and the supporting hyperplane with negative 
cost vector CT as its normal provides optimal solution of a LPP. This 
is the key idea of solving solving linear programming problems by the 
graphical method. 

To verify this fact, let us take 
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Figure 2.4 

as the objective function for the LPP whose feasible region is shown 
in Fig. 2.3. Note that -Xl - 2X2 = -80 is the hyperplane passing 
through (0,40) and the vector -CT = (1,2) is normal to this plane. 
This is a supporting hyperplane passing through (0,40), since HL = 
{(Xl, X2) : Xl + 2X2 :S 80} contains PF and is satisfied by the points 
(20,20) and (30,0). 

However, the hyperplane passing through (20,20) which is normal 
to -CT = (1,2) is given by -Xl - 2X2 = -60. This is not a supporting 
hyperplane as point (0,40) is not in {(Xl, X2) : Xl + 2X2 :S 60}. Simi­
larly it can be shown that hyperplane at (3,0) which is normal to _CT 

is also not a supporting hyperplane. This implies that Xl = 0, X2 = 40 
is the optimal solution. 

2.2 Extreme Points and Basic Feasible 
Solutions 

Definition 1. A point X of a convex set S is said to be an extreme 
(vertex) of S if X is not a clc of any other two distinct points of S, 
i.e., X can not be expressed as 

In other words, a vertex is a point that does not lie strictly within the 
line segment connecting two other points of the convex set. 

From the pictures of convex polyhedron sets, especially in lower 
dimensional spaces it is clear to see the vertices of a convex polyhedron, 
Analyze the set PF as depicted in Fig. 2.3. Further, we note the 
following observations: 

(a) A(O, 0), B(1, 0), C(1/3, 2/3) and D(O, 1/2) are vertices and more­
over, these are boundary points also. But every boundary point 
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need not be a vertex. In Fig. 2.3, as E is boundary point of the 
feasible region Pp but not vertex, since it can be written as clc 
of distinct points of the set Pp as 

(b) All boundary points of {(x, y) : x2 + y2 ::; 9} are vertices. Hence, 
vertices of a bounded closed set may be infinite. However, in a 
LPP, if Pp is bounded and closed, then it contains finite number 
of vertices, see Proposition 5. 

( c) Needless to mention whenever we talk about vertex of a set S, 
it is implied that S is convex. 

(d) If S is unbounded, then it may not have a vertex, e.g." S = ]R2. 

(e) If S is not closed, then it may not have vertex, e.g." S = {(x, y) : 
0< x < 1,2 < y < 3} has no vertex. 

Remark. Here extreme points are in reference to convex sets. However, 
extreme points of a function will be defined in Chapter 13. 

To characterize the vertices of a feasible region Pp = {X E ]Rn : 

AX = b, X 2: O} of a given LPP in standard form, we may assume 
A is an m x n matrix with m < n and also denote the jth column 
of the coefficient matrix A by A j , j = 1,2, ... , n. Then, for each 
X = (Xl, X2, . .. , xn)T E Pp, we have 

xlAl + X2A2 + ... + xnAn = b. 

Therefore, Aj is the column of A corresponding to the jth component 
Xj of X. 

Theorem 4. A point X of feasible region Pp is a vertex of Pp <===} 

the columns of A corresponding to the positive components of X are 
linearly independent. 

Proof. Without loss of generality, we may assume that the compo­
nents of X are zero except for the first p components, namely 

We also denote the first p columns of matrix A by A. Hence AX = 
AX=b. 
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(::::}) Suppose that the columns of A are not linearly independent, 
then there exists nonzero vector w (at least one of the p components 
is nonzero) such that Aw = O. Now, define 

Y = X + rSw and Z = X - rSw 

For sufficiently small rS > 0, we note that Y, Z 2:: 0 and 

AY = AZ = A X = b. 

We further define 

Y, ~ [ ~ land z, ~ [ ~ 1 
Note that YI , Zl E PF and X = (1/2)YI + (1/2)ZI. In other words X 
is not an vertex of PF . 

(¢=) Suppose that X is not vertex of PF , then X = O:YI + (1 -
o:)ZI' 0: 2:: 0 for some distinct YI , Zl E PF. Since YI , Zl 2:: 0 and 
o :S 0: :S 1, the last n - p components of YI must be zero, as 

0= O:Yj + (1 - O:)Zj, j = p + 1,p + 2, ... , n. 

Consequently, we have a nonzero vector w = X - YI (X of- Yd such 
that 

Aw = Aw = AX - AYI = b - b = O. 

This shows that columns of A are linearly dependent. 

Consider the LPP in a standard form, AX = b, suppose we have, 
n = number of unknowns; m = number of equations. Assume m < n 
(otherwise the problem is over-specified). However, after introduc­
ing the slack and surplus variables, generally this assumption remains 
valid. Let r(A) and r(A, b) be the ranks of matrix A and augmented 
matrix ( A, b), respectively. 

(i) r(A) = r(A, b) guarantees the consistency, i.e., AX = b has at 
least one solution. 

(ii) r(A) of- r(A, b) the system is inconsistent" i.e., AX = b has no 
solution. For example 

Xl + X2 + X3 = 1 

4XI + 2X2 - X3 = 5 

9XI + 5X2 - X3 = 11 
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has no solution and hence inconsistent. 

For consistent systems we have difficulty when r(A) = r(A, b) < 
m = number of equations. It means that all m rows are not linearly 
independent. Hence, any row may be written as linear combination 
of other rows. We consider this row (constraint) as redundant. For 
example 

Xl - X2 + 2X3 = 4 

2XI + X2 - X3 = 3 

5XI + X2 = 10 

In this example r(A) = r(A, b) = 2 which is less than number 
of equations. The third constraint is the sum of the first constraint 
and two times of the second constraint. Hence, the third constraint is 
redundant. 

Another type of redundancy happens when r(A) = r(A, b), but 
some of the constraint does not contribute any thing to find the optimal 
solution. However, in this case r(A) = r(A, b) = m number of equations. 
Such type of cases we shall deal in Chapter 3. The following simple 
example illustrates the fact. 

Xl + X2 + 81 = 1 

Xl + 2X2 + 82 = 2 

Here r(A) = r(A, b) = 2. The vertices of the feasible region are 
(0,0), (1,0) and (0,1). The second constraint is redundant as it con­
tributes only (0,1) which is already given by the first constraint. 

It is advisable to delete redundant constraints, if any, before a LPP 
is solved to find its optimal solution, otherwise computational difficulty 
may arise. 

Basic solutions. Let AX = b be a system of m simultaneous 
linear equations in n unknowns (m < n) with r(A) = m. This means 
that that there exist m linearly independent column vectors. In this 
case group these linearly independent column vectors to form a basis 
B and leave the remaining n - m columns as nonbasis N. In other 
words, we can rearrange A = [BIN]. 
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We can also rearrange the components of any solution vector X in 
the corresponding order, namely 

For a component in X B , its corresponding column is in the basis B. 
Similarly, components in XN correspond to nonbasis matrix N. 

If all n - m variables X N which are not associated with columns 
of B are equated to zero, then the solution of the resulting system 
BXB = b is called a basic solution of AX = b. Out of n columns, m 
columns can be selected in n!/m!(n - m)! ways. The m variables (left 
after putting n - m variables equal to zero) are called basic variables 
and remaining n - m variables as nonbasic variables. The matrix 
corresponding to basic variables is termed as the basis matrix. 

Basic feasible solution. A basic solution with nonnegative re­
strictions is called a basic feasible solution. 

Nondegenerate BFS. If all the m basic variables in a BFS are 
positive than it is called nondegenerate basic feasible solution. 

The following result is a direct consequences of Theorem 4. 

Corollary 1. A point X E PF is an vertex of PF ~ X is a basic 
feasible solution corresponding to some basis B. 

Proof. By Theorem 4, we have 

X E PF is vertex ~ columns Ai for Xi > 0 (i = 1 to m) are 

linearly independent 

~ B = [AI, A 2 , ... , Am] is a nonsingular 

matrix of X 

~ X is a basic feasible solution. 

Degenerate BFS. A BFS which is not nondegenerate is called 
degenerate basic feasible solution, i.e., at least one of the basic variable 
is at zero level in the BFS. 

Remarks. 1. This corollary reveals that there exists a one-one corre­
spondence between the set of basic feasible solutions and set of vertices 
of PF only in the absence of degeneracy. Actually, in case degeneracy 
exists, then a vertex may correspond to many degenerate basic feasi­
ble solutions. The following examples will make the remark more clear 
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and justified. 

2. When we select m variables out of n variables to define a basic 
solution it is must that the matrix B formed with the coefficients of 
m variables must be nonsingular, otherwise we may get no solution or 
infinity of solutions (which are not basic), see Problem 11, Problem 
set 2. 

Example 2. Without sketching Pp find the vertices for the system 

-Xl + X2 ::::; 1 

2Xl + X2 ::::; 2 

First, write the system in standard form 

-Xl + X2 + 81 = 1 

2Xl + X2 + 82 = 2. 

Here n = 4, m = 2 ::::} 4!/2!2! = 6 as basic solutions. To find all basic 
solutions we take any of the two variables as basic variables from the 
set {Xl, X2, 81, 82} to have 

(~,~,o,o), (1,0,2,0), (-1,0,0,4), (0,2,-1,0), (0,1,0,1), (0,0,1,2). 

The system has 6 basic solutions, and out of these 4 are basic feasible 
solutions. The solution set is nondegenerate and hence there exists 
one-one correspondence between BFS and vertices, i.e., the feasible 
region Pp has 4 vertices. 

Note that (-1,0,0,4) and (0,2, -1,0) are basic solutions but not 
feasible. 

Example 3. The system AX = b, X 2 ° is given by 

Xl + X2 - 8X3 + 3X4 = 2 

-Xl + X2 + X3 - 2X4 = 2. 

Find (i) a nonbasic feasible solution; (ii) a basic solution which is not 
feasible; (iii) a vertex which corresponds to two different basic feasible 
solutions. 
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Here X = (Xl, X2, X3, x4f, b = (2, _2)T and the coefficient matrix 
A and the augmented matrix (A, b) are written as 

A = [~1 : ~8 ~2]; [ 
1 1 

(A, b) = 
-1 1 

-8 3 2] 
-2 2 1 

We make the following observations: 

(i) Since r(A) = r(A, b) = 2 < number of unknowns, the system 
is consistent and has infinity of solutions with two degrees of 
freedom. Reduction of the matrix (A, b) in row reduced echelon 
yields 

This gives 

[
1 ° -9/2 

° 1 -7/2 

5/2 

-1/2 

Xl = ~X3 - ~X4 

X2 = ~X3 - ~X4 + 2 

°2] 

(2.3) 

Let us assign X3 = X4 = 2, i.e., nonzero values to X3 and X4 to 
have Xl = 4 and X2 = 8. Thus, one of the feasible solution is 
(4,8,2,2) but not a basic feasible solution, since at least two 
variables must be at zero level. 

(ii) If Xl and X4 are chosen basic variables, then the system reduces 
to 

Xl + 3X4 = 2 

-Xl - 2X4 = 2 

with solution Xl = -10 and X4 = 4. Thus, (-10,0,0,4) is basic 
solution which is not feasible. This can also be obtained by 
pivoting at Xl and X4 to get row reduced echelon form. 

(iii) Further, for Xl, X2 as basic variables, 

(0, 2, 0, 0) is a BFS with basis matrix [ ~ 1 : ] 

while, for X2, X4 as basic variables, 

(0,2,0,0) is a BFS with basis matrix [1 3] 
1 -2 
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Both BFS given by (0,2,0,0) seem to be same but these are 
different as their basis matrices are different. However, both 
BFS correspond to the same vertex (0,2). The vertex (0,2) 
can be identified by writing the equivalent form of LPP as two­
dimensional graph in Xl - X2 plane. 

Remarks. 1. Note that system (2.3) can be written as 

lXl + OX2 - *X3 + ~X4 = 0 

OXI + lX2 - ~X3 + ~X4 = 2 

This is defined as canonical form of constraint equations. Further, 
note that 

This extracts a good inference that if Xl and X2 are basic variables and 
are pivoted, then coefficients of X3 and X4 are coordinate vectors of A3 
and A4 column vectors of A with respect to the basic vectors Al and 
A2 . This phenomenon will be used in simplex method to be discussed 
in next chapter. 

2. All basic solutions can also be obtained by pivoting at any two 
variables and assigning zero value to the remaining variables. This can 
be done in 6 ways and hence will give six different basic solutions. 

3. For the existence of all basic solutions it is necessary that column 
vectors of the coefficient matrix A must be linearly independent. It is 
also possible that after keeping requisite number of variables at zero 
level the remaining system may have infinity of solutions, see Problem 
12(c). This happens when at least two columns are not linearly inde­
pendent. In Problem 11, A3 and A4 are not linearly independent. We 
do not term these infinity solutions as as basic solutions because for 
a basis solution the coefficient matrix formed with the coefficients of 
basic variables (in order) must be nonsingular. 

Proposition 5. The set of all feasible solutions PF of a LPP has finite 
number of vertices. 

Proof. Let PF be the set of all feasible solutions of the LPP, where 
constraints are written in standard form, AX = b, X ~ O. If rank of 
A is m, then the system AX = b has 

n! 
m!(n - m)! 
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basic solutions. Again, by note the fact that every basic feasible solu­
tion is a basic solution. 

With inclusion of X 2: 0, we can say AX = b has at most n!/m!(n-m)! 
basic feasible solutions. As there exists one to one correspondence be­
tween BFS set and set of all vertices, provided nondegeneracy persists 
in the problem we conclude that set of vertices may have at most 
n!/m!(n - m)! elements and hence number of vertices is finite. 

In case of degeneracy more than one BFS may correspond to the 
same vertex. Hence, in this situation number of vertices will be less 
than n!/m!(n - m)!, and again the vertices are finite. 

Note that two basic feasible solutions (vertices) are adjacent, if they 
use m - 1 basic variables in common to form basis. For example, in 
Figure 2.3, it is easy to verify that (0,1/2) is adjacent to (0,0) but not 
adjacent to (1,0) since (0,1/2) takes X2 and 81 as basic variables, while 
(0,0) takes 81 and 82 and (1,0) takes Xl and 82. Under the nonde­
generacy assumption, since each of the n - m non basic variables could 
replace one current basic variable in a given basic feasible solution, we 
know that every BFS (vertex) has n - m neighbours. Actually, each 
BFS can be reached by increasing the value of one nonbasic from zero 
to positive and decreasing the value of one basic variable from positive 
to zero. This is the basic concept of pivoting in simplex method to be 
discussed in next chapter. 

Suppose the feasible region PF is bounded, in other words it is a 
polytope. From Fig. 2.5 it is easy to observe that each point of PF can 
be represented as a convex combination of finite number of vertices of 
PF. From the figure it is clear that X can be written as convex linear 
combination of the vertices Xl, X3, X4. 

X 

Figure 2.5 
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This idea of convex resolution can be verified for a general polyhe­
dron (may be unbounded) with the help of following definition: 

Definition 2. An extremal direction of a polyhedron set is a nonzero 
vector d E ]Rn such that for each Xo E PF, the ray {X E ]Rn : X = 
Xo + ad, a 2:: O} is contained in PF. 

Remark. From the definition of feasible region, we see that a nonzero 
vector dE ]Rn is an extremal direction of PF <===} Ad = 0 and d 2:: O. 
Also, PF is unbounded <===} PF has an extremal direction. 

Using vertices and extremal directions every point in PF can be 
represented by the following useful result known as the resolution the­
orem. 

Theorem 5 (Resolution theorem). Let B = {Vi E ]Rn : i E Z} be 
the set of all vertices of PF with a finite index set Z. Then, for each 
X E PF, we have 

X = L:aiVi +d, 
iEB 

L:Cl:i = 1, Cl:i 2:: 0, 
iEZ 

where d is either the zero vector or an extremal direction of PF. 

(2.4) 

Proof. To prove the theorem by the induction, we let p be the num-
ber of positive components of X E PF. When p = 0, X = (0,0, ... ,0) 
is obviously a vertex. Assume that the theorem holds for p = 0,1, ... ,k 
and X has k + 1 positive components. If X is a vertex there is nothing 
to prove. If X is not a vertex, we let XT = (Xl, X2,' .. , Xk+l, 0, ... ,0) E 
]Rn such that (Xl, X2, ... , xk+d > 0 and A = [AIN], A is the ma­
trix corresponding to positive components of X. Then, by Theorem 
4, the columns of A are linearly independent, in other words there 
exists a nonzero vector w E ]Rk+l such that Aw = O. We define 
w = (w, 0, ... ,0) E ]Rn, then w i= 0 and Aw = Aw = O. There are 
three possibilities: w 2:: 0, w < 0 and w has both positive and negative 
components. For w 2:: 0, consider X (0) = X + Ow and pick 0* to be 
the largest value of 0 such that X* = X(O*) has at least one more zero 
component than X. Then follow the induction hypothesis to show 
that theorem holds. Similarly, show that in the remaining two cases, 
the theorem still holds. 

The direct consequences of the resolution theorem are: 

Corollary 2. If PF is a bounded feasible region (polytope), then each 
point X E PF is a convex linear combination of its vertices. 

Proof. Since PF is bounded, by the remark following Definition 2 
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the extremal direction d is zero, and applicl;ttion of (2.4) ensures that 
X is a clc of vertices. 

Corollary 3. If PF is nonempty, then it has at least one vertex. 

Example 4. Consider the set PF : Xl + X2 :S 1, -Xl + 2X2 < 
1, Xl, X2 ~ ° and show that a point of PF may be clc of different 
vertices. 

Take the point (1/3,1/6) E PF. Now 

( 1 1) 1 1 1 (1) (1 2) "3'6 ="3(0,0)+"3(1,0)+"3 °'2 +0 "3'"3 

or, 

Thus, an additional information is that a point of PF may have differ­
ent clc's of its vertices. 

2.3 Fundamental Theorem of Linear 
Programming 

Theorem 6. The maximum of the objective function f(X) of a LPP 
occurs at least at one vertex of PF, provided PF is bounded. 

Proof. Given that the LPP is a maximization problem. Suppose 
that maximum of f(X) occurs at some point Xo in feasible region PF . 

Thus, 
f(X) :S f(Xo) V X E PF. 

We show that this Xo is nothing but some vertex of of PF. Since PF 
is bounded and problem is LPP, it contains finite number of vertices 
X I ,X2, ... ,Xn. Flence, 

!(Xi ) :S !(Xo), i = 1,2, ... , n. 

By Corollary 2, 

n 

Xo = alXI + a2 X 2 + ... + anXn, ai ~ 0, I::ai = 1. 
i=l 

Using linearity of !, we have 

(2.5) 
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Let 
f(Xk) = max {f(Xt) , f(X2), ... , f(Xn)} , 

where f(Xk) is one of the values of f(Xt), f(X2), .. . , f(Xn). Then 

f(Xo) ::; aI!(Xk) + a2!(Xk) + ... + anf(Xk) = f(Xk). (2.6) 

Combining (2.5) and (2.6), we have f(Xo) = f(Xk). This implies that 
Xo is the vertex X k and hence the result. 

The minimization case can be treated on parallel lines just by re­
versing the inequalities. Thus, we have proved that the optimum of a 
LPP occurs at some vertex of PF, provided PF is bounded. 

Remark. Theorem 6 does not rule out the possibility of having an 
optimal solution at a point which is not vertex. It simply says among 
all optimal solutions to a LPP at least one of them is a vertex. The 
following proposition further strengthens Theorem 6. 

Proposition 6. In a LPP, if the objective function f(X) attains its 
maximum at an interior point of PF, then f is constant, provided PF 
is bounded. 

Proof. Given that the problem is maximization, and let Xo be an 
interior point of PF, where maximum occurs, i.e., 

f(X) ::; f(Xo) V X E PF. 

Assume contrary that F(X) is not constant. Thus, we have Xl E PF 

such that 
f(X I ) =I f(Xo), f(X I ) < f(Xo). 

Since PF is nonempty bounded closed convex set, it follows that Xo 
can be written as a clc of two points X I and X2 of PF 

Xo = aXI + (1 - a)X2' 0 < a < 1. 

Using linearity of f, we get 

Thus, f(Xo) < f(X2). This is a contradiction and hence the theorem. 

2.4 Graphical Method 

This method is convenient in case of two variables. By Theorem 6 
(see also Problem 13), the optimum value of the objective function 
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occurs at one of the vertices of PF. We exploit this result to find an 
optimal solution of any LPP. First we sketch the feasible region and 
identify its vertices. Compute value of the objective function at each 
vertex, and take largest of these values to decide optimal value of the 
objective function, and the vertex at which this largest value occurs is 
the optimal solution. For the minimization problem we consider the 
smallest value. 

Example 5. Solve the following LPP by the graphical method 

max z = Xl + 5X2 

s.t. - Xl + 3X2 ~ 10 

Xl + X2 ~ 6 

Xl - X2 ~ 2 

Xl, X2 2: 0. 

Rewrite each constraint in the forms: 

Draw the each constraint first by treating as linear equation. Then 
use the inequality condition to decide the feasible region. The feasible 
region and vertices are shown in Fig. 2.6. 

\) 
-:/ 

)(1)'1- -Xl + 3X2 = 10 
1>\. 

(2,4) 

(0, 10/3) I§~ 

(0,0) (2,0) 

Figure 2.6 

The vertices are (0,0), (2,0), (4,2), (2,4), (0,10/3). The values of 
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the objective function is computed at these points are 

z=O at (0,0) 

z=2 at (2,0) 

z = 14 at (4,2) 

z = 22 at (2,4) 

z = 50/3 at (0,10/3) 

Obviously, the maximum occurs at vertex (2,4) with maximum value 
22. Hence, 

optimal solution: Xl = 2, X2 = 4, z = 22. 

Example 6. A machine component requires a drill machine operation 
followed by welding and assembly into a larger subassembly. Two 
versions of the component are produced: one for ordinary service and 
other for heavy-duty operation. A single unit of the ordinary design 
requires 10 min of drill machine time, 5 min of seam welding, and 15 
min for assembly. The profit for each unit is $100. Each heavy-duty 
unit requires 5 min of screw machine time, 15 min for welding and 5 
min for assembly. The profit for each unit is $150. The total capacity 
of the machine shop is 1500 min; that of the welding shop is 1000 
min; that of assembly is 2000 min. What is the optimum mix between 
ordinary service and heavy-duty components to maximize the total 
profit? 

Let Xl and X2 be number of ordinary service and heavy-duty com­
ponents. The LPP formulation is 

max z = 100XI + 150x2 
s.t. 10XI + 5X2 ::; 1500 

5XI + 15x2 ::; 1000 

15xI + 5X2 ::; 2000 

Xl, X2 ~ 0 and are integers. 

Draw the feasible region by taking all constraints in the format as 
given in Example 5 and determine all the vertices. The vertices are 
(0,0), (400/3,0), (125,25), (0,200/3). The optimal solution exists at 
the vertex Xl = 125, X2 = 25 and the maximum value: z = 16250. 
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Problem Set 2 

1. Which of the following sets are convex 

(a) {(XI,X2): XIX2::; I}; 

(c) {(Xl, X2) : xi + X~ 2': 3}; 

(b) {(Xl, X2) : xi + X~ < I}; 

(d) {(XI,X2): 4XI 2': xD; 
(e) {(Xl, X2) : 0 < xi + X~ ::; 4}; (f) {(Xl, X2) : X2 - 32': -xi, 

2. Prove that a linear program with bounded feasible region must 
be bounded, and give a counterexample to show that the converse 
need not be true. 

3. Prove that arbitrary intersection of convex sets is convex. 

4. Prove that the half-space {X E IRn : aT X 2': a} is a closed convex 
set. 

5. Show that the convex set in IRn satisfy the following relations: 
( a) If 8 is a convex set and (3 is a real number, the set 

(38 = {(3X : X E 8} 

is convex; 

(b) If 8 I and 82 are convex sets in IRn, then the set 

IS convex. 

6. A point X v in 8 is a vertex of 8 ¢:=:? 8 \ {Xv} is convex. 

7. Write the system 

Xl + X2 = 1 
2XI - 4X3 = -5 

into its equivalent system which contains only three inequality 
constraints. 
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8. Define the convex hull of a set S as 

[Sj = {niEAAi : Ai => S and Ai is convex}. 

Show that this definition and the definition of convex hull in 
Section 2.1 are equivalent. 

9. Using the definition of convex hull in Problem 7, show that [Sj 
is the smallest convex set containing S. 

10. Find the convex hull of the following sets 

(a) {(I, 1), (1,2), (2,0), (0, -I)}; (b) {(Xl, X2) : xi + X§ > 3}; 

(c) {(Xl,X2): xi +x§ = I}; (d) {(0,0),(1,0),(0,1),(1,1)}. 

11. Prove that convex linear combinations of finite number of points 
is a closed convex set. 

Suggestion. For convexity see Theorem 1. 

12. Consider the following constraints of a LPP written in standard 
form: 

Xl + X2 + 4X3 + 2X4 + 3X5 = 8 

4Xl + 2X2 + 2X3 + X4 + 6X5 = 4 

Identify (a) a basic feasible solution; (b) basic infeasible solu­
tion; (c) infinity of solutions; (d) nonexisting solution (infeasible 
solution). 

13. Find all vertices in which at least Xl or X2 is positive from the 
set of all feasible solutions of the system 

Xl + X2 + X3 2: 3 

-2XI + 2X2 - X3 ::; 2 

14. Use the resolution theorem to prove the following generalization 
of Theorem 6. 
For a consistent linear program in its standard form with a fea­
sible region Pp, the maximum objective value of z = CT X over 
Pp is either unbounded or is achievable at least at one vertex of 
Pp. 
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15. Prove Theorem 6 and Proposition 6 for the minimization case. 

16. Prove that if optimal value of a LPP occurs at more than one 
vertex of PF, then it also occurs at clc of these vertices. 

17. Consider the above problem and mention whether the point other 
than vertices where optimal solution exists is a basic solution of 
the LPP. 

18. Show that set of all optimal solutions of a LPP is a closed convex 
set. 

19. Consider the system AX = b, X 2: 0, b 2: 0 (with m equations 
and n unknowns). Let X be a basic feasible solution with p < m 
components positive. How many different bases will correspond 
to X due to degeneracy in the system. 

20. In view of Problem 19, the BFS (0,2,0,0) of Example 3 has one 
more different basis. Find this basis. 

21. Write a solution of the constraint equations in Example 3 which 
is neither basic nor feasible. 

22. If Xo is any optimal solution of the LPP min Xo = CT X, subject 
to AX = b, X 2: 0 in standard form and X* is any optimal 
solution when C is replaced by C*, then prove that 

(C* - C)T(X* - X o) 2 o. 

23. To make the graphical method work, prove that the intersection 
set of the feasible domain PF and the supporting hyperplane 
whose normal is given by the negative cost vector -CT provides 
the optimal solution to a given linear programming problem. 

24. Find the solution of the following linear programming problems 
using the graphical method 

(a) min Z = -Xl + 2X2 (b) max Z = 3Xl + 4X2 

s.t. - Xl + 3X2 ::; 10 s.t. Xl - 2X2::;-1 

Xl + X2 ::; 6 - Xl + 2X2 2: 0 

Xl - X2 ::; 2 Xl,X2 2: 0 

Xl,X2 2: 0 
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25. What difficulty arises if all the constraints are taken as strict 
inequalities? 

26. Show that by properly choosing Ci'S in objective function of a 
LPP, every vertex can be made optimal. 

27. Let X be basic solution of the system AX = b having both 
positive and negative variables. How can X be reduced to a 
BFS. 

28. Prove that a LPP in standard form with n variables and n - 2 
nonredundant constraints can be represented by two dimensional 
graph. 

29. Let us take the following LPP 

mIll Z = -2XI - X2 + X3 + X4 + 2X5 

s.t. - 2XI + X2 + X3 + X4 + X5 = 12 

- Xl + 2X2 + X4 - X5 = 5 

Xl - 3X2 + X3 + 4X5 = 11 

XI,X2,X3,X4,X4 ~ ° 
Using preceding problem represent this LPP as a two-dimensional 
problem and then find its optimal solution by graphical method. 

Suggestion. Do pivoting at X3, X4, X5. 

30. Consider the following constraints: 

Xl + X2 + 4X3 + 2X4 + 3X5 = 8 

4XI + 2X2 + 2X3 + X4 + 6X5 = 4 

Identify all basic feasible solutions of the above system. 

Suggestion. Note that (0,7/2,0, -3/2) is one of the basic feasible 
solutions. Why? 



Chapter 3 

The Simplex Algorithm 

This chapter develops the theory of simplex method to solve linear 
programming problems. The other methods are slight variants of the 
simplex method known as big-M method and two phase method. In 
the end, we explain some difficulties which are encountered when sim­
plex iterations are executed. 

3.1 Introduction 

Simplex means a polytope having finite number of vertices. To find the 
optimal solution by simplex method one starts from some convenient 
BFS (vertex), and goes to another adjacent BFS (vertex) so that value 
of the objective function is improved. In this way, after few steps the 
desired basic feasible solution (vertex) is reached where the optimal 
solution exists. 

The theory of simplex method is developed in stages with induction 
of some analysis. This is an iterative method in the sense that rules and 
conditions of previous step work invariably to the last. The iterative 
scheme consists of the three steps: 

(i) Start from somewhere; 

(ii) Check if the aim is met; 

(iii) Move to a place closer to the aim. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004



64 CHAPTER 3. THE SIMPLEX ALGORITHM 

3.2 The Simplex Algorithm 

Consider the LPP in standard form as the basic feasible solution (BFS) 
is calculated after writing the problem in this format 

opt z = CTX 

s.t. AX = b 
X 2: 0, b 2: 0, 

where A, X, C, b have already been defined in Chapter l. 

The above LPP can also be written in the form 

opt z = CIXI + C2X2 + ... + CnXn 

s.t. xlAI + x2A2 + ... + xnAn = b 

Xl, X2,· .. , Xn 2: 0, b 2: 0, 

(3.1) 

where A = [AI, A 2 , ... , An] is a m by n matrix and AI, A2 and An are 
the first, second and nth columns of A, respectively. 

Let m be the rank of A, and every set of m column vectors is 
linearly independent. The number of equations in the system AX = b 
are m. This determines the number of m basic variables and n - m 
nonbasic variables. The total number of basic feasible solutions of LPP 
can not exceed n!/m!(n - m)!, see Proposition 5, Chapter 2. 

Suppose a BFS Xl, X2, . .. ,Xm is available at our disposal. This 
implies 

Xm+l = Xm+2 = ... = Xn = ° (3.2) 

are left as nonbasic variables. Thus, XB = (Xl, X2, . .. ,xm)T is a basic 
vector with basis matrix given as 

B= 
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Using (3.2) in (3.1), we have Xl Al + :r2A2 + ... + xmAm = b, or 

= b. 

Since, (AI, A 2, ... , Am) = B, this has the compact form: 

(3.3) 

All column vectors of B are linearly independent (by assumption), and 
hence, B is a nonsingular matrix, and moreover, all column vectors of 
B generate ]Rm, an m-dimensional real linear space. This ensures 
that each A j , j = 1,2, ... , n can uniquely be expressed as a linear 
combination of the elements of the ordered basis {AI, A 2, ... , Am}, 

Am+1 = 00;,,+1 Al + a~+l A2 + ... + a:+1Am 

A m+2A + m+2A + + m+2A m+2 = 001 1 002 2' . . am m 

The compact form of the above system is 

Aj = a{ Al + a~A2 + ... + atnAm , j = m + 1, m + 2, ... , n 

or 

where a j = (a{, a~, ... , a?nf is the coordinate vector of Aj . Thus, we 
get the relation 

. 1 
a J = B- A j . (3.4) 

Also, in view of (3.3), one has 

!(XB) = C1X1 + C2X2 + ... + CmXm = CJ;XB = CJ;B- 1b 
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is the value of objective function at XB, where CJ; = (CI, C2,···, cm) 
is the cost of basic vector X B . Now, we prove an important result. 

Proposition 1. If Zj = CJ;aj , j = 1,2, ... , n, then Zj - Cj = ° for all 
basic variables. 

Proof. Since AI, A 2 , . .. , Am is an ordered basis, the coordinate 
vector a j of Aj , j = 1,2, ... ,m is (0,0, ... ,1, ... ,0), here 1 is at jth 
place. Hence 

° 

° 
Here arrow toward 1 indicates that it is at jth place. From the above 
relation, Zj - Cj = 0. 

Remark. Note that Zj - Cj may or may not be zero for a nonbasic 
variable. In our subsequent discussion Zj - Cj will be termed as relative 
cost of jth variable. 

In order to introduce the simplex method in algebraic terms, let 
us introduce some notations here. For a given basic feasible solution 
X*, we can always denote it by 

X' = [~tl 
where the elements of vector X B represent the basic variables and 
the elements of vector Xiv represent nonbasic variables. Needless to 
mention XB ~ ° and Xiv = ° for the basic feasible solution. 

Also, for a given cost vector C (column vector) and the coefficient 
matrix A, we can always denote these as 

where B is a m x m nonsingular matrix that is referred to as basis and 
N is referred to as nonbasis with dimensionality m x (n - m). 



3.2. THE SIMPLEX ALGORITHM 67 

Proposition 2. Let the LPP be max z = CT X, subject to AX = b, 
X 2: o. If, for any BFS, X B all Zj - Cj 2: 0, then X B is the optimal 
solution of the problem. 

Proof. Once a basis is known, every feasible solution X E PF 
arranged in a order as 

Note that both X B and XN are nonnegative. Hence the LPP becomes 

max Z = C~XB + C'ftXN 
s.t. BXB + NXN = b 

XB 2: 0, XN 2: 0 

Equation (3.5b) implies that 

XB = B-1b - B- 1 NXN 

Substituting (3.6) back into (3.5a) results in 

where 

Z = C~ (B- 1b - B-1 N XN) + C'ftXN 

= C~B-1b + (c'ft - C~B-1 N) XN 

~ C~B-lb- rT [~:] 

r= [(B-1N/CB-CN] 

(3.5a) 

(3.5b) 

(3.5c) 

(3.6) 

(3.7) 

Observe that r is an n-dimensional vector. Its first m components, 
corresponding to basic variables are set to be zero (see Proposition 1) 
and the remaining n-m components correspond to nonbasic variables. 
Also, note that objective value z* at current basic feasible solution 
X* is C~B-1b, since X'B = B-1b and Xlv = O. Consequently (3.7) 
becomes 

z'-z~rT[~:l foreachXEPF 

It is apparent that rT 2: 0, i.e., every component of C~B-1 N - c'ft is 
nonnegative, then z* - z 2: 0 for each feasible solution X E PF. Hence 
z* is optimal value and X* is optimal solution. 
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Equivalently, for optimal solution to exist we write 

rj = Zj - Cj = C'j;B- I Aj - Cj ~ 0 

where j runs over nonbasic variables as Zj - Cj = 0 for all basic vari­
ables. 

This proves the proposition. 

Remark. For a minimization problem all Zj -Cj ~ 0 in the last iteration 
table is the desired condition for any BFS, X1 to be optimal. 

To develop further, the theory of simplex method for solving linear 
programming problems, we give a brief exposition of linear algebra 
tools which are very much needed at different stages. 

Proposition 3. Let B = {Xl, X 2, ... , Xn} be a basis in a linear space 
]R.n and let X ~ B such that X = alXI + a2X2 + ... + anXn. If ai = 0 
then the vector Xi can not be replaced by X to form a new basis of 
]R.n. 

Proof. Given that B = {Xl, X 2, ... , Xn} is a basis of ]R.n. For any 
vector X ~ B, we have the unique representation 

(3.8) 

If ai = 0, then (3.8) becomes 

By using commutativity and associativity repeatedly in above, we have 

alXI +a2X2 + ... +ai-IXi-1 + (-I)X + ai+ I X i+1 + ... +anXn = o. 
(3.9) 

From (3.9), we conclude that {Xl, X2, ... , Xi-I, X, X i+1,·.·, Xn} is 
linearly dependent, and hence, it is not a basis. Thus, we have estab­
lished that the vector whose coefficient is zero in linear representation 
for X can not be replaced by X to form a new basis. 

Example 1. Let {(I, 0, O)T, (0, 1, If, (0,0, If} be a basis in ]R.3. 

Which vector can not be replaced by (2,3,3) in this basis to form 
a new basis. 

Since 

[:] =2 [~] +3 [:] +0 [~] 
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in view of the above proposition the vector (0,0, l)T can not be re­
placed by (2,3, 3)T to form a new basis. 

Rules for entering and leaving variables. Suppose we are con­
sidering maximization problem and the basic vector XB=(XI,X2, ... ,xm)T 

is at our disposal. With the help of Proposition 2, we can check 
whether this BFS is optimal or not. If not, our next step is to move 
to some other BFS (vertex) so that the current value of the objective 
function improves (increases) or optimal BFS is obtained. The basis 
matrix associated with XB is 

To go to other vertex one of the basic variables from Xl, X2, . .. ,Xm 

is supposed to leave and other nonbasic variable will occupy its posi­
tion. This is equivalent to saying that some of the column vector from 
B will leave the basis and a column vector from Am+l, Am+2 , .•• , An 
occupies its place to form a new basis (see Fig. 3.1). 

enters B 

leaves B 

Figure 3.1 

(3.10) 

Proposition 3 ensures that AI, A 2 , ... , A j , ... , Am forms a new basis 
provided at t= 0. From the original BFS, we have 

We use equation (3.10) to replace AT in above equation by Aj 
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The position of Ar has been occupied by A j , and 

, ., 
a~ 

(3.11) 

is a new basic solution, i.e., it satisfies AX = b when n - m variables 
are kept at zero level, and (3.11) gives the new set of basic variables. 
Now, we have to choose Ar such that the set in (3.11) defines a fea­
sible solution, i.e., each term must be nonnegative. For this, the first 
requirement is that in rth term of (3.11), at must be positive (this 
is nonzero by assumption). Note that the first basic variable 2: 0 if 
a{ < o. To ensure that each term in (3.11) is nonnegative, i.e., 

or 

Xr ---;- > 0, J -
a r 

Xr ---;- > 0, 
J -a r 

choose r(l to m) such that xr/at is minimum of the right side entries 
in above inequalities, i.e., 

Xr = min { Xi, a{ > o} = OJ, i = 1,2, ... ,m. 
a~ t a J 

t 

(3.12) 

This determines r, i.e., which variable Xr or column Ar leaves the basis, 
when its position is to be occupied by Aj (j fixed) so that the resulting 
set AI, A 2 , .. . ,Aj , ... ,Am forms a basis and the set in (3.11) forms a 
basic feasible solution. 

In the above analysis Aj is arbitrary but fixed. Now our main 
purpose is the selection of proper Aj , i.e., the entering variable so that 
there is maximum improvement in the value of the objective function 
as compared its value on the earlier BFS. Imposing condition (3.12), 
the new BFS is 

The value of the objective functions at this new BFS is 
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Here Cr is changed to Cj. Insert the values of Xl, X2, . .. , x~, we have 

Here we added and subtracted CrXr· Since Xo = ClXl + X2X2 + ... + 
crxr+· . ·+cmxm and Zj = C~aj = cla{ +c2a~+ .. . +crat+· . ·+cma?n, 
it follows that 

Since xr/at = OJ ~ 0, for maximum increase in xo, we select that Aj 
as the entering variable for which 

is the most negative. 

Thus, theoretically we permit the entry of the nonbasic variable 
determined by the most negative (for maximization) or most positive 
(for minimization) nature of OJ(Zj - Cj). But this is not convenient 
because we have to compute OJ for all nonbasic variables. This will 
make our task time consuming. The only thing we do is to see the 
most negative or the most positive nature of Zj - Cj for deciding the 
entering variable. This serves our purpose well to a large extent. In 
an arbitrary selection the only possibility persists is that the number 
of iterations may increase. 

While there appears a tie between entering variables, any nonbasic 
variable may be chosen to enter the basis. In case more than two 
nonbasic variables desire to enter the basis based upon the observation 
of Zj - Cj values, it is profitable to compute OJ (Zj - Cj) for all nonbasic 
variables to decide the appropriate entering variable. Such type of 
problems usually come in the way when Games theory problems are 
solved using simplex method. 

Now, we solve a maximization problem using the theoretical details 
developed so far, and some more concepts are introduced during the 
analysis. 

Note. From now onwards, in every simplex table the abbreviations B 
V and Soln stand for 'Basic Variables' and 'Solution', respectively. 



72 CHAPTER 3. THE SIMPLEX ALGORITHM 

Example 2. Solve the following LPP by the simplex method. 

max z = -Xl + 3X2 - 3X3 

s.t. 3Xl - X2 + X3 :S: 7 

- Xl + 2X2 :S: 6 

- 4Xl + 3X2 + 8X3 :S: 10 

Xl, X2, X3 2': 0 

Write the LPP in standard form (including slack variables at zero cost 
level in objective function) 

max z = -Xl + 3X2 - 3X3 + 081 + 082 + 083 

s.t. 3Xl - X2 + X3 + 81 = 7 

- Xl + 2X2 + 82 = 6 

- 4X1 + 3X2 + 8X3 + 83 = 10 

X1,X2,X3,81,82,83 2': 0 

Here C = (-1,3, -3,0,0, O)T, b = (7,6, 10f and the coefficient ma­
trix is 

A= [~1 
-4 

-1 

2 

3 

1 

o 
8 

1 

o 
o 

o 
1 

o 

The rank of A is 3. We choose the simplest basic variables as 81, 82, 83, 
i.e., basic vector XB = (81,82, 83)T. Thus, starting BFS represents the 
origin. The corresponding basis matrix is 

1. Our starting requirement is that the coefficient matrix A must 
contain an identity submatrix of order m, the rank of A. First, 
we construct the starting simplex format. Write the objective 
function in the form 
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The coefficients of the basic and nonbasic variables constitute 
the z-row (for starting table only). Note that the entries of z­
row are the relative costs Zj - Cj and can also be computed using 

. - CT j - CTB-lA . - 1 2 6 B I I·· z] - Ba - f3 j, ] - , , ... ,. e ow so utlOn In z-row 
is !(XB) = c BXB = (0,0,0)(7,6, 10f = 0, which is nothing 
but the right-hand entry of the above equation. 

2. Each of the bottom row (below z-row) represents a constraint 
equation, while the right-hand vector is inserted in the 'Solution' 
column. These entries can also be computed, using a j = B-1 A j , 

j = 1 to 6. Since B- 1 = I (by our choice of starting BFS), a j 

and b are written as it is. The entries in front of basic variables 
(except z-row and solution column) constitute the body matrix. 
Thus, the elements of the body matrix are coordinate vectors 
(column-wise) a j , j = 1 to 6, see Table O. 

Table 0 

BV Xl X2 X3 81 82 83 Soln 

z 1 -3 3 0 0 0 0 

81 3 -1 1 1 0 0 7 

82 -1 2 0 0 1 0 6 

83 -4 3 8 0 0 1 10 

3. The LPP we are solving is a maximization problem and hence 
to have the optimal solution all entries in z-row must be ~ 0, 
see Proposition 2. This is not satisfied in Table 0 and hence 
(0,0,0, 7, 6, 10f is not an optimal BFS. Now, search for another 
basic feasible solution so that the value of objective function 
improves. Hence, one of the nonbasic variable from Xl, X2, X3 is 
to be converted into basic variable, i.e., to take to positive level 
(equivalently, Al or A2 or A3 will enter the basis). Note that 
the relative cost of X2 is the most negative than relative cost of 
Xl and X3, this suggests that it will be profitable to choose X2 as 
the entering variable. Thus, we reach at the agreement that for 
starting the first iteration in maximization problem we choose 
the most negative variable as the entering variable, see Table 1. 

4. It is natural when one nonbasic has entered the basis, certainly, 
one has to leave the basis as the number of basic variables in 
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each BFS remains fixed. To decide this we take the ratios of 
the entries of the solution column with the positive entries, see 
equation (3.12), of the column below the entering variable. This 
is the minimum ratio rule. Find the minimum ratio. The basic 
variable in B. V. column corresponding to this minimum ratio 
will leave the basic vector. Here, in this example 

. {6 10} mm 2'3 =3. 

Since the above minimum corresponds to the 82-row, this implies 
that 82 should leave the BFS, see Table 1. The variable at the 
intersection of entering column and leaving row becomes pivot 
element which has been boxed. 

Table 1 

BV Xl X2 1 X3 81 82 83 Soln 

z 1 -3 3 0 0 0 0 

81 3 -1 1 1 0 0 7 

+- 82 -1 ~ 0 0 1 0 6 

83 -4 3 8 0 0 1 10 

5. Now, the problem is how to execute the next iteration table. The 
entering variable is X2 and the leaving variable is 82, i.e., new BFS 
is (8l,X2,83)T. The coordinate vector (ay,a§) will be (O,l,of. 
Why? This means that in x2-column of body matrix we must 
now have (0,1, of instead of (-1,2, 3f. Now, X2 is a basic 
variable and hence in z-row below this one must have Zj - Cj = 
0, see Proposition 1. Any way below X2 the entries must be 
(0; 0,1, of instead of (-3; -1,2, 3f. In a simple manner this 
can be achieved by elementary row operations. Divide 82-row by 
2 (pivot element), and write this new 82-row as the X2-row (pivot 
row) in the next table, see Table 2. With the help of pivot row 
bring zeros in x2-column. What we do is as follows 
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z-row (Table 1) -(-3) times of pivot row (Table 2)=z-row 

of Table 2; 

8l-row (Table 1) + pivot row (Table 2)=8l-row of Table 2; 

83-row (table 1) -3 times of pivot row (Table 2)=83-row 

of Table 2. 

This gives Table 2. 

Table 2 

BV Xl 1 X2 X3 81 82 83 Soln 

z -1/2 0 3 0 3/2 0 9 

~ 81 
1 5/ 2 1 

0 1 1 1/2 0 10 

X2 -1/2 1 0 0 1/2 0 3 

83 -5/2 0 8 0 -3/2 1 1 

6. Still Table 2 is not optimal table because all Zj - Cj are not 
nonnegative. Further, Xl is the entering variable and 81 is the 
leaving variable. We repeat Steps 3-6 to have Table 3. 

Table 3 

BV Xl X2 X3 81 82 83 Soln 

Z 0 0 16/5 1/5 8/5 0 11 

Xl 1 0 2/5 2/5 1/5 0 4 

X2 0 1 1/5 1/5 3/5 0 5 

83 0 0 9 1 -1 1 11 

Since all Zj - Cj ~ 0 in z-row of Table 3, it follows that the optimality 
is reached. This table is now the optimal table. The optimal solution 
can be read directly from the table. 

The optimal solution is Xl = 4, X2 = 5, X3 = 0, max value Z = 11. 

Remark. It seems in Table 0 that we have filled up the coefficient ma­
trix in 81, 82 and 83 rows. In fact we have not done this. Notice that in 
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every simplex table these entries are coordinate vectors a j . However, 
for Table 0, the special construction of basis matrix B as the identity 
submatrix ensures that column vectors are nothing but the coordinate 
vectors with respect to the standard basis {(I, 0, 0), (0, 1,0), (0,0, I)}, 
and hence we can fill up the coefficient matrix. This may not happen 
in other tables as the basis may not be standard basis. 

What we have learned to start with simplex method is 

1. Write the LPP in standard form. 

2. The coefficient matrix A must contain the identity submatrix. 
The variables constituting the identity submatrix give the start­
ing basis (B V), and the solution is b. 

3. The objective function must be expressed in terms of nonbasic 
variables. 

After the above all is done, we summarize here how to complete all 
simplex iterations to reach at optimality for a maximization problem. 

(i) The variable (column) with the most negative coefficient will 
enter as basic variable (basis). This ensures largest possible in­
crease in objective function. 

(ii) The leaving variable is decided by 

. { entries of the solution column } 
mm . . 

corresponding entering column entrIes> ° 
This ensures feasibility. 

(iii) If all the entries in the z-row are 2: 0, the optimality is reached, 
and the optimal solution can be read from the table. 

The minimization problem can be solved by converting into maxi­
mization problem as 

min f(X) = - max{ - f(X)}. 

Therefore, we simply multiply the cost coefficients by -1 to convert to 
a minimization problem into maximization. But once the maximum 
of the new problem is found, remember to multiply the maximum by 
-1 for the original minimum. 
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Similarly, 
maxf(X) = - min{ - f(X)}. 

We can also solve minimization problem directly (without convert­
ing into maximization problem). The rules for minimization problem 
are 

(i) The variable (column) with the most positive coefficient will en­
ter as basic variable. This ensures largest possible decrease in 
objective function. 

(ii) The leaving variable is decided by the same rule as for maximiza­
tion problem which ensures feasibility. 

(iii) If all the entries in the z-row are :S 0, the optimality is reached, 
and the optimal solution can be read from the table. 

Now, we solve a minimization problem without converting into 
maximization problem. 

Example 3. Solve the following LPP by simplex method 

min z = Xl - 2X2 + X3 

s.t. Xl + 2X2 - 2X3 :S 4 

Xl - X3 :S 3 

2Xl - X2 + 2X3 :S 2 

Xl, X2, X3 ::::: 0. 

Write the above problem in standard form 

min z = Xl - 2X2 - X3 

s.t. Xl + 2X2 - 2X3 + 81 = 4 

Xl - X3 + 82 = 3 

2Xl - X2 + 2X3 + 83 = 2 

Xi, 8i ~ 0, i = 1,2,3 

Obviously, the coefficient matrix A of standard form of the LPP con­
tains identity submatrix and hence simplex method can be applied. 
The starting BFS is 81,82,83. Construct the starting table as ex­
plained in Steps 1 and 2 of Example 2. 

This is a minimization problem, and hence, the nonbasic variable 
with the most positive relative cost Zj - Cj in z-row will enter the BFS. 
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The leaving variable is decided as for maximization problem. The 
complete working is shown in the following table. 

BV Xl X2 1 X3 81 82 83 Soln 

Z -1 2 -1 0 0 0 0 

f-- 81 1 rn -2 1 0 0 4 

82 1 0 -1 0 1 0 3 

83 2 -1 2 0 0 1 2 

Z -2 0 1 1 -1 0 0 -4 

X2 1/2 1 -1 1/2 0 0 2 

82 1 0 -1 0 1 0 3 

f-- 83 5/2 0 IT] 1/2 0 1 4 

Z -9/2 0 0 -3/2 0 -1 -S 

X2 0 6 

82 0 7 

X3 5/2 0 1 1/2 0 1 4 

The last table is optimal because all Zj - Cj :::; 0 (as this is a mini­
mization problem). The optimal solution can be read from this table 
as 

optimal solution: Xl = 0, X2 = 6, X3 = 4, min value Z = -S. 

Example 4. Consider the LPP 

max Z = 4Xl + X2 + 3X3 + 5X4 

s.t. 4Xl - 6X2 - 5X3 + 4X4 2: -20 

3Xl - 2X2 + 4X3 + X4 :::; 11 

SXl - 3X2 + 3X3 + 2X4 :::; 23 
Xl, X2, X3, X4 2: O. 

One of the simplex iterations table of the above LPP is given below. 
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Without performing simplex iterations, find the missing entries. 

BV Xl X2 X3 X4 81 82 83 Soln 

z 17 0 -35 0 0 -17 * * 
81 * 0 * * 1 0 2 * 
X4 * 0 * * 0 -3 2 * 
X2 * 1 * * 0 -2 * * 

Writing the problem in standard form 

max z = 4X1 + X2 + 3X3 + 5X4 

s.t. - 4X1 + 6X2 + 5X3 - 4X4 + 81 = 20 

3X1 - 2X2 + 4X3 + X4 + 82 = 11 

8X1 - 3X2 + 3X3 + 2X4 + 83 = 23 

all var ~ o. 

79 

First of all we write simplex format by putting 1 at the intersection 
of each column and row corresponding to basic variables and elsewhere 
o in that column. Thus, a 5 = (1,0, O)T, a 4 = (0,1, O)T and a 2 = 
(0,0, 1)T are determined. 

Further, write the basis matrix B corresponding to the basic vector 
(81, X4, X2) and find its inverse to have 

B = [~ ~4 ~21; B-1 = [~ 
o 2 -3 0 

o 2 

-3 2 

-2 1 

Always B-1 for each BFS is kept below starting basis. This places 
(2,2, 1f below 83 and hence a~ = l. 

Now, the solution column is 
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For coordinate vectors of Xl and X3 in body matrix of the table, use 
the formula a j = B-1 Aj to have 

The cost vector is (0,5, I)T and XB = (66,13, I)T. Thus, we compute 
the value of the objective function at XB as 

!(XB) = C~XB = (0,5,1)(66,13, I? = 66. 

The entry (relative cost) in z-row below 83 is given by 

Z7 - C7 = (0,5,1)(2,2, I)T - 0 = 11. 

After inserting all missing entries, the complete simplex table is 

BV Xl X2 X3 X4 81 82 83 Soln 

z 17 0 -35 0 0 -17 11 66 

81 12 0 11 0 1 0 2 66 

X4 7 0 -6 1 0 -3 2 13 

X2 16 1 -5 0 0 -2 1 1 

3.3 The Big-M Method 

After the LPP is written in standard form and the coefficient matrix A 
in X = b does not contain identity submatrix then we extend the idea 
of solving the problem by using Big-M method or Two phase method. 
The first is preferable for theoretical investigations, while latter is very 
much useful for computational purposes. 

For any equation i that does not have the slack variable, we aug­
ment an artificial variable Ri(?:' 0). With the induction of artificial 
variables the matrix A is modified and now, it contains identity sub­
matrix. The artificial variables then become part of the starting basic 
feasible solution. Because artificials are extraneous in LP model, we 
assign penalties to them in objective function to force to come to zero 
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level at later simplex iterations. As M is sufficiently large positive 
number, the variable Ri is penalized in the objective function using 
- M Ri in maximization problem, while by + M Ri in minimization. 
This is the reason that sometimes the big M-method is called penalty 
method. 

Example 5. Solve the following LPP by using the big M-method 

max z = -Xl + 3X2 

s.t. Xl + 2X2 :2': 2 

3XI + X2 ::; 3 

Xl ::; 4 

xI,x2:2': 0 

The standard form of the LPP is written as 

The coefficient matrix 

max z = -Xl + 3X2 

s.t. Xl + 2X2 - 81 = 2 

3XI + X2 + 82 = 3 

Xl + 83 = 4 

XI,X2,81,82,83:2': 0 

does not have identity submatrix. This is because first equation does 
not have slack variable, we thus use artificial variable R 1 in the equa­
tion and penalize in the objective function by -MRI . 

The resulting LPP is given as 

max z = -Xl +3X2 - MRI 

s.t. Xl + 2X2 - 81 + RI = 2 

3XI + X2 + 82 = 3 

Xl + 83 = 4 

XI,X2,81,82,83:2': 0, M > 0 (big number) 
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The above form of the LPP is said to be in standard form -II, whereas 
standard form-I means just standard form (excluding artificial vari­
abIes). Here, the modified coefficient matrix 

[~ 
2 -1 1 0 0 

1 0 0 1 0 

0 0 0 0 1 

has the identity matrix as submatrix. As usual, the starting table is 

B.V. Xl X2 Sl Rl s2 s3 Soln 

z 1 -3 0 M 0 0 0 

Rl 1 2 -1 1 0 0 2 

S2 3 1 0 0 1 0 3 

S3 1 0 0 0 0 1 4 

But this is not a simplex table because Rl is in BFS, its relative cost 
must be zero. Hence we perform row operation to reduce to zero, 
and for this purpose subtract M times of Rl-row from z-row. This 
operation converts the starting table into simplex format. The next 
table is 

B.V. Xl X2 1 Sl Rl S2 S3 Soln 

z 1-M -3-2M M 0 0 0 -2M 

+--- Rl 1 rn -1 1 0 0 2 

S2 3 1 0 0 1 0 3 

S3 1 0 0 0 0 1 4 

The above table is in simplex format. Now, the computational proce­
dure just involves simplex iterations. X2 enters and Rl leaves to give 
the following table 

B.V. Xl X2 1 Sl Rl S2 S3 Soln 

z 10 0 -3/21 x 0 0 3 

X2 1/2 1 -1/2 x 0 0 1 

+--- S2 5/2 0 11/21 x 1 0 2 

S3 1 0 0 x 0 1 4 
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In next iteration Sl enters and S2 leaves to give the next table 

B.V. Xl X2 Sl Rl S2 S3 Soln 

Z 5 0 0 x 3 0 9 

X2 3 1 0 x 1 0 3 

Sl 5 0 1 x 2 0 4 

S3 1 0 0 x 0 1 4 

This is optimal table, since all Zj - Cj 2:: 0, and 

optimal solution: Xl = 0, X2 = 3, max value Z = 9. 

Remarks. 1. Once any artificial basis has left the basis it should not 
be permitted for re-entry. 

2. The question arises how much big M should be selected when 
the computer code is to be executed. Any way M is positive finite and 
large, but it should not be too large to produce accumulation of round 
off errors during simplex iterations. To justify the choice we quote an 
example 

max Z = 0.2Xl + 0.5X2 

s.t. 3Xl + 2X2 2:: 6 

Xl + 2X2 ~ 4 

Xl, X2 2:: 0 

With M = 10, computer gives the optimal solution Xl = 1, X2 = 1.5, 
while with M = 999999 the optimal solution is Xl = 4, X2 = O. Note 
that first solution is correct. This is the reason we avoid to implement 
big M-method on computer codes. 

3.4 Two Phase Method 

As usual we write the LPP in standard form and seek for the presence 
of identity submatrix in coefficient matrix A. When A does not contain 
the identity submatrix, the addition of artificial variable is used to do 
so. Instead of big-M method, we may also use two phase method to 
solve such problems. This method is computationally efficient. 
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During Phase-I, we find a basic feasible solution of the system 
of constraints with the help of an auxiliary objective function to be 
minimized by using simplex iterations. 

Once Phase-I is done, we go for Phase-II that tests whether the 
BFS obtained in Phase-I is optimal in reference to the main objective 
function. In case this BFS is not optimal, we continue further simplex 
iterations to reach at optimality. 

We solve a problem to demonstrate the complete working of the 
method. 

Example 6. Solve the following LPP using two phase method 

mm z = 4Xl + 6X2 + 5X3 

s.t. 2Xl + 4X2 + 3X3 ~ 32 

Xl + 2X2 + 4X3 ~ 28 

Xl, X2, X3 ~ 0 

Write the problem in standard form 

min z = 4Xl + 6X2 + 5X3 

s.t. 2Xl + 4X2 + 3X3 - 81 = 32 

Xl + 2X2 + 4X3 - 82 = 28 

Xl, X2, X3 ~ 0 

This is very much obvious that the coefficient matrix A does not con­
tain the identity submatrix. Hence artificial variables are introduced 
for the purpose of developing identity submatrix as 

min z = 4Xl + 6X2 + 5X3 

s.t. 2Xl + 4X2 + 3X3 - 81 + Rl = 32 

Xl + 2X2 + 4X3 - 82 + R2 = 28 

Xl, X2, 81, 82, Rl, R2 ~ O. 

This is standard form-II in which the coefficient matrix of the LPP 
contains identity submatrix. The LPP is now solved in two phases as 
shown in Tables 1 and 2. 

Phase-I. We construct an auxiliary LPP (always a minimization 
problem) and its objective function is the sum of artificial variables 
which have been used to create identity submatrix in A. The optimal 
solution of the auxiliary will give a basic feasible solution of the con­
straint system of the original problem. In case there are more than 
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two extreme points the auxiliary LPP will have alternate optimal so­
lutions, see Section 3.5. However, we need only one optimal solution 
of the auxiliary LPP to move to Phase-II iterations. 

min r = R1 + R2 

s. t. 2X1 + 4X2 + 3X3 - 81 + R1 = 32 

Xl + 2X2 + 4X3 - 82 + R2 = 28 

Xl, X2, 81, 82, R1, R2 2: o. 
Obviously, the minimum of the auxiliary problem is r = 0, and this 
occurs when R1 = R2 = O. Thus the optimal solution of the above 
LPP gives BFS of of the constraint system. We solve the LPP by using 
the simplex method, and the solution is given in Table 4. 

Table 4 

BV Xl X2 x31 81 82 R1 R2 Soln 

r 3 6 7 -1 -1 0 0 60 

0 0 0 0 0 -1 -1 0 

R1 2 4 3 -1 0 1 0 32 

+---- R2 1 2 W 0 -1 0 1 28 

r 5/4 5/21 0 -1 3/4 0 -7/4 11 

+---- R1 5/4 
1 5/ 2 1 

0 -1 3/4 1 -3/4 11 

X3 1/4 1/2 1 0 -1/4 0 1/4 7 

r 0 0 0 0 0 -1 -1 0 

X2 1/2 1 0 -2/5 3/10 2/5 -3/10 22/5 

X3 0 0 1 1/5 -2/5 -1/5 2/5 24/5 

Remark. In Phase-I of two phase method, if any artificial variable 
remains at zero level in the basis, then degenerate BFS is available. 
Suppose the kth artificial variable Rk = 0 in BFS. Then two possibil­
ities are there. 

(i) If ef B- 1 Aj =F 0 for any nonbasic variable Xj, then we can bring 
Xj to the current basis to replace Rk. In this case, the optimal 
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solution to the Phase-I problem provides a starting basis without 
any artificial variable in it for the original problem. 

(ii) If e[ B-1 Aj = 0 for every nonbasic variable Xj, then it can be 
verified that the kth constraint of the system AX = b is redun­
dant. In this case we can remove the redundant row from the 
original constraints and restart the Phase-I problem. 

Here e[ is the m-dimensional vector having 1 at kth place and else­
where zero. 

Phase-II. In second phase we use the basic feasible solution avail­
able from the Phase I to find the optimal solution of the original prob­
lem. To construct next table, we first write body matrix ignoring 
artificial variables and all nonbasic variables which have negative rel­
ative cost in the optimal table of Phase-I. Also, write the entries of 
solution column of Table 1. 

Now, insert the objective function coefficients in z-row, i.e., the 
coefficients from the left hand side of the equation 

and right hand side of this equation below solution. This disturbs 
simplex format in z-row as X2 and X3 are the basic variables but in z­
row we have inserted -6 and -5, respectively. Restore simplex format 
by adding six times of X2-row and five times of X3-row in corresponding 
entries of z-row. This gives simplex format, see Table 5. 

Table 5 

BV Xl X2 X3 81 82 Soln 

z -1 0 0 -7/5 -1/5 252/5 

-4 -6 -5 0 0 0 

X2 1/2 1 0 -2/5 3/10 22/5 

X3 0 0 1 1/5 -2/5 24/5 

Now, check Table 5 for optimality. Since all Zj - Cj ~ 0, Table 5 is 
optimal with 

optimal solution: Xl = 0, X2 = 22/5, X3 = 24/5, z = 252/5. 
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Note that while simplex format is restored and the optimality is 
not visible in z-row, then continue further with simplex iterations to 
reach at optimality. 

Remarks. 1. While going to Phase II, delete all nonbasic variables for 
which the relative cost Zj - Cj < 0 in optimal table of the Phase I. This 
is the Elimination rule which will be well placed in 'Goal Programming' 
at later stage. This is due to the fact that nonbasic variables with 
negative relative cost in optimal table of Phase-I will never enter the 
basis in Phase-II, otherwise the solution of auxiliary LPP will become 
infeasible. 

For instance, if XI,X2,"" Xm are basic variables and Xm+l, Xm +2,.·· ,Xn 
and Ri are nonbasic variables then objective function row in optimal 
table of Phase-I can be written as 

r = O· Xl + O· X2 + ... + O· Xm + klXm+l + k2Xm+l + ... + knxn 

+ rlRI + ... + rmRm, 

where ki and ri are nonnegative. If any of the nonbasic variables from 
Xm+l, Xm +2, . .. , Xn enters in basis at positive level in Phase-II, then 
r will have positive value which results infeasibility in auxiliary LPP, 
since set of constraints set is same for both phases. 

2. In case any LPP contains an equation which has a variable (may 
be decision variable) with unity coefficient and this variable is not 
contained in other constraints, then take this variable in the starting 
BFS to facilitate the computations. 

3. In Phase I, the auxiliary LPP is always a minimization problem. 

4. We suggest a good variant of two phase method which does not 
require the addition of artificial variables to the constraints to develop 
identity submatrix inside the coefficient matrix of a LPP in standard 
form. 

Let us workout the example of this section again. Write the LPP 
in standard form. Find its BFS by reducing the coefficient matrix in 
row reduced echelon form (canonical form of equations) maintaining 
feasibility in the last column. 

o 
-1 

32] 
28 [: ~ ~1 -1 

o 
1 

-1 
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[~ 2 -1 -1 1 

2:] [~ 2 -1 -1 1 4] 
0 5 1 -2 0 1 1/5 -2/5 24/5 ~ 

[1 2 0 -4/5 3/5 44/5] 
o 0 1 1/5 -2/5 24/5 

Thus, Xl and X3 function as starting basic variables. On inserting the 
objective function in z-row, we get 

82 Soln 

z -4 -6 -5 o o o 
Xl 1 2 0 -4/5 3/5 44/5 

X3 0 0 1 1/5 -2/5 24/5 

Note that after insertion of the objective function the simplex format 
is disturbed as there must be zero in z-row below basic variables Xl 

and X3. To restore simplex format, add four times of the first row and 
five times of second row to the z-row. The next table is in simplex 
format 

BV Xl x21 X3 81 82 Soln 

z 0 2 0 -11/5 2/5 296/5 

<- Xl 1 rn 0 -4/5 3/5 44/5 

X3 0 0 1 1/5 -2/5 24/5 

X2 enters and Xl leaves the basis, and we get 

BV Xl X2 X3 81 82 Soln 

z -4 0 0 -7/5 -1/5 252/5 

X2 1/2 1 0 -2/5 3/10 22/5 

X3 0 0 1 1/5 -2/5 24/5 

This is the optimal table and optimal solution is the same as computed 
by two phase method. 
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3.5 Exceptional Cases in LPP 

Here, we discuss some situations which are encountered during simplex 
iterations. 

1. Non-existing feasible solution. This situation arises when 
no point satisfies all the constraints, i.e., PF = 0. If the standard 
form of LPP amenable to simplex iterations does not involve artificial 
variable then this situation does not arise. The following two situations 
characterize the occurrence of infeasible solutions. 

(i) If, in the optimal table of big-M method, at least one of the 
artificial is nonzero; or 

(ii) In the optimal table of Phase I of two phase method, if at least 
one artificial variable is nonzero, then the problem has infeasible 
solution. 

For example consider the problem 

min z = Xl - X2 

s.t. Xl + X2 ::; 1 

3Xl + 4X2 2: 6 

Xl, X2, 2: o. 

Let us perform Phase-I to find initial basic feasible solution. The 
auxiliary problem is 

min r = R2 

s.t. Xl + X2 + 81 = 1 

3Xl + 4X2 - 82 + R2 = 6 

all var 2: o. 
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BV Xl x21 82 81 R2 Soln 

z 3 4 -1 0 0 6 

0 0 0 0 -1 0 

f-- Xl 1 [IJ 0 1 0 1 

R2 3 4 -1 0 1 6 

z -1 0 -1 -4 0 2 

X2 1 1 0 1 0 1 

R2 -1 0 -1 -4 1 2 

Since in the last table we can not proceed for further iterations and 
even then the artificial variable R2 > 0, this indicates that the problem 
has infeasible solution. 

2. Unbounded solution. This may happen when the feasible region 
is unbounded. The feasible region is unbounded if while applying 
simplex method, it is observed that all entries of the column in body 
matrix corresponding to some nonbasic variable are nonpositive. In 
other words, if in any simplex iteration, the minimum ratio rule fails, 
the LPP has unbounded solution, i.e., appropriate nonbasic variable 
desires to enter the basis but a j :s 0 do not permit its entry. The 
solution becomes unbounded because the entering variable can enter 
the basis at an arbitrary level. The following LPP gives unbounded 
solution. 

max z = 4Xl + X2 

s.t. Xl - X2 :s 1 

- 2Xl + X2 :s 2 

Xl, X2, ~ o. 

The standard form of the LPP is 

max z = 4Xl + X2 

s. t. Xl - X2 + 81 = 1 

- 2Xl + X2 + 82 = 2 

Xl, X2, 81, 82 ~ o. 
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The simplex iterations are 

BV Xl 1 X2 81 82 Soln 

Z -4 -1 0 0 0 

+- 81 IT] -1 1 0 1 

82 -2 1 0 1 2 

Z 0 -51 4 0 4 

Xl 1 -1 1 0 1 

82 0 -1 2 1 4 

After first iteration we do not get optimal table and hence second 
iteration is performed. In second iteration the variable X2 with the 
most negative relative cost desires to be a basic variable but ar < 
0, a~ < 0 prohibit its entry into basic vector. Thus, we conclude that 
the problem has an unbounded solution. 

Remark. The condition of unboundedness of feasible region is nec­
essary but not sufficient. There are linear programming problems in 
which the feasible region is unbounded even though the solution is 
finite. One such example is 

min Z = -4Xl + X2 

s.t. Xl - 2X2 :S 2 

- 2Xl + X2 :s 2 

Xl, x2,:2: o. 

By sketching the feasible region, we observe that minimum value occurs 
at the vertex (2,0). However, the feasible region is unbounded. 

3. Alternative optimal solution. If in the optimal table (obtained 
from any method), the relative cost Zj - Cj = 0 for at least one of 
the nonbasic variables, then alternate optimal solution exits provided 
PF is bounded. Bring this nonbasic variable into basis and find a 
new optimal solution. Again, if the optimality occurs at two or more 
vertices, then it also occurs at clc of these vertices, see Problem 15, 
Problem set 2. However, an important fact is pointed out here that 
that clc of optimal basic feasible solutions may not be basic solution, 
see Problem 16, Problem set 2. We consider one example in which it 
is shown how alternative optimal solution is computed. Consider the 
LPP 
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max z = 4Xl + 10x2 

s.t. 2Xl + X2 ::; 10 

2Xl + 5X2 ::; 20 

2Xl + 3X2 ::; 18 

Xl,X2 2: 0 

The LPP is amenable to solution by simplex method. We take up 
only the optimal table (outcome of the last iteration). 

BV Xl 1 X2 51 52 53 Soln 

z 0 0 0 2 0 40 

+-- 51 
1 8/ 5 1 

0 1 -1/5 0 6 

X2 2/5 1 0 1/5 0 4 

53 4/5 0 0 -3/5 1 6 

Optimal solution: Xl = 0, X2 = 4, max value z = 40. 

From the above table, note that Xl, 52 are nonbasic variables and 
relative cost of Xl is zero and this implies that alternative optimal 
solution exists. Choose Xl as the entering variable, and consequently 
minimum ratio rule permits 51 to leave. The remaining computations 
are done as usual to have the alternative optimal table as 

BV Xl X2 51 52 53 Soln 

z 0 0 0 2 0 40 

Xl 1 0 5/8 -1/8 0 15/4 

X2 0 1 -1/4 1/4 0 5/2 

53 0 0 -1/2 -1/2 1 3 

Optimal solution: Xl = 15/4, X2 = 5/2, max value z = 40. 

Thus, both the optimal solutions are different giving the same max­
imum objective value. Note that every convex linear combination of 
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these solutions will again be an optimal solution. However, all the opti­
mal solutions obtained by taking dc will be non-basic feasible optimal 
solutions. For instance, in this case, 

1 1 (15 5 ) X="2(0,4,6,6)+"24'"2,0,0,3 

is the nonbasic feasible optimal solution. 

4. Degeneracy. One of the reasons for degeneracy may be due to 
presence of some redundant constraint. The system is redundant if 
one or more constraints in a LPP are not at all essential to find the 
optimal solution. For example the system 

3XI + 2X2 :S 6 

2XI + X2 2: 4 

Xl + X2 2: 3 

XI,X2 2: ° 

has last constraint as redundant. It is suggested to eliminate such 
constraints before we proceed for simplex iterations, otherwise degen­
eracy will occur in simplex iterations. Phase-I may be helpful to detect 
redundancy, see Remark just after Phase-I in Section 3.4. 

However, in absence of redundant constraint the degeneracy may 
occur in the LPP. If in any simplex table, there is tie between two or 
more leaving variables we can select anyone of them to leave the basis 
but the new solution thus obtained will have remaining such variables 
(tied) at zero level in the next simplex table. It means new BFS will 
be degenerate. 

Suppose at some stage of simplex iterations 82 enters, and the min­
imum ratios for two basic variables are same, i.e., two basic variables 
are candidates for leaving at the same time. This will give next BFS 
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as degenerate. The following table is self explanatory in this regard. 

BV Xl X2 81 82 1 83 Soln 

z 

+- Xl a a' 

+- X2 /3 /3' 
81 "( "(' 

z 0 

82 1 a'/a 
X2 0 /3' - /3a' / a = 0 

81 0 "(' - "(a' /a 

We summarize the above discussion as 

Degeneracy (due to tie among leaving variables) causes three pos­
sibilities: 

(i) Temporary degeneracy. After some iteration degeneracy disap­
pears and nondegenerate optimal solution is obtained. 

(ii) Permanent degeneracy. Degenerate optimal solution is obtained. 

(iii) Cyclic degeneracy. Simplex table starts repeating after some 
iterations. 

In the case of permanent and temporary degeneracy the nonbasic 
variables which have a tie to leave the basis can be chosen at random 
as the leaving variable. However, it can not be done when cycle is 
detected. Cycling can be detected at early stage by noting the fact 
that for tied variables 

Remark. Whatever type of degeneracy occurs in a LPP, we suggest 
that Charne's perturbation method should be applied to solve the 
problem. Consider the problem: 

opt z = CTX 

s.t. AX = b 
X ~ 0, b ~ 0 
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The requirement vector b, perturbed to b(E) is given by 

n n+s 
b(E) = b+ LEjAj + LEn+1qi' 

j=l i=l 

where qi is the ith column corresponding to ith artificial variable. Since 
X B = B-1b, we have 

or 

n n+s 
XB(r::) = B-1b+ LEjB-1Aj + LEn+lB-1qi 

j=l i=l 

n+s 
XB(r::) = X B + L Ejaj . 

j=l 

Now, take the kth component of XB(r::) as 

n+s 
XBk(r::) = XBk + LEja{. 

i=l 

Let xk(Ak) enter the basis. The variable XBr(r::) will leave the basis, if 

and 
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If Qk is not unique then cycling may occur. To avoid this, examine 

{ 1 af > O} . a i (i) mm k' 
a· 

~ 

{ 2 af > O} . a i (ii) mm k' a i 

(n+s) 

If (i) is unique, then stop and we have decided the leaving variable. In 
case (i) is not unique then proceed to (ii) and so on until uniqueness 
is achieved. Charnes has claimed that in proceeding like this way the 
uniqueness is necessarily obtained. 

Example 7. Solve the following LPP by the simplex method. 

max z = 2Xl + X2 

s.t. 4Xl + 3X2 S 12 

4Xl + X2 S 8 
4Xl - X2 S 8 

Xl, X2, ~ O. 

Procedure. The standard form of the LPP is 

max z = 2Xl + X2 

s.t. 4Xl + 3X2 + 81 = 12 

4Xl + X2 + 82 = 8 

4Xl - X2 + 83 = 8 

Xl,X2,8l,82,83 ~ O. 

Obviously, the coefficient matrix A contains identity submatrix. Rewrite 
the matrix A as A' (including columns of artificial variables, if any) in 
such a way that the first column of A' is the first column of identity 
matrix contained in A, second column of A' is the second column of 
identity submatrix contained in A' and so on till identity submatrix 
columns are exhausted. In the last, we write columns of the decision 
variables. 
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Note that when simplex method is applied, there is a tie between 82 

and 83 to leave the basis, see the table, and hence degeneracy occurs. 
To remove degeneracy find the basic variable for which 

Elements of the first column (facing tied variables) of unit matrix 
corresponding elements of entering column with key element 

or 

Elements of the second column (facing tied variables) of unit matrix 
corresponding elements of entering column with key element 

or so on (till all basic variables are exhausted), is unique. This basic 
variable will leave the basis. For tied variables 82 and 83, using above 
formula, we have min{O/4,O/4} = 0 is not unique. This informs that 
cycling may happen. Move to the next column of the unit matrix 
and note that min{1/4,O/4} = 0 is unique, and this is for 83. Thus, 
to avoid cycling 83 must be chosen as the leaving variable for the 
first iteration. The second and third iterations are carried out by 
usual minimum ration rule. The whole working is demonstrated in the 
following combined table showing all iteration to reach at optimality. 

Table 6 

BV 81 82 83 Xl 1 X2 Soln 

z 0 0 0 -2 -1 0 

81 1 0 0 4 3 12 

82 0 1 0 4 1 8 

f- 83 0 0 1 m -1 8 

z 0 0 1/2 0 -3/21 4 

81 1 0 -1 0 4 4 

f- 82 0 1 -1 0 @J 0 

Xl 0 0 1/4 1 -1/4 2 

z 0 3/4 -1/41 0 0 4 

f- 81 1 -2 [] 0 0 4 

X2 0 1/2 -1/2 0 1 0 

Xl 0 1/8 1/8 1 0 2 
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Table 6 (Contd.) 

BV 81 82 83 Xl X2 Soln 

z 1/4 1/4 0 0 0 5 

83 1 -2 1 0 0 4 

X2 1/2 -1/2 0 0 1 2 

Xl -1/8 3/8 0 1 0 3/2 

Optimal solution: Xl = 3/2, X2 = 2; max value = 5. 

Remark. To avoid cycling there is a very simple method called Bland's 
rule. It specifies the choice of both the entering and leaving variable. 
In this rule variables are first ordered in sequence, then 

1. Among all nonbasic variables with negative reduced costs (max 
problem), choose the one with the smallest index to enter the 
basis. 

2. When there is a tie for in the minimum ratio test, choose the 
basic variable with the smallest index to leave the basis. 

Note that according to Bland's rule in the first iteration Xl enters 
and 82 leaves the basis and the above LPP (which has been solved by 
Charne's perturbation) is solved just in two iterations. 

This example pertains to the temporary degeneracy. For cycling 
degeneracy, see Problem 18. Apply Charne's perturbation method or 
Bland's rule to deal with cycling process. 

Finally, we commend how Bland's rule works. It creates the fol­
lowing monotone property: 

If a variable Xq enters the basis, then it can not leave the basis until 
some other variable with a larger index, which was nonbasic when Xq 

enters, also enters the basis. This monotone property prevents cycling, 
because in a cycle any variable that enters the basis must also leave the 
basis, which implies that there is some largest indexed variable that 
enters and leave the basis. This certainly contradicts the monotone 
property. 
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Problem Set 3 

1. Let the LPP be min z = CT X subject to AX = b, X 2: 0, b 2: O. 

2. 

3. 

4. 

If, for any BFS, XB all Zj - Cj ::::; 0, show that XB is the optimal 
solution of the problem. 

Find the optimal solutions of the following LPP's by the simplex 
method 

(a) max Z = X2 + 3 (b) max Z = 3XI + 4X2 

s.t. 4XI + X2 ::::; 5 s.t. - Xl + X2 ::::; 5 

- 2XI + X2 ::::; 1 Xl + X2 ::::; 4 

Xl, X2 2: 0 Xl 2: 2, X2 2: 1 

(c) max Z = -3XI + X2 (d) max Z = -(Xl + 0.6X2) 

+ 0.4(5XI + 3X2) 

s.t. 
Xl 
- +X2 < 1 2 - s.t. 

Xl 
- +X2 < 30 2 -

- Xl + X2 ::::; 1 2XI + X2 ::::; 40 

Xl, X2 2: 0 Xl, X2 2: 0 

The optimal table of a LPP is given as 

BV Xl X2 81 82 Soln 

Z 2 0 0 1 1 

81 1 0 1 3 4 

X2 -2 1 0 1 1 

Given the staring BFS as (81, 82f. By doing one simplex itera­
tion back in the above table write the original LPP. 

For a maximization problem, the starting table is given as 

BV Xl X2 81 82 Soln 

Z -6 2 0 0 0 

81 2 -1 1 0 2 

82 1 0 0 1 4 
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Perform one simplex iteration to find basic solution that is not 
feasible. 

Suggestion. Violate the leaving variable rule. 

5. Solve the example of Section 3.4, if the objective function is taken 
as -2XI + X2 and constraints remain the same. 

6. Solve the following LPP using simplex method 

max Z = 2XI - 3X2 

s.t. - Xl + X2 ~ 2 

2XI - X2 ~ 2 

- Xl - X2 ~ 2 

Xl 2: 0, X2 unrestricted 

Remark. Below nonbasic variable Y2, Z2 - C2 = 0 in the optimal 
table, but alternative optimal BFS does not exist. Thus, if in op­
timal table below nonbasic variable Zj - Cj = 0, then alternative 
BFS solution is expected but not essential. Here, it happened 
due to unboundedness of PF. Any way other alternate optimal 
solutions will be nonbasic. 

7. Let maxz = CT X, subject to AX = b, X 2: 0, b 2: O. (a) 
How the optimal solution is affected when the cost vector C is 
replaced by AC, A > 0; (b) Interpret the assertion (a) when C is 
replaced by C + A, A E 1Ft 

Suggesting. Let X* be an optimal solution. Then C T X* 2: CT X 
for all X. Replacing C by AC, A > 0, we have (ACf X* = 
ACT X* 2: (ACT)X = ACT X. Thus, X* remains optimal solu­
tion of the changed problem. 

For part (b) (C + Afx* = CTX* + AX*T. So, for A > 0 no 
change occurs in the optimal solution, while for A < 0, (C + 
Af X* ~ (C + A)T X ensures a change in the optimal value. 

8. The following is an optimal table of a LPP with ~ constraints 
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and nonnegative right-hand side vector. 

BV Xl X2 X3 X4 Sl S2 S3 Soln 

z 0 4 0 1 4 2 0 40 

0 1/2 1 0 1/2 0 0 5/2 

1 -1/2 0 1/3 -1/6 1/3 0 5/2 

0 0 0 2/3 -1/3 -1/3 1 3 

(i) What variables are in the basis? 

(ii) What is the original LPP? 

Suggestion. Use (C3, q, O)B- I = (4,2, O)T. Use this C~ to find 
C2, C4· Finally, compute Aj's and (b l , b2, b3 ). 

9. Consider the following LPP 

max Xo = 3XI + 2X2 + 5X3 

s.t. Xl + 2X2 + X3 :S 430 

- 3XI - 2X3 2: -460 

Xl + 4X2 :S 420 

Xl, X2, X3 2: 0 

One of the simplex iteration table of this LPP is 

BV Xl X2 X3 Sl S2 S3 Soln 

Xo 4 

X2 -1/4 

X3 1/2 

S3 1 

Without performing simplex iteration, find the following missing 
entries in the above table. Justify your answer by writing the 
formula used and doing all calculations. 

(i) xl-column; 

(ii) Entry below S2 in xo-row; 

(iii) The BFS corresponding to the above table; 
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(iv) The value of the objective function corresponding to the 
above table. 

10. Solve the following LPP using big M-method and two phase 
method, separately. 

max z = 3XI - 3X2 + X3 

s.t. XI+2x2-x32:5 

11. Consider the system 

- 3XI - X2 + X3 ::; 4 

Xl, X2, X3 2: o. 

Xl + X2 2: 1 

- 2XI + X2 2: 2 

2XI + 3X2 ::; 7 

Xl, X2 2: o. 

(a) Using simplex algorithm find BFS of the system; 

(b) Find a BFS so that both decision variable function as basic 
variables. 

Suggestion. Use only the first phase of two phase method. 

12. Detect the redundant constraint in the following system 

Xl + X2 + X3 2: 7 

2XI + 3X2 + 3X3 2: 1 

3XI + 4X2 + 2X3 2: 5 

13. Avoiding big M-method or two phase method find the optimal 
solution of the following LPP by simplex method 

max z = Xl + X2 + X3 + X4 + X5 

s.t. 3XI+2x2+X3=1 

5XI + X2 + X3 + X4 = 2 

2XI + 5X2 + X3 + X5 = 4 

Xl, X2, X3, X4, X5 2: 0 

Suggestion. See Remark (4) in Section 3.4. 



3.5. EXCEPTIONAL CASES IN LPP 103 

14. During simplex iterations if the minimum ratio rule fails, then 
the LPP has an unbounded solution. Establish the validity of 
this statement mathematically. 

Suggestion. Let the LPP be a max problem and (XBl ,XB2'" .,XBm ) 

is any BFS and B = [B l , B 2 , . .. , Bm] is the corresponding basis 
matrix. Suppose a nonbasic variable Xk (Ak) wants to enter the 
basis. Then 

m m 

L,XBiBi = b or L,XBiBi - I1Ak + I1AK = b. 
i=l i=l 

Since a k = B- 1 A k , it follows that 

m 

L, (XBi - l1af) Bi +I1Ak = b. 
i=l 

Fix 11 > O. Then the above equation gives a feasible solution, 
but not basic as m + 1 variables are nonzero. The value of the 
objective function for this solution is 

m 

Z = L,CBi (XBi - l1a~) + I1ck or z = Z - I1(Zk - Ck). 

i=l 

Since 11 is arbitrary but fixed, z can be made arbitrarily large 
with 11. 

15. Consider the LPP 

max Z = 20Xl + 10x2 + X3 

S.t. 3Xl - 3X2 + 5X3 :::; 50 

Xl + X3 :::; 10 

Xl - X2 + 4X2 :::; 20 

Xl, X2, X3 2': 0 

By inspection determine the direction (Xl, X2 or X3) in which the 
solution space is unbounded. 

16. Consider the LPP 

max Xo = 3Xl - X2 - X3 

s.t. Xl + 2X2 + 4X3 :::; 5 

Xl - X2 - X3 :::; 8 

Xl, X2, X3 unrestricted in sign 



104 CHAPTER 3. THE SIMPLEX ALGORITHM 

Find the optimal solution of the above LPP using four restricted 
decision variables. 

Suggestion. Use Proposition of Section 1.2. 

17. Find the optimal solution of the following LPP using simplex 
method 

max Z = -Xl + 2X2 - X3 

s.t. 3XI-X2 +2X2:::; 7 

- 2X2 + 4X2 :::; 8 

- 4XI + 3X2 + 8X3 :::; 1 

Xl, X2, X3 2:: 0 

Does there exist alternative optimal solution? if yes, find this 
solution. 

18. In a max (min) LPP, there is a tie between Xl and X2 to enter 
the basis, provided we look at relative cost of these variables. 
Given that (h i- (h Which variable should be preferred to enter 
the basis so that larger increase (decrease) in 0 b j ecti ve function 
is ensured? 

19. Show that the LPP: 

max Z = 3XI + 3X2 

s.t. 3XI + 2X2 :::; 18 

Xl ::; 4 

2X2 :::; 12 

Xl, X2 2:: 0 

verifies the statement in Problem 18. 

Suggestion. If Xl is permitted to enter the basis then it takes 
three iterations to reach at optimal solution, while for selecting 
X2 as entering variable it takes only two iterations to reach at 
optimal solution. 

20. Let Zj - Cj > 0 for all nonbasic variables in optimal table of a 
max LPP. Then show that the LPP has a unique solution. 

Suggestion. This is equivalent to prove that if Zj - Cj = 0 for at 
least one nonbasic variable then the LPP has alternate optimal 
solution. 
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21. Consider the LPP 

3 1 
Z = --Xl + 20X2 - -X3 + 6X4 

4 2 
mm 

s.t. 
1 
4XI - 8X2 - X3 + 9X4 ::; 0 

1 1 
2" X I - 12x2 - 2"X3 + 3X4 ::; 0 

X3 ::; 1 

XI,X2,X3,X4;::: 0 

Show that forever cycling occurs when the problem is put on 
simplex iterations. Use Charnes perturbation technique to find 
the optimal solution. 

Suggestion. By applying simplex method with usual rules, it 
can be verified that if {Xl, X2, X3} is the starting basis, then 
the successive bases are {X4,X2,X3}, {X4,X5,X3}, {X6,X5,X3}, 

{X6,X7,X3}, {XI,X7,X3} and return to {XI,X2,X3}. If the same 
sequence of pivots is repeated again and again, the simplex method 
will cycle forever among these bases without giving optimal so­
lution. That's why Charne's perturbation method or Bland's 
rule is recommended to find its optimal solution. This LPP was 
proposed by E. M. L. Beale in 1955. 



Chapter 4 

Duality Theory 

This chapter is devoted to the dual linear programming problem asso­
ciated with a linear programming problem. Before defining the dual 
of a LPP we introduce with its canonical forms. The economic inter­
pretation of duality is also explained in Section 7.3. In the end the 
dual simplex method is included. 

4.1 Dual Linear Program 

The notion of duality is one of the most important concept in linear 
programming. To each linear program defined by the matrix A, right 
hand side vector b and the cost vector C, there corresponds another 
linear program with the same set of data A, band C. To begin with 
this chapter we introduce duality for LPP with greater than equal to 
constraints. 

Canonical form. A LPP is said to be in canonical form if it can 
be written as 

mm Xo = CTX 

S.t. AX 2: b 

X 2: 0, 

as usual A is matrix of order m x nand 

( 4.1) 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Note that in canonical form, there is no restriction on the entries 
bi as these may be any real numbers. 

Definition. The dual LPP of above canonical form is defined as 

max Yo = bTy 

s.t. ATy::; C 

y 2: 0, 

( 4.2) 

where Y = (YI, Y2,··· ,Ym)T, and Yi is the dual variable associated 
with the ith constraint. 

System (4.1) is termed as primal, while (4.2) as its dual. 

Example 1. Consider the LPP 

max Xo = 3XI + 4X2 

s.t. Xl + 7X2 2: 35 

2XI + 5X2 ::; 60 

XI,X2 2: 0 

To write the dual of this LPP, first convert the problem into canon­
ical form 

min x~ = -3XI - 4X2 

s.t. Xl + 7X2 2: 35 YI 

- 2Xl - 5X2 2: -60 Y2 

Xl, X2 2: 0, 

where YI and Y2 are the dual variables associated with the first and 
second constraints of the primal. 

By definition, its dual is written as 

max Yo ~ (35, -60) [::] 

8.1. [~=:] [::] < [=:] 
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or, in simplified form 

max Yo = 35YI - 60Y2 
s.t. YI - 2Y2 ~ -3 

7YI - 5Y2 ~ -4 

YI,Y2 2: 0 

109 

(4.3) 

We detect an interesting phenomenon, if we write further, the dual of 
(4.3). First, express (4.3) in canonical form 

mm Yb = -35YI + 60Y2 

s.t. -YI+2Y22:3 

- 7 YI + 5Y2 2: 4 

Yl, Y2 2: 0, 

Now, its dual is 

max zb = 3z1 + 4Z2 

s.t. - Zl - 7Z2 ~ -35 

2Z1 + 5z2 ~ 60 

ZI,Z2 2: 0 

or max Xo = 3XI + 4X2 

s.t. Xl + 7X2 2: 35 

2XI + 5X2 ~ 60 

xI,x22:0 

This is nothing but the original LPP from where we started to write 
the dual and again dual. Thus, we got an idea that dual of dual is 
primal. We are shortly proving this result theoretically. 

So far, we noticed the following points for a minimization problem 
in canonical form: 

(i) Its dual is max problem. 

(ii) The objective function of dual is obtained by multiplying the 
right-hand side entries by the dual variables Yi. 

(iii) The constraints of the dual are of the type ~. 

(iv) The left-hand side of the ith constraint is ATy. 

(v) The right-hand side of the dual constraints are respectively the 
cost coefficients of the primal. 

(vi) The dual variables Yi are nonnegative. 
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Theorem 1. The dual of a dual is primal. 

Proof. Let the LPP be given in canonical form (4.1). Then its dual 
is written as (4.2). Now, we want to write the dual of the dual. To 
write dual of the system (4.2), we first write this into canonical form 
as 

min yb = _bTy 

s.t. - ATy 2: -C 
y 2: 0, 

The dual of the above LPP is 

max zb = (-C)TZ 

s.t. (_AT? z :::; (_bT)T 

Z 2: 0, 

or min Zo = CTZ 

s.t. AZ 2: b 
Z2:0 

The last LPP is nothing but the starting problem (4.1). 

Theorem 1 concludes that 

(a) the primal may be a minimization problem with 2: type con­
straints and nonnegative restriction on the decision variables. 

(b) the primal may be a maximization problem with :::; type con­
straints and nonnegative restriction on the decision variables; 

Thus, dual of (a) type of problem is (b) type; and dual of (b) type 
of problem is (a) type problem. This suggests that LPP is in canonical 
form if it is minimization problem with 2: constraints or maximization 
problem with:::; constraints. 

Through examples 3 and 4, we demonstrate two facts: 

Fact 1. If the primal contains some equality constraint, then the dual 
variable corresponding to this constraint will be unrestricted in 
sign. 

Fact 2. If a LPP contains any variable Xk of unrestricted in sign, then 
the kth dual constraint will be written as equality constraint. 
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Example 2. Write the dual of the following LPP and verify Fact 1. 

max Xo = 2Xl - 3X2 

s.t. Xl + 2X2 :S 4 

3Xl - X2 = 5 

Xl,X2 2: 0 

Write the equality constraints into its equivalent inequality con­
straints, and associate the dual variables for each constraints as 

max Xo = 2Xl - 3X2 

s.t. Xl + 2X2 :S 4 Yl 

3Xl - X2 :S 5 yt 

- 3Xl + X2 :S -5 Y2 

xl,x22:0 

The dual of the above LPP is 

min Yo = 4Yl + 5(yt - y;;) 

s.t. Yl + 3(yt - Y;;) 2: 2 

2Yl - (yt - y;;) 2: -3 

Yl, yt, y;; 2: 0 

or min Yo = 4Yl + 5Y2 

s.t. Yl + 3Y2 2: 2 

2Yl - Y2 2: -3 

Yl 2: 0, Y2 unrestricted 

Example 3. Find the dual of the following LPP to verify Fact 2. 

mm Xo = 3Xl + X2 

s.t. -Xl+X2:S1 

3Xl + 5X2 2: 3 

Xl 2: 0, X2 unrestricted 

First, convert the above LPP in canonical form and then write X2 = 
xt - x;; to have 

max 

s.t. 

Xo = 3Xl + xt - x;; 

- Xl + xt - X;; 2: -1 

3Xl + 5xt - 5x;; 2: 2 

Xl, xt, X;; 2: 0 

Yl 

Y2 
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The dual of the above LPP is 

mm Yo = -Yl + 2Y2 or min Yo = -Yl + 2Y2 
s.t. - Yl + 3Y2 :S 3 s.t. - Yl + 3Y2 :S 3 

Yl + 5Y2 :S 1 Yl + 5Y2 = 1 
- Yl - 5Y2 :S -1 Yl, Y2 :::::: 0 

Yl, Y2 :::::: 0 

4.2 Duality Theorems 

In this section we prove two duality theorems and mention their ap­
plications to develop the Duality theory. Our primal problem will be 
a minimization problem min z = CT X, AX :::::: b, X :::::: o. 
Theorem 2 (Weak Duality Theorem). If Xo is a primal feasible 
solution and Yo is dual feasible, then 

Proof. The dual feasibility of Yo implies that ATyo :s C, Yo :::::: O. 
If Xo is a primal feasible, then Xo :::::: 0, and 

Note that AXo :::::: b. Hence 

Several corollaries can immediately be deduced from the weak du­
ality theorem. 

Corollary 1. If Xo is primal feasible, Yo is dual feasible, and CT Xo = 
bTyo, then Xo and Yo are the optimal solutions to the respective prob­
lems. 

Proof. Theorem 2 indicates that C T X :::::: bTyo = C T Xo, for each 
primal feasible solution X. Thus, Xo is an optimal solution to the 
primal. A similar argument holds for the dual. 

Corollary 2. If the primal is unbounded below, then the dual problem 
is infeasible. 
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Proof. Whenever the dual problem has a feasible solution Yo, the 
weak duality theorem prevents the primal objective from falling below 
bTyo. 

Similarly, we have the following result : 

Corollary 3. If the dual problem is unbounded above, then the primal 
problem is infeasible. 

It is to be noted that the converse statement of either of two fore­
going corollaries is not true. For example, when the primal problem is 
infeasible, the dual could be either unbounded above or infeasible. 

The next result is a stronger result than Theorem 2 and to intro­
duce this we standardize some notations here. For a given cost vector 
e (column vector) and the coefficient matrix A, we can always denote 
these as 

where eB is the cost vector of basic variables, eN is the cost vector 
referred to nonbasic variables, B is a m x m nonsingular matrix (basis 
matrix), and N is a matrix corresponding to nonbasic variables called 
as nonbasic matrix with dimensionality m x (n - m). 

Theorem 3 (Strong Duality Theorem). 

1. If either the primal or the dual linear program has a finite opti­
mal solution, then so does the other and they achieve the same 
optimal objective value. 

2. If either problem has an unbounded objective value, then the 
other has no feasible solution. 

Proof. For the first part, without loss of generality, we can assume 
that the primal problem has reached a finite optimum at a basic fea­
sible solution X. If we utilize the simplex algorithm at X and define 
yT = e~B-l, then (see Proposition 3, Chapter 3) 

T [BT] [eB ] A y - e = NT Y - eN = r ::; O. 

Therefore, Y is dual feasible. Moreover, since X is a basic feasible 
solution, we have 
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Due to Corollary 1, we can say Y is an optimal solution to the dual 
linear problem. 

The proof of the second part is a direct consequence of Corollaries 
2 and 3. 

Remark. As a byproduct of the proof, we have established the fact 
that if, optimal solution of primal exists then Cj;B-1 gives the optimal 
solution of the dual. It is to be noted that B-1 is available from the 
optimal table below the starting basis. Since starting basis is usually 
in terms of slack and surplus variable, to write B-1 we multiply by 
-1 to each entry of the column in optimal table below each surplus 
variable. 

4.3 Complementary Slackness Theorem 

This theorem explains the fact how primal and dual are closed related. 
The interesting relationship between the primal and dual reveals so 
many facts involving optimal solution of one from the other. 

Theorem 4 (Complimentary slackness conditions). 

(a) If, in optimal table of primal the decision variable x k appears as 
basic variable then the kth dual constraint is satisfied as equality 
constraint, i.e., slack or surplus variable associated with kth dual 
constraint assumes zero value. 

(b) If, in optimal table of primal the slack or surplus variable Sk 

appears as basic variable then the dual variable Yk associated 
with kth primal constraint assumes zero value in the optimal 
solution of dual. 

Proof. (a) Since Zk - Ck = 0 for all basic variables, it follows that 
if Xk is a basic variable then Zk = Ck. It means Cj;B- 1 Ak = Ck =? 

yT Ak = Ck. This implies 

( 4.4) 

i.e., kth dual constraint is satisfied as equality constraint. 

(b) If Sk is slack or surplus variable, then Ck = 0 and Ak 

(0,0, ... 1, ... of. Using this data in (4.4), we have 

Y1 X 0 + Y2 X 0 + ... + Yk X 1 + ... + Ym X 1 = 0 ==;. Yk = O. 
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Similarly, for surplus variable 8k, Ak = -ek = (0,0, ... - 1, ... ,0). 
Again - yT ek = 0, and this also implies Yk = O. 

Any way in both cases Yk = 0, as asserted. 

Remark. At any simplex iteration of the primal or dual, the direct 
consequence of complementary slackness theorem is 

( Objective coefficient (relative cost) ) = 
of variable j in one problem 

( Left-hand side minus right-hand side ) 
of constraint j in other problem 

Remark. This property is very much useful for finding optimal solution 
of primal or dual when the optimal solution of one is known. 

Example 4. Verify complimentary slackness conditions by discussing 
the optimal solution of the LPP: 

min Xo = Xl - 2X2 + X3 

s.t. Xl + 2X2 - 2X3 ~ 4 

Xl - X3 ~ 3 

2X1 - X2 + 2X3 ~ 2 

X1,X2,X3;::: 0 

The dual of the above problem is 

max Yo = -4Y1 - 3Y2 - 2Y3 

s.t. - Y1 - Y2 - 2Y3 ~ 1 

- 2Y1 + Y3 ~ -2 

2Y1 + Y2 - 2Y3 ~ 1 
all var ;::: 0 

The optimal table of the primal is given by 

BV Xl X2 X3 81 82 

Xo -9/2 0 0 -3/2 0 

X2 3 1 0 1 0 

82 7/2 0 0 1/2 1 

X3 5/2 0 1 1/2 0 

83 

-1 

1 

1 

1 

Soln 

-8 

6 

7 

4 
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Note the observations: 

Optimal solution of the dual is yT = C'§B- 1 (simplex multiplier), 
l.e., 

[ 1 ° 11 (-Yl,-Y2,-Y3) = (-2,0,1) 1/2 1 1 = (-3/2,0,-1) 

1/2 ° 1 

Hence, Yl = 3/2, Y2 = 0, Y3 = 1, optimal value = -8. 

To verify (a), note that 82 appears as basic variable in primal op­
timal table and hence, Y2 = ° is justified. 

For (b), we find that X2 and X3 appear as basic variables in primal 
optimal table. Then 

IInd constraint of the dual: -2 x (3/2) + 1 = -2 

IIIrd constraint of the dual: 2 x (3/2) - 2 = 1 

are satisfied as equality constraints. 

Remarks. 1. We have taken (-Yl, -Y2, -Y3) in our calculation as to 
write the LPP in canonical form we multiplied each constraint by -1. 

2. Instead of calculating Cj;B-l, we can also read this from the 
optimal table. This is available in xo-row below the starting BFS 
in optimal table of primal with the precaution that cost vector of 
the starting BFS must be zero. Visiting the above table, we have 
(-3/2,0,-1) = (-Yl,-Y2,-Y3). 

Consider the primal in the form 

mm CTX 
s.t. AX;::: b, X;::: ° 

Its dual is given by 

max bTy 

s.t. ATy::; C, Y ;::: ° 
This is called symmetric pair of primal and dual programs. 

Define the primal slackness vector 

s = AX - b 2'" ° 
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and dual slackness vector 

r = C - ATy ~ O. 

Theorem 5 (Complimentary slackness theorem). Let X be a 
primal feasible solution and Y be a dual feasible solution to a sym­
metric pair of linear programs. Then X and Y become an optimal 
solution pair if and only if 

either rj = (C - ATY)j = 0 

or Xj=O, j=1,2, ... ,n 

and 

either Si = (AX - b)i = 0 

or Yi = 0, i = 1,2, ... , m 

are satisfied. 

Here Xj and Yi represent the jth and ith component of the feasible 
vectors X and Y, respectively. 

Proof. For any primal feasible X and dual feasible Y, we have 

o ::; rT X + sTy 

= (CT - yT A)X + yT(AX - b) 

= CTX - bTy 

Therefore, the quantity rT X +bTy is equal to the duality gap between 
the primal feasible solution X and dual feasible solution y. The du­
ality gap vanishes if and only if 

(4.5) 

In this case X and Y become optimal solution of primal and dual 
respectively. Note that (4.5) requires that "either rj = 0 or Xj = 0 
for j = 1,2, ... ,n" and "either Si = 0 or Yi = 0 for i = 1,2, ... ,m". 
This proves the theorem. 

Remark. If the primal is given in standard form 

mIll 

s.t. 

cTX 

AX=b 

X ~O 
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Its dual is given by 

max 

s.t. 

CHAPTER 4. DUALITY THEORY 

bTy 

ATy:s C 

Y unrestricted 

Since the primal has zero slackness (being tight equalities), the condi­
tion sTy = 0 is automatically met. Thus, complimentary slackness is 
simplified to rT X = O. This situation will be seen when we find the 
optimal solution of transportation problem, see Section 7.2. 

4.4 An Economic Interpretation of Duality 

Let us consider a LPP, 

min Xo = CTX 
s.t. AX 2': b 

X 2': 0 (4.6) 

Its dual problem is 

max Yo = bTy 

s.t. ATy:s C 

y 2': 0 

First, we consider the scenario of the primal LPP. Consider a man­
ufacturer who makes n products out of m resources. To make one 
unit of product j(j = 1,2, ... , n) it takes aij units of resource i 
for i = 1,2, ... , m. The manufacturer has obtained bi units of re­
source i(i = 1,2, ... , m) in hand, and the unit price of product j(j = 
1,2, ... , n) is Cj at current market. Therefore, the primal problem 
leads the manufacturer to find an optimal production plan that max­
imizes the sales with available resources. 

Next, we take the dual scenario. We assume that the manufacturer 
gets the resources from supplier. The manufacture wants to negotiate 
the unit purchasing price Yi for resources i(i = 1,2, ... , m) with the 
supplier. Therefore, the manufacturer's objective is to minimize the to­
tal purchasing price bTy in obtaining the resources bi(i = 1,2, ... , m). 
Since the marketing price Cj and the "product-resource" conversion ra­
tio aij are open information on market, the manufacturer knows that, 
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at least ideally, a "smart" supplier would like to change him as much 
as possible, so that 

In this way, the dual linear program leads the manufacturer to come 
up with a least-cost plan in which the purchasing prices are acceptable 
to the "smart" supplier. 

The foregoing scenarios not only provide economic interpretations 
of the primal and dual linear programming problems, but also explain 
the implications of the complementary slackness conditions. Assume 
that the manufacturer already has bi(i = 1,2, ... , m) units ofresources 
at hand. Then, 

1. the ith component of the optimal dual vector Yi represents the 
maximum marginal price that the manufacture is willing to pay 
in order to get an additional unit of resource i from the supplier; 

2. when the i resource is not fully utilized, i.e., aiX* < bi , where 
ai is the ith row of A and X* is an optimal primal solution, the 
complementary slackness condition requires that yi = 0, which 
means the manufacturer is not willing to pay a penny to get an 
additional amount of that resource; 

3. when the supplier asks too much, i.e., when Aj Y* 2: Cj" where Aj 
is the jth column of A, the complementary slackness condition 
requires that xj = 0, which means that the manufacture is no 
longer willing to produce any amount of product j. 

4.5 The Dual Simplex Method 

The dual simplex method developed by Lemke finds immense applica­
tions in sensitivity analysis to be discussed in the next chapter. This 
is applicable, when in the starting simplex table the optimal criteria 
is satisfied but the feasibility remains disturbed, while identity sub­
matrix is manipulated to exist in A, the coefficient matrix. Hence, 
observe immediately the objective function. Its name is justified be­
cause the rules for leaving and entering variables are derived from the 
dual problem but are used in the primal problem. 

Adopt the following procedure to find the optimal solution. 
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1. After introducing slack or surplus variable write the problem in 
the format 

opt Xo = CTX 
s.t. AX = b 

X ~O, 

where A contains the identity matrix as submatrix, and at least 
one of the bi in the right-hand side vector b = (bl' b2 , . .. ,bm)T 
is negative. 

2. Express the objective function in terms of nonbasic variables. 

Algorithm. 

Step 1. The leaving variable is decided to be the most negative entry of 
the solution column, i.e., 

Xr = min{Xi' Xi < O}. 
t 

Step 2. To decide the entering variable, we look for negative entries in 
row of leaving variable and find the ratio of these entries with 
the corresponding (Zj -Cj)'s in xo-row. Fix the entering variable 
by 

. { I Zj - Cj I j } mJn at ,ar < 0 . 

Step 3. When the entering and leaving variables are decided by Steps 
1 and 2, perform the simplex iterations to have the next table. 
If all the entries in solution column of the resulting table af­
ter the iteration assume nonnegative values, then stop otherwise 
continue iterations through Steps 1 and 2 till all the entries in 
solution column are nonnegative, i.e., the feasibility is attained. 
This is our optimal table. 

Remarks. 1. Use of the artificial variables should be avoided to pro­
duce the identity submatrix, while applying the dual simplex method. 

2. Suppose jth variable is qualified to leave the basis, but all the 
entries aJ, k = 1,2, ... , n are positive which means that no variable 
can enter the basis. In this situation the LPP has no feasible solution. 

3. The simplex method discussed in Chapter 3 is called primal 
simplex method. The basic difference between two methods is that 
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feasibility is at hand and we restore optimality in simplex method, 
while the process is reverse in dual simplex method. 

Example 5. Solve the following LPP by dual simplex method 

max Z = -4Xl - 6X2 - 18x3 

s.t. Xl + 3X3 2: 3 

X2 + 2X3 2: 5 

Xl, X2, X3 2: 0 

Also, using the optimal table of the above LPP, find the optimal solu­
tion of its dual. 

Observing the objective function we at once conclude that the op­
timal criteria will be preserved and hence dual simplex method is ad­
visable. Write the LPP in appropriate format as 

max z = -4Xl - 6X2 - 18x3 

s.t. - Xl - 3X3 + 81 = -3 

- X2 - 2X3 + 82 = -5 

all var 2: 0 

Now, we solve the problem step by step. In first iteration, note that 
most negative entry of the solution column is -5 and this corresponds 
to 82, and hence 82 is the leaving variable. Next look for negative 
entries in 82-row and compute 

This corresponds to X2, and hence X2 is the entering variable. 

Thus, 82 leaves and X2 enters and -1 is the pivotal element. Now, 
complete the second part of table exactly like simplex method, i.e., we 
perform row operations. 

Similarly, in second iteration, 81 leaves and X3 enters and -3 is 
the pivotal element. Divide by -3 to the entire 8l-row and write the 
resulting row as x3-row in next table. Further, perform row operations 
to complete this table. The third part of the combined table gives the 
optimal solution because all all Zj - Cj are nonnegative (it is a max 
problem). All computations are shown in the combined table given 
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below. 

B.V. Xl x21 X3 Sl S2 Soln 

z 4 6 18 0 0 0 

Sl -1 0 -3 1 0 -3 

f-- S2 0 8J -2 0 1 -5 

z 4 0 61 0 6 -30 

f-- Sl -1 0 8J 1 0 -3 

X2 0 1 2 0 -1 5 

z 2 0 0 2 6 -36 

X3 1/3 0 1 -1/3 0 1 

X2 -2/3 1 0 2/3 -1 3 

Optimal solution: Xl = 0, X2 = 3, X3 = 1, max value = -36. 

We have already mentioned that the solution of dual is kept below 
starting BFS as Cj;B- l . Hence the optimal solution of dual is 

Yl = 2, Y2 = 6, Yo = -36. 

Remarks. 1. Sometimes the optimal table of the LPP is not given 
but relative costs of appropriate number of variables are given. In this 
situation CBB- l is not available, we use the property mentioned in 
remark following Theorem 4. 

Suppose it is given that X3 and X2 are basic variables in optimal 
basis. Hence relative costs of these variables are zero. This prompts 
us that the third and second constraints will be satisfied as equality 
constrains id dual problem. The dual of the above problem is 

min z' = -3Yl - 5Y2 
subject - Yl ~ -4 

- Y2 ~-6 

- 3Yl - 2Y2 ~ -18 

Yl, Y2 2: 0 
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As the third and second constraints are satisfied as equality con­
straints, we have 

-Y2 =-6 

-3YI - 2Y2 = -18 

Solving these equations, it follows that YI = 2, Y2 = 6, and inserting 
these values in objective function, we get z' = -36. 

2. It is also possible to say that relative cost of Xl is 2 and X3 

is basic variable. The same property helps us to give the solution of 
dual, see Problem 18(b). 

Before winding up this section, we would like to point three facts: 

1. Solving an LPP in the standard form by the dual simplex method 
is equivalent to solving its dual using simplex method. 

2. Solving an LPP by the dual simplex method absorbs the same 
amount of efforts as the simplex method. 

3. The dual simplex method is very handy in sensitivity analysis 
with an additional constraint. This will be discussed in Chapter 
6. 

KKT conditions. Given a linear program in its standard form, vector 
X is an optimal solution to the problem if and only if there exist vectors 
Wand r such that 

1. AX = b, X 2:: 0 (primal feasibility) 

2. ATW + r = c, r 2:: 0 (dual feasibility) 

complimentary slackness 3. rTX = 0 

In this case W is an optimal solution of the dual problem. 

To justify Fact 1 and KKT conditions, let us solve the dual of 
the LPP solved in this section by dual simplex method. The dual in 
standard form is 

min z' = -3YI - 5Y2 

s.t. YI + rl = 4 

Y2 + 82 = 6 

3YI + 2Y2 + r3 = 18 
all var 2:: 0 
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The solution by simplex method is given in the following table: 

B.V. Yl Y2 1 Tl T2 T3 Soln 

z' 3 5 0 0 0 0 

Tl 1 0 1 0 0 4 

+--- T2 0 IT] 0 1 0 6 

T3 3 2 0 0 1 18 

z' 31 0 0 -5 0 -30 

T1 1 0 1 0 0 4 

Y2 0 1 0 1 0 6 

T3 IT] 0 0 -2 1 6 

z' 0 0 0 -3 -1 -36 

Sl 0 0 1 2/3 -1/3 2 

Y2 0 1 0 1 0 6 

Yl 1 0 0 -2/3 1/3 2 

In both tables the optimal value is same and note that the correspond­
ing optimal basic feasible solutions are 

Xl = 0 Tl = 2 

X2 = 3 T2 = 0 

X3 = 0 T3 = 0 

Sl = 0 Y1 = 2 

S2 = 0 Y2 = 6 

Obviously, TT X = 0 and sTy = 0, where X and Yare optimal solu­
tions of primal and dual, respectively. 

Problem Set 4 

1. Under what conditions a primal and its dual are same? 
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2. Is it possible to solve the example of Section 4.5 by using simplex 
method? If yes, what type of modification do you need? 

3. Write dual of the following LPP and find the optimal solution of 
primal by determining the optimal solution of dual. 

min Xo = -2XI - 3X2 - X3 

s.t. Xl + 2X2 ::; 1 

- Xl - X3 ::; 2 

Xl - X2 + 2X3 ::; 2 

all var ~ 0 

4. Solve the following LPP using two phase method 

mm Xo = -4XI + X2 

s.t. Xl + X2 ~ 1 

- 2XI + X2 = 2 

2XI + 3X2 ::; 7 

all var ~ 0 

and find the optimal solution of its dual. 

5. Write the dual program of the following problem 

mm Xo = 9XI + 6X2 - 4X3 + 100 

s.t. 3XI + 8X2 - 5X3 ~ 14 

5XI - 2X2 + 6X3 = 17 
2XI + 4X2 ::; 19 

Xl ::; 0, X2 ~ 0, X3 unrestricted 

6. Construct an example to show that both the primal and dual 
problem has no feasible solution. This indicates that the infea­
sibility of one problem does not imply the unboundedness of the 
other one in a primal-dual pair. 

7. Write dual of the following LPP and solve it by dual simplex 
method. From the optimal table of the dual find the optimal 
solution of the primal. 

max Xo = 2XI + 3X2 

s.t. - 2XI + X2 ~ 3 

3XI + X2 ::; 5 

XI,X2~O 
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8. With the help of the following LPP 

max Xo = Xl + 3X2 

s.t. 2XI + X2 2: 1 

3XI + 2X2 ::; 5 

Xl 2: 0, X2 unrestricted, 

verify that the second dual constraint will be an equality con­
straint. 

9. Let the primal be 

max Xo = CTX 

s.t. AX = b 

X 2: 0 

Suppose Y is an optimal solution of the dual. Then verify the 
queries: (a) If the kth constraint of the primal is multiplied 
by ). i- 0, how the solution of its dual is affected; (b) If ith 
constraint of the primal is changed by adding ). I- 0 times the 
kth constraint, then what will be the optimal solution of the 
dual? 

10. Let the optimal solution of the primal be degenerate. Then show 
that the dual problem has alternative optimal solution. Is con­
verse also true? if yes, prove it. 

11. Construct a primal in three variables which is self dual. 

12. Suppose a LPP in standard form has two columns that are pro­
portional with a positive constant of proportionality. Construct 
an equivalent LP with one fewer column. 

13. Suppose a standard LPP has a unique optimal solution. Does it 
follow that the dual has a non degenerate optimal solution? Does 
the converse hold? 

14. The relative cost of a nonbasic variable Xk in optimal table of 
the primal is the difference of the left- and right hand side of 
kth constraint in dual. Prove this statement and verify for the 
example in Section 4.3. 

15. Consider the data of Problem 8, Problem set 3. (i) Write the 
dual of the original; (ii) Find the optimal solution of the dual. 
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16. Find the optimal solution of the following LPP by solving its 
dual. The dual must be maximization problem and must be 
solved by two phase method 

min z = Xl + X2 

s.t. Xl + 2X2 = 4 

X2 ::; 4 

3XI - 2X2 ::; 0 

X2 2: 0, Xl unrestricted 

17. Consider the following linear program 

max z = Xl + 5X2 + 3X3 

s.t. Xl + 2X2 + X3 = 3 

2XI - X2 = 4 

Xl, X2, X3 2: 0 

If Xl and X3 are the basic variables in optimal solution of the 
primal, then find the optimal solution of its dual. 

18. Consider the linear program 

max z = 2XI + X2 + 2X3 - 3X4 

s. t. 3XI + X2 + X3 = 7 

2XI - X2 + X4 = 5 

Xl, X2, X3, X4 2: 0 

(a) Verify that the basic feasible solution (X2' X4), i.e., (0, 7, 0, 26) 
is not optimal solution of the LPP; 

(b) Determine the optimal solution of the associated dual lin­
ear program when it is known that the primal has optimal 
solution Xl = 7/3, X4 = 1/3, z = 11/3. 

19. Find the optimal solution of the following problem by dual sim­
plex method 

max z = 2XI - X2 + X3 

s.t. 2XI + 3X2 - 5X2 2: 4 

- Xl + 9X2 - X3 2: 3 

4XI + 6X2 + 3X3 2: 8 

Xl, X2, X3 2: 0 
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This is the problem where optimality and feasibility are dis­
turbed simultaneously in the simplex table. The dual simplex 
method is not applicable directly. Remove infeasibility first by 
applying a version of the dual simplex feasibility condition that 
selects Sl as the entering variable. To determine the entering 
variable, we need a nonbasic variable whose constraint coeffi­
cient in the Sl-row is strictly negative irrespective of maintain­
ing optimality because nonexistent at this stage. The procedure 
is repeated as necessary until the feasibility is satisfied. The 
next step is to pay attention to restore optimality by the sim­
plex method. This procedure is usually referred to as generalized 
simplex algorithm. 

The other method is to add the constraint Xl + X3 ~ M (M > 0 
large enough) so that no point of the original feasible region is 
eliminated. Use the new constraint as pivot row and take Xl 
as the entering variable. The next table will be amenable to 
solution by dual simplex method. 

20. Use the technique of the preceding problem to solve the following 
LPP. 

min z = -Xl + X2 

s.t. xl - 4X2 2: 5 

Xl - 3X2 ~ 1 

2XI - 5X2 2: 1 

XI,X2 2: 0 

Suggestion. See the effect of generalized simplex algorithm. To 
apply the second method add the constraint Xl ~ M and take 
Xl as the entering variable. 

21. Solve the following LPP by simplex method (avoid big-M or two 
phase method) and from the optimal table find the optimal so­
lution of its dual. 

min z = Xl + X2 + X3 - 3X4 + 6X5 + 4X6 

s.t. Xl + X2 + 3X4 - X5 + 2X6 = 6 

X2 + X3 - X4 + 4X5 + X6 = 3 
Xl + X3 - 2X4 + X5 + 5X6 = 5 

Xl, X2, X3, X4, X5, X6 2:: 0 
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Suggestion. Use the property given in remark following compli­
mentary slackness theorem. 

22. Find the dual problem of the following linear programming prob­
lem 

min z = CTX 

s.t. AX = b 

I! ~ X ~ u, 

where I! and u are lower and upper bounding vectors. 

23. Write the dual of the famous linear programming problem by 
Karmarkar 

min z=CTX 

s.t. AX = 0 

eTX = 1 

X ~O 

where e = (1,1, ... , 1f is a n-dimensional vector. 

24. The system 
AX = b, X ~ 0 

has no solution if and only if the system 

has a solution. 

Suggestion. This is referred to as the Farka's lemma. 



Chapter 5 

Advanced Linear 
Programming 

This chapter includes some advanced techniques such as the revised 
simplex method, bounded variable technique and decomposition prin­
ciple. These all are the modified extensions of the simplex algorithm 
to solve different types of linear programming problems. In the end, 
the interior point algorithm due to Karmarkar is introduced. 

5.1 The Revised Simplex Algorithm 

The simplex method was revisited for the purpose of increasing its 
computational efficiency. During simplex iterations a computer has to 
store a lot of data which is not required at later stage computations. 
The revised simplex method follows exactly the same path used in 
simplex method. The only difference is that next iteration is computed 
by row operations in simplex method, while in the revised simplex 
method next iteration is computed by inversion of the basis matrix. 
We do not find inverse directly but use product form to be explained 
shortly. 

In simplex method, the successive basis Band Bnext differ only 
in one column, resulting from interchanging the entering and leaving 
vectors. Besides formulas to compute various entries of any simplex 
table we need some more tools for the revised simplex method. Let 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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the LPP be in standard form 

max z = CTX 

s.t. AX = b 

X 2: 0, 

where X = (Xl, X2, ... , Xn)T, b = (bl , b2, ... ,bm)T, C = (CI, C2, ... , cn)1 
and the coefficient matrix A = (AI, A2 .... , An) = (aij)mxn. 

We calculate the inverse of basis matrix at each iteration using the 
inverse of basis matrix of the previous iteration. Remaining entries are 
computed with the help of this inverse matrix. That's why the revised 
simplex method is sometimes referred as the inverse matrix method. 

Suppose Ak enters and Br leaves the basis B=(BI,B2, ... ,Br, ... , 
Bm), where B i , i = 1 to m is some A j , j = 1,2, ... , n. Then, the new 
basis matrix is 

where 

Note that entering and leaving rules of the simplex method ensure that 
Bnext is nonsingular, and hence is a basis. From (5.1) 

Br = - (:1) BI - (:;) B2 - ... + (~~) Ak - ... - (:£) Bm 

= Bnext~' (5.2) 

where 

Let E be the m x m elementary matrix defined by 

where ei is the standard unit vector in ][{m. E differs with identity 
matrix in the rth column only. Thus, in view of (5.2), we have 
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This implies B-1 = E- 1 B;;e~t' and hence, 

B -1 EB-1 
next - , (5.3) 

where B-1 is the inverse of previous basis matrix, designed as current 
basis matrix. 

Now, we discuss the computational procedure. 

Standard form-I. If a LPP in standard form is of the type that 
the coefficient matrix A after introducing slack and surplus variables 
contains identity submatrix, then we classify this as standard form-I, 
see Section 3.3. 

First, we workout an example for standard form-I. Before all this, 
we recollect how different entries of a simplex table are computed using 
various formulas. 

Simplex Table 

Basis Xl X2 Xj Xn Solution 

Z Zl - C1 Z2 - C2 Zj - Cj Zn - en CJ;XB 

X B B-1A1 B-1A2 B-1A· 
J 

B-1An B-1b 

In the above table XB is the basic vector and B is the corresponding 
basis matrix. Also, in view of Proposition 1 (Section 3.2) and relation 
(5.3), one has 

Zj-Cj=CJ;B- 1A j -Cj, j=1,2, ... ,n. 

Note. We have noticed that simplex method (see Section 3.2) re­
quires the computing of a whole new table at each iteration. But much 
of the information, particularly in the body matrix is not required at 
all. This saves space in computer memory and time of computation is 
reduced. What we need are the following items. 

1. Relative costs Zj - Cj of all nonbasic variables (this helps in de­
ciding the entering variable) 

2. Column vectors a j for most positive or most negative nonbasic 
(max or min problem) variable (this helps in deciding the leaving 
variable) 
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3. All entries of the solution column, i.e., B-lb, and the objective 
function value !(XB). 

At each iteration to find the above three items, one needs B-1 . 

Direct methods of finding B-1 are not used. A simple way of doing is 
to use formula (5.3). 

Example 1. Solve the following LPP by revised simplex method. 

max z = 3Xl - X2 + X3 

s.t. Xl + X2 + X3 :S 10 

- X2 + 2X3 :S 2 

3Xl - 2X2 + 2X3 :S 0 

Xl, X2, X3 2: 0 

Write the LPP in standard form-I as 

max z = 3Xl - X2 + X3 

s.t. Xl + X2 + X3 + 81 = 10 

- X2 + 2X3 + 82 = 2 

3Xl - 2X2 + 2X3 + 83 = 0 

all var 2: 0 

The coefficient matrix of the above system is 

The starting table is just the simplex format, see Table 1. 

Table 1 

BV Xl 1 X2 X3 81 82 83 Soln 

z -3 1 -1 0 0 0 0 

81 1 1 0 0 10 

82 0 0 1 0 2 

+- 83 W 0 0 1 0 
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Iteration 1. Here Xl (having most negative relative cost), i.e., Al enters and 
83, i.e., A6 leaves the basis B and hence 3 is the pivot element. 
From (5.2), 

( 1 l)T 
~ = -3,0, 3 

The easy way of getting ~ is to replace pivot by l/pivot and then 
multiply remaining entries of the pivot column (which contains 
pivot element) by -l/pivot. The third basic variable is leaving 
and hence, by the definition 

E = [~ ~ -~31 
° ° 1/3 

Since B = I, causes B-1 = I, and now using the formula B;:e~t = 
EB- l , we get 

The new basis is 81,82, Xl and nonbasic variables are X2, X3, 83. 

Now, perform the operations in the following sequence. 

(i) Enter B;:e~t below the starting BFS. 

(ii) Calculate Zj - Cj for each nonbasic variable and write in 
the z-row. For this purpose, it is convenient to compute 
the quantity C~B;:e~t' called the simplex multiplier and is 
denoted by II. Thus, 

[0
1 °1 -10/31 

II = (0,0,3) 

° ° 1/3 

= (0,0,1) 

The simplex multiplier computed at each iteration is in­
serted in z-row below the starting BFS. 

The relative cost of the nonbasic variables are 

the relative cost of X2 =(0,0,1)(1, -1, -2f + 1 = -1; 

the relative cost of X3 =(0,0,1)(1,2, 2f - 1 = 1. 
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(iii) Since the relative cost of X3 is positive, we do not compute 
its coordinate vector Q3 to be mentioned in the body ma­
trix. The relative cost of 83 is also positive (see simplex 
multiplier) but its coordinate vector will automatically be 
computed every time as it is placed at third position in the 
starting BFS. The only thing we do calculate is the coordi­
nate vector for X2 as 

(iv) The solution column is 

(v) The objective value is C~XB = C~B-lb = (0,0,1)(10,2, O)T = 
0. 

Incorporate these entries to complete Table 2 as follows 

Table 2 

BV Xl X2 ! X3 81 82 83 Soln 

z 0 -1 1 0 0 1 0 

t-- 81 @m 1 0 -1/3 10 

82 -1 0 1 0 2 

Xl -2/3 0 0 1/3 0 

Iteration 2. Now, X2 (most negative) enters and 81 leaves. The pivot is 5/3. 
Hence 

( 3 3 2)T 
~ = 5' 5' 5 
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In this iteration, the first basic variable in the sequence 81,82, Xl 

is leaving, and hence the elementary matrix 

[
3/5 0 0] 

E = 3/5 1 0 

2/5 0 1 

Again, use B;;e~t = EB~~rent' see (5.3), to have 

[
3/5 0 0] [1 0 -1/3] [3/5 

B;;e~t = 3/5 1 0 0 1 0 = 3/5 

2/5 0 1 0 0 1/3 2/5 

o -1/5] 
1 -1/5 

o 1/5 

Insert this B;;e~t below the starting BFS, and all other entries 
needed are calculated on the pattern of completing Table 2 as 

[
3/5 0 -1/5] 

II = (-1,0,3) 3/5 1 -1/5 = (3/5,0,4/5), 

2/5 0 1/5 

Z3 - C3 = (3/5,0, 4/5f (1,2,2) - 1 = 6/5 

Inserting these entries, we have Table 3. 

Table 3 

BV Xl X2 X3 81 82 83 Soln 

Z 0 0 6/5 3/5 0 4/5 6 

X2 3/5 0 1/5 6 

82 3/5 1 1/5 8 

Xl 2/5 0 7/15 4 

Since all Zj -Cj entries in z-row are 2 0, and hence the optimality 
has reached. Hence 

optimal solution: Xl = 4, X2 = 6, X3 = 0; max value Z = 6. 
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Standard form-II. If a LPP in standard form is of the type that 
inclusion of artificial is necessary to get the identity submatrix of coef­
ficient matrix A after introducing slack and surplus variables then we 
classify this as standard form-II, see Section 3.3. 

Let us solve a problem concerning standard form-II. 

Example 2. Solve the following LPP by revised simplex method. 

max Xo = Xl + 2X2 + 3X3 

s.t. Xl + X2 + 2X3 :::; 16 

2Xl + X2 + 4X3 2': 24 

Xl + X2 + X3 2': 10 

Xl, X2, X3 2': 0 

It is evident that the problem in standard form will not contain 
identity submatrix. First, we write the standard form-II as 

max Xo = Xl + 2X2 + 3X3 

s.t. Xl + X2 + 2X3 + 81 = 16 

2Xl + X2 + 4X3 - 82 + R2 = 24 

Xl + X2 + X3 - 83 + R3 = 10 

all var 2': 0 

We use the revised simplex method in reference to phase-two method, 
and for Phase-I solve the auxiliary LPP to find the basic feasible so­
lution of the system 

mm r = R2 + R3 

s.t. Xl + X2 + 2X3 + 81 = 16 

2Xl + X2 + 4X3 - 82 + R2 = 24 

Xl + X2 + X3 - 83 + R3 = 10 

all var 2': 0 
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Construct the starting table (in simplex format) as 

BV Xl X2 X3 1 82 83 81 R2 R3 Soln 

r 3 2 5 -1 -1 0 0 0 34 

0 0 0 0 0 0 -1 -1 0 

81 2 1 0 0 16 

+- R2 ~ 0 1 0 24 

R3 1 0 0 1 10 

Iteration 1. X3 (A3) enters and R2 (A7) leaves. Hence ~ = (-1/2,1/4, -1/4)T 
and 

Note that B;;e~t = EB- 1 = E, because starting B-1 = I. Insert 
B;;e~t below the starting BFS, and compute the relative cost of 
all nonbasic variables using C~B;;e~tAj - Cj. Here, we do not 
compute simplex multiplier to be inserted in r-row below the 
starting basis in this case, because the objective function is not 
expressed in terms of nonbasic variables (see the first iteration 
of the auxiliary LPP). Next, calculate B;;e~tAj only for nonbasic 
with most positive relative cost. This gives Table 4. 

Table 4 

BV Xl x21 X3 82 83 81 R2 R3 Soln 

r 1/2 3/4 0 1/4 -1 0 -5/4 0 4 

81 1/2 1 -1/2 0 4 

X3 1/4 0 1/4 0 6 

f- R3 
1
3/ 4

1 
0 -1/4 1 4 
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Iteration 2. In next iteration, X2 enters and R3 leaves. As usual, 

~ = (-2/3, -1/3, 4/3f, and 

E ~ [: 
0 -2/3] 
1 -1/3 

0 4/3 

Hence 

1 o -2/3] 1 -1/2 

~] B-1 EB-1 0 1 -1/3 0 1/4 next - current -

0 o 4/3 0 -1/4 

1 -1/3 -2/3 

0 1/3 -1/3 

0 -1/3 4/3 

Insert latest B;:e~t below the starting BFS, and compute the 
remaining entries which are needed to write Table 5 as 

Table 5 

BV Xl X2 X3 82 83 81 R2 R3 Soln 

r 0 0 0 0 0 0 -1 -1 0 

81 -1/3 1 -1/3 -2/3 4/3 

X3 1/3 0 1/3 -1/3 14/3 

X2 2/3 0 -1/3 4/3 16/3 

Table 3 is the optimal table of Phase-I. For Phase-II, we do not 
need R1 and R2 . The coordinate vectors of 82 and 83 are just 
negative of R2 and R 3 , respectively. 

The initial table of Phase-II (Table 6) is obtained as usual but the 
positions of R2 and R3 are occupied by 82 and 83, respectively, 
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i.e., the starting basis variables are taken in the order 81, 82, 83. 

Table 6 

BV Xl X2 X3 81 82 83 1 Soln 

Xo 4/3 0 0 0 -1/3 -5/3 74/3 

-1 -2 -3 0 0 0 0 

f- 81 -1/3 0 0 1 1/3 
1 2/ 3 1 

4/3 

X3 1/3 0 1 0 -1/3 1/3 14/3 

X2 2/3 1 0 0 1/3 -4/3 16/3 

Iteration 3. Here, 83 enters and 81 leaves. e = (3/2, -1/2, 2f and 

[ 3/2 0 

~] E= -~/2 1 

0 

Hence 

[ 3/2 0 0] [1 -1/3 -2/3] 
B-1 EB-1 

-;2 1 o 0 1/3 -1/3 next - current -

0 1 0 -1/3 4/3 

[ 3/2 -1/2 ~1] -;2 1/2 

-1 

Note that in phase-II, the starting BFS is (81, X3, X2), and inverse 
of basis matrix corresponding to this BFS is contained below 
81, R2 , R3 in body matrix of Table 3. The column vectors cor­
responding to 82 and 83 are just negative of the column vectors 
for R2 and R3, respectively. Insert latest B;;e~t below 81,82,83. 

However, the columns below 82 and 83 will be negative of the 
second and third column of B;;e~t. 
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The solution column is 

-1/2 -1 

1/2 0 

1 0 

and the objective function value is C~XB = C~B-lb = (0,3,2)(2,4, 8f = 
28. 

Also, compute Zj - Cj for each variable. Insert all these computa­
tions to have Table 7. 

Table 7 

BV Xl X2 X3 Sl S2 S3 Soln 

Xo 3/2 0 0 5/2 1/2 0 28 

S3 3/2 1/2 1 2 

X3 -1/2 -1/2 0 4 

X2 2 1 0 8 

Since all Zj - Cj 2: 0 in above table, this ensures that the optimality 
has reached and the optimal solution is 

Xl = 0, X2 = 8, X3 = 4, Z = 28. 

Remarks. 1. In every simplex table or revised simplex table, if any 
variable Xi is in the BFS, then entry at the intersection of Xi-row and 
xi-column is unity and all the remaining entries of the column vector 
are zero (including xo-row entry). 

2. Like revised simplex method, there is revised dual simplex 
method, see Problem 4, Problem set 4. The revised dual simplex 
method proceeds like dual simplex method. The leaving and entering 
variables rules are same for both the methods. The only difference is 
that in revised dual simplex method, we compute B-1 and relative 
cost of only nonbasic variables at each iteration till optimal table is 
received. Note that here too the latest B- 1 is always inserted below 
the starting basis. 
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5.2 Complexity of The Simplex Algorithm 

The computational complexity of the simplex algorithm depends upon 
the total number iterations and the number of elementary operations 
required at each iteration. Different implementation procedures result 
in different complexity. Variants of the simplex method were designed 
to achieve better computational performance. 

Following the computational procedure in Chapter 3, it is not diffi­
cult to estimate that Dantzig's original simplex method requires about 
m(n-m)+n+ 1 multiplications and m(n-1 + 1) additions at each iter­
ations. While the revised simplex method requires m(n-m)+(m+1)2 
multiplications and m( n + 1) additions at each iteration. The conclu­
sion is that both of them are of order O(mn). 

How many iterations are required? Each iteration of the simplex 
algorithm or revised simplex algorithm stems from one extreme point 
to an adjacent extreme point. For a linear program in its standard 
form the feasible region contains at most C(n, m) extreme points that 
an algorithm could possibly visit. Since 

n' (n)m C(n, m) = '( ~ )' 2: - 2: 2m whenever n 2: 2m. 
m. n m. m 

it is quite plausible to require an exponential order of iterations. This 
fear of exponential order was confirmed by some worst-case examples 
specifically designed for the simplex method and its variants. 

The first such example is given by V. Klee and G. Minty in 1971 
to show that Dantzig's simplex method traverse all (2n - 1) extreme 
points to reach at the optimal solution. For 0 < 6 < 1/2, this LPP is 

max Z = Xn 

s.t. 0:::; Xl :::; 1 

6Xi-1 :::; Xi :::; 1 - 6Xi-l, i = 2,3, ... n 

Xi 2: 0, i = 1,2, ... ,n 

Obviously, the origin point is a basic feasible solution. If we start with 
the origin and apply the minimum ratio rule to the entering nonbasic 
variable, the simplex method takes 2n - 1 iterations to visit every 
extreme point of the feasible region. For the case n = 2, Fig. 5.1 
illustrates the fact. 

Variants of the simplex method may change the entering and leav­
ing rules to avoid traversing every extreme point. But different bad 
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X3 = (0,1) 

X2 = (1, 1 - 15) 

Xl = (1,15) 

~-------------------------------Xl 
xO = (0,0) 

Figure 5.1 

examples were reported for different variants. Any way we have to be­
lieve that the simplex method and its variants have exponential com­
plexity. 

However, bad examples rarely happen in real-world problems. It 
has been observed that more or less all real-life problems require the 
simplex method to take 4m to 6m iterations in completing two phases. 
This explains well the efficiency of the simplex method in practice, 
although it is of exponential complexity in theory. 

5.3 Bounded Variable Technique 

Consider the LPP in which the variables Xj are bounded by their lower 
bounds Rj and upper bound Uj. 

max z = CTX 

s.t. ailxl + ai2X2 + ... + ainXn 2:, =, ~ bi 

Ri ~ Xj ~ Uj, i = 1,2, ... , m, j = 1,2, ... , n 

Since Xj 2: Rj ==} Yj = Xj - Rj 2: 0, it follows that the lower 
bounds may be converted to 0 just replacing Xj by Yj + Rj . Note that 
o ~ Yj ~ Uj - Rj and the simplex method is not applicable directly. 
Such type of LPP in which some or all the variables are having lower 
bound 0 and upper bound a finite number are solved using bounded 
variable technique described as follows: 
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Assume that we have BFS of the above system which satisfies the 
upper bounds. Note that no upper bound is mentioned for slack or 
surplus or artificial variable, and is taken at infinity. Suppose that a 
BFS 

is available by introducing slack, surplus and artificial variables (if 
necessary). Suppose Xj is the nonbasic variable with most negative 
relative cost Zj - Cj. Then Xj enters. To decide the leaving variable, 
the following conditions are desired. 

(i) The next solution must be BFS; 

(ii) All basic variables in next BFS must satisfy the upper bound 
limits. 

BV Xl or A1 Xj or Aj Soln 

Z Zl - C1 Zj - Cj !(XB) 

Xl or A1 oJ 
1 

Xr or Ar a 1 
r 

Xm or Am a 1 
m 

The basis matrix corresponding to X Bi is given by (see above table) 

where Ai are the columns of the coefficient matrix A and a{ is the 
coordinate vector of the column Aj of A with respect to B, see Chapter 
3. 

A· = a j A1 + ... + a j A + ... + a j A J 1 r r m m· 

We have assumed that Xj enters (column Aj) the basis and Xr (column 
Ar) leaves. The new basis is 
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So far, we are performing simplex iterations. The value of the basic 
variables are given by 

(5.4) 

In the above, the leaving variables x Br should be determined so that 
the desired conditions (i) and (ii) are satisfied. 

From the theory of the simplex method, we know that the next 
solution will be a BFS if the leaving variable is decided by the minimum 
ratio rule, i.e., 

O X Br . { X Bi j o} * 1 = -, = mln -" (Xi > = X Br = Xj. 
(X? (X] 

~ 

(5.5) 

The variable enters at level 01 . This satisfies (i), but we have the 
additional condition that no variable must exceed its upper limit. This 
is achieved by (5.4) as 

* j < XBi = XBi - (XiXj _ Ui· (5.6) 

If (Xi 2: 0, then condition (ii) is met since XBi :S Ui. In case (Xi < 0, 
then the bound may exceed. The relation (5.6) holds true in this 
situation, provided 

Ui - XBi ' 
Xj :S j' for all those i such that (Xi < O. 

-(Xi 

This means that 

(5.7) 

Thus, Xj should not exceed its upper limit, i.e., 

(5.8) 

From (5.6), (5.7) and (5.8), it follows that the largest value of Xj which 
meets (i) and (ii) is 

0= min{01,02,Uj}' 

Now, we discuss all three possibilities: 

(5.9) 

Situation 0 = 01 , since minimum is 01 and Xj enters at 01 and 
01 :S O2 and 0 :S Uj, the conditions (i) and (ii) will be met. Thus, 
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iteration after deciding leaving and entering variable is nothing but 
exactly simplex iteration. 

Situation () = ()2 ensures that minimum in (5.9) is ()2. Hence, 
()l ~ ()2 and x j enters at ()2 level such that 

Ur - XBr j 0 ----:.---'-, a r < . 
-a? 

Since, ()l ~ ()2, the solution may not be a basic solution. The next 
solution will be a basic solution provided Xj enters at ()l level. It can 
be made basic by the substitution 

Xr = U r - x~, 0 :S x~ :S U r · (5.10) 

The substitution (5.10) means: Replace Xr by x; and the column of x; 
will be just negative of the column of X r . Transfer U r times Xr column 
to the solution column. We are not going into details as this will give 
BFS. 

Situation () = Uj implies that Xj enters at its upper bound. To 
make Xj at its upper bound, make the substitution 

In fact Xj does not enter the basis but remains nonbasic at its upper 
limit Uj. Since, () = Uj < ()l, the new solution will not be basic. If it 
enters at ()l, then the new solution will be BFS. 

What we have done theoretically so far will be more clear by solving 
a numerical problem. 

Example 3. Solve the following LPP 

max z = 4XI + 2X2 + 6X3 

s.t. 4XI - X2 - 3X3 :S 9 

- Xl + X2 + 2X3 ~ 8 

- 3XI + X2 + 4X3 :S 11 

1 :S Xl :S 3, 0 :S x2 :S 5, 0 :S X3 :S 2 

Since the variables are bounded, we shall find the optimal solution 
by bounded variable technique. First, we make lower bounds at 0 level. 
Replace Xl by YI + 1, and hence 0 :S YI :S 2. By inspection, we see 
that two phase method is convenient to apply. 
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Phase-I. To find initial BFS, solve the auxiliary problem 

mm r= R2 

s.t. 4Y1 - X2 - 3X3 + 81 = 5 

- Y1 + X2 + 2X3 - 82 + R2 = 9 

- 3Y1 + X2 + 4X3 + 83 = 14 
o :S Y1 :S 2, 0 :S X2 :S 5, 0 :S X3 :S 2 

81,82,83, R2 2': 0 

The initial table is 

Table 8 

BV Y1 X2 X3 82 81 R2 83 Soln 

z -1 1 2 -1 0 0 0 9 

81 4 -1 -3 0 1 0 0 5 

R2 -1 1 2 -1 0 1 0 9 

83 -3 1 4 0 0 0 1 14 

In Table 8, X3 enters. To decide the leaving variable compute 

01 = min g, ~4} = ~ 

O2 = min { 0035 } = 00, upper bound on 81 

U3 = 2, upper bound on entering variable X3 

Thus, 0 = min{Ol' O2 , U3} = U3 = 2. This is the case 0 = Uj. Thus, X3 

enters at its upper bound as nonbasic variable. Use the relation 

X3 = U3 - xA, 0 :s xA :s 2. 

In Table 8, change X3 to x§ with column of xA is just negative of the 
column of X3. In fact X3 does not enter into the basis but it remains 
as nonbasic at its upper bound, see Table 9. 

Table 9 

BV Y1 X2 xl 
3 82 81 R2 83 Soln 

z -1 1 -2 -1 0 0 0 5 

81 4 -1 3 0 1 0 0 11 

R2 -1 1 -2 -1 0 1 0 5 

83 -3 1 -4 0 0 0 1 6 
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Note that all entries of the solution column have been changed. For 
illustration, see z-row 

If we substitute 2-x§ for X3, we get the z-row of Table 2. Similarly, by 
writing constraints of the constraint matrix, we compute other entries 
of the solution column. 

In Table 9, X2 enters. To decide leaving variable, compute 

81 = min { ~, ~ } = 5 

82 = min { ~(-=-:)1 } = 00, 

U2 = 5 upper bound on X2 

8 = min{81 , 82 , U2} = 5 

upper bound on 81 

The minimum 8 is for 81 or U2. Obviously, we prefer 81 , and R2 
leaves. Make simplex iteration. This is the end of Phase-I and we 
discontinue with R 2-column, see Table 10. 

Table 10 

BV Y1 X2 xl 
3 82 81 831 Soln 

z 

81 3 0 1 -1 1 0 16 

X2 -1 1 -2 -1 0 0 5 

83 -2 0 -2 1 0 1 1 

Phase-II. Rewrite the fresh objective function as 

max z = 4(Y1 + 1) + 2X2 + 6(2 - x§) = 4Y1 + 2X2 - 6x§ + 16. 
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Insert this objective function in Table 10 to get the next table 

Table 11 

BV Yl X2 xl 
3 82 81 83 Soln 

z -6 0 2 -2 0 0 26 

81 3 0 1 -1 1 0 16 

X2 -1 1 -2 -1 0 0 5 

83 -2 0 -2 1 0 1 1 

In Table 11, Yl enters. To decide leaving variable, we compute 

(it = min {136 } = 136 

(}2 = min { 5 ~ 5 , 00 ; 2} = 0 

Ul = 2 

The minimum 0 corresponds to the variable X2. Thus, Yl enters 
and X2 leaves. This is the case () = ()2. To achieve this we just make 
simplex iteration and get Table 12. 

Table 12 

BV Yl X2 xl 
3 82 81 83 Soln 

z 0 -6 14 4 0 0 -4 

81 0 3 -5 -4 1 0 31 

Yl 1 -1 2 1 0 0 -5 

83 0 -2 2 3 0 1 -9 

Make X2 at its upper bound by the substitution X2 = U2 - x~, 0 :::; 
x~ :::; 5. For example Yl-row gives 

Yl - X2 + 2x§ + 82 + 081 + 083 = -5 

Since U2 = 5, make the substitution 5 - x~ for X2 in above constraint 
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equation to have 

Table 13 

BV Yl xl 
2 

xl 
3 82 81 83 Soln 

Z 0 6 14 4 0 0 26 

81 0 3 -5 -4 1 0 16 

Yl 1 1 2 1 0 0 0 

83 0 -2 2 3 0 1 1 

Table 13 is the optimal table. The optimal solution is 

Yl = 0 ==? Xl - 1 = 0 that is Xl = 1 

x~ = 0 ==? 5 - X2 = 0 that is X2 = 5 

x~ = 0 ==? 2 - X3 = 0 that is X3 = 2 

z = 26 
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Remark. If there is no negative entry in entering column, then 82 = 00. 

5.4 Decomposition Principle 

For solving problems of large size, it is not advisable to use simplex 
or revised simplex algorithm. For such problems, Dantzig and Eolfe 
proposed decomposition algorithm. 

If the LPP has the following special structure it is possible to obtain 
the optimal solution by applying the Decomposition principle. 

opt f(X) = cfxl + C!X2 + ... + C;Xr 
s.t. AlXl + A 2 X 2 + '" + ArXr = Do 

BlXl = Dl 

B 2X 2 = D2 

BrXr = Dr 
X l ,X2, ... ,Xr 2 0, 

(5.11a) 

(5.11b) 

(5.11c) 

where Aj = mo x nj, B j = mj x nj, D j = column vector having mj 
components j = 0,1, ... , r, C j and Xj are column vectors having nj 
components, j = 1,2, ... , r. 



152 CHAPTER 5. ADVANCED LINEAR PROGRAMMING 

Algorithm. 

Step 1. Consider the r subsidiary constraint sets 

BjXj = D j 
(5.12) 

Xj :2 0, j = 1,2, ... ,r 

Let SFj b(~ the sets of feasible solutions of the system (5.12), 
which are bounded convex sets. Let h j be the number of vertices 
f j j j . S o SFj , denoted by Xl,Xi, ... ,Xh , Then, any pomt Xj E Fj 

J 

can be written as 

/-L{ + /-L~ + . . . + /-L{ = 1 
J 

/-L{:2 O,k = 1,2, .. . ,hj ; j = 1,2, ... ,r 

(5.13a) 

(5.13b) 

(5.13c) 

The vertices xt, k = 1,2, ... ,hj for each SFj can be obtained by 
solving (5.12) for j = 1,2, ... ,r. 

Step 2. Substitute (5.13a) to (5.13c) in (5.11b) and (5.11c) and eliminate 
the subsidiary constraint sets from the given problem to have the 
following equivalent form. 

hi h2 hr 

opt J(X) = Cr L J1,1X~ + cT L fL~Xf + ... + C; L /-LkXk 
k=l k=l k=l 

(5.14a) 
hi h2 hr 

s.t. Al L/-L1X~ + A2 L/-L~Xf + ... + Ar L/-LkX;; = Do 
k=l k=l k=l 

(5.14b) 

(5.14c) 
k=l k=l k=l 

Jl1 :2 0, j = 1,2, ... ,r, k = 1,2, ... , hj (5.14d) 

The vertices Xf, xg, ... , X~. are known from the solution of 
J 

BjXj = D j , j = 1,2, ... r, C l , C2, ... , Cr and AI, A2, ... , Ar are 
known as problem data. The unknowns in (5.14b) to (5.14d) are 

a~). Hence /-L1 are the new decision variables of the modified 
problem (5.14). 
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Step 3. Solve the LPP in (5.14) by the standard techniques available in 
the literature and find the values J-l{. 

Let the optimum solution be given by J-l~j. Substitute J-l~j,s value 
in (5.13a) and obtain the optimum solution X;, j = 1,2, ... , r 
of the original problem. The optimum solution of the problem is 

X* = (X;,X;, ... ,x;f. 

Example 4. (a) Write the following problem amenable to Decompo­
sition principle; (b) Also, find its optimal solution? 

max f = Xl + 2X2 + 2X3 + 3X4 

s.t. Xl + X2 + X3 + X4 :::; 100 

Xl + X3 :::; 50 

Xl + X2 :::; 60 

Xl - 2X2 :::; 0 

- 2X3 + X4 :::; 0 

Xi ~ 0, i = 1,2,3,4. 

The given problem can be written as 

where 

Al= [: ~ 1 
Cl = [~l ; 
D2 = [0] 

max f(X) = cfxl + cfx2 

s.t. AlXl + A2X 2 = Do 

BlXl = Dl 
B 2X 2 = D2 
X l ,X2 ~ 0, 

A2 = [: ~l; B l = [: ~2l 
C2 = [~l ; Do= [~~l ; 

Xl = [:J X, = [::] 

B2 =[-21]; 

Dl = [~] ; 
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X3 = 100 

- 2X3 + X4 = ° 

Iteration 1. Consider the subsidiary constraints sets BjXj = Dj , j = 1,2 

The vertices of 

X (l) -
2 - xll) ~ [:~] • 
(2) _ [100]. (2) _ [100] X 2 - ,X3 -° 200 

Hence, any point Xl E SFl and X 2 E SF2 can be given as 

I [0] I [0] I [40] Xl = ILl ° + IL2 60 + IL3 20 

x, ~ ~l [:] + ~l [~~~] + ~l [l~O] 
IL~ + IL~ + IL~ = 1 

ILi + IL~ + IL~ = 1 

ILL IL~ '2 0, k = 1,2,3 

Iteration 2. Putting the values of Xl and X 2 in the objective function and 
the first constraint of the problem (amenable to decomposition 
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principle) and including restrictions on fL{, we have 

max 

s.t. 

fLi + fL~ + fL~ = 1 

fLi + fL~ + fL~ = 1 
all var ~ 0 

or, in simplified form 

max f = 120fL~ + 80fL~ + 800fL~ + 200fL~ 
s.t. 60fL~ + 60fL~ + 300fL~ + 100fL~ :S 100 

40fL~ + 100fL~ + 100fL~ :S 50 

fLi + fL~ + fL~ = 1 

fLi + fL~ + fL~ = 1 

fLk, fLk, k = 1,2,3 

The optimal solution of the above problem is 

fLi = 1, fL~ = 0, fL~ = 0, fLi = 2/3, fL~ = 1/3, fL~ = 0; f = 800/3. 

Inserting these values for the expressions of Xl and X 2 , we have 

X 1 ~ [::] [ ~ ] _ X, ~ 0, X, ~ 0; 
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[::] ~ ~ [~~~] ~ [~~~;:] ===} X3 = 100/3, X4 = 200/3. 

Thus, the optimal solution is 

Xl = 0, X2 = 0, Xl = 100/3, X4 = 200/3, f = 800/3. 
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5.5 Karmarkar Interior Point Algorithm 

With an increase in the number of variables or constraints causes an 
increase in multiplications and additions required for any iteration. 
The complexity of the simplex method is exponential, see Section 5.2. 
In 1984, Karmarkar proposed an algorithm named as interior point 
algorithm to solve large-scale linear programming problems efficiently. 
The beauty of the approach is that it gives polynomial time complex­
ity for the solution. This is remarkably an excellent improvement over 
the simplex method. However, the analysis is not simple and requires 
projective geometry. In the simplex method, we move from a vertex 
to another vertex to find the vertex where the optimal solution lies. 
For the large LP problems the number of vertices will be quite large 
and this makes the simplex method very expensive in terms of compu­
tational time. It has been reported that the Karmakar's algorithm 
solved problems involving 150,000 variables and 12,000 constraints 
in one hour while the simplex method requires 4 hours for solving 
a smaller problem with 36,000 variables and 10,000 constraints. In 
fact it was found that the Karmakar's algorithm is 50 times faster 
than the simplex method. 

The algorithm is based on the two observations: 

1. If the current solution is near the center of the polytope, we 
can move along the direction of steepest descent to reduce value 
of f by maximum amount. From Fig. 5.2, it is clear that the 
current solution can be improved substantially by moving along 
the steepest direction if it is near the center (point 2) but not 
near the other points (point 1) and (point 3). 

2. The solution can always be transformed without changing the 
nature of the problem so that the current solution lies near the 
center of the polytope. 

The Karmarkar algorithm requires the LPP in a specific format: 

min f=CTX (5.15a) 

s.t. AX=O (5.15b) 

eTX = 1 (5.15c) 

X 2: 0 (5.15d) 

where X = (Xl,X2, ... ,xn )T, C = (Cl,C2, ... ,cn )T, e = (1,1, ... ,1)T 
and A is a m x n matrix. 
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2 

L----------------------------------Xl 

Figure 5.2 

A feasible solution vector X of the above problem is defined to 
be an interior solution if every variable Xi > O. Here the feasible 
domain is bounded, and hence a polytope. A consistent problem in the 
Karmakar's standard form certainly has a finite infimum. Karmarkar 
made two assumptions for his algorithm: 

(AI) Ae = 0, so that Xo = (lin, lin, ... ,l/nf is an initial interior 
solution. 

(A2) The optimal objective value of the this problem is zero. 

Conversion of a LPP in required form. Let the LPP be given 
in standard form: 

mm f=CTX 

s.t. AX = b 
X 2: 0 

(5.l6a) 

(5.l6b) 

(5.l6c) 

Our objective is to convert this problem into the standard form 
(5.15) required by Karmarkar, while satisfying the assumptions (AI) 
and (A2). 

The key feature of the Karmakar's standard form is the simplex 
structure, which of course results in a bounded feasible region. Thus, 
we have to regularize problem (5.16) by adding a bounding constraint 

eT X = Xl + X2 + ... + Xn :s: Q 

for some positive integer Q derived from the feasibility and optimality 
considerations. In the worst case, we can choose Q = 2L , where L is 
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the problem size (number of variables). If this constraint is binding 
at optimality with objective value _20 (L), then we can show that the 
LPP has unbounded solution. 

By introducing a slack variable x n +1, we have a new linear program 

min J=CTX (5.17a) 

s.t. AX=b (5.17b) 

eTX +xn+1 = Q (5.17c) 

X ~ 0, xn+1 ~ 0 (5.17d) 

In order to keep the matrix structure of A undisturbed for sparsity 
manipulation, we introduce a new variable X n +2 = 1 and rewrite the 
constraints of (5.17) as 

AX - bXn +2 = 0 

eTX + x n+1 + QXn+2 = 0 

eT X + Xn+1 + Xn+2 = Q + 1 

X ~ 0, Xn+1, Xn+2 ~ 0 

(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 

Note that the constraint Xn+2 = 1 is direct consequence of (5.18b) and 
(5.18c). To normalize (5.18c) for the required simplex structure, we 
apply the transformation 

Xj=(Q+l)Yj, j=I,2, ... ,n+2. 

In this way, we have an equivalent linear program 

mm J = (Q + I)CT y 
s.t. AY - bYn+2 = 0 

eTy + Yn+1 - QYn+2 = 0 

eTy + Yn+1 + Yn+2 = 1 

Y ~ 0, Yn+1, Yn+2 ~ 0 

(5.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

(5.1ge) 

The problem (5.19) is now in the standard form required by the 
Karmarkar algorithm. In order to satisfy the assumption (AI), we 
may introduce an artificial variable Yn+3 with a large cost coefficient 
M as designed in big-M method and consider the following problem 
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mm f = (Q + 1)CT y + MYn+3 
s.t. AY - bYn+2 - [Ae - b]Yn+3 = 0 

eTy + Yn+l - QYn+2 - (n + 1 - Q)Yn+3 = 0 

eTy + Yn+l + Yn+2 + Yn+3 = 1 

Y ~ 0, Yn+l, Yn+2 ~ 0, Yn+3 ~ 0 

(5.20a) 

(5.20b) 

(5.20c) 

(5.20d) 

(5.20e) 

Observe that this form satisfies assumption (AI) as (l/n+3, l/n+ 
3, ... , l/n+3) is the interior point solution. Its minimum value is zero 
(assumption (A2)) which we shall not prove here. 

Example 5. Transform the following LPP into a from required by 
Karmarkar algorithm. 

min Xo = 2Xl + 3X2 

s.t. 3Xl + X2 - 2X3 = 3 

5Xl - 2X2 = 2 

Xl,X2,X3 ~ 0 

In the given LPP, the following data is available 

Fill up this data in (5.20) to get the Karmarkar specific form as 

min Yo = (8 + 1)(2,3, O)(Yl, Y2, Y3f + MY6 

s.l. [: ~2 ~2l [~: -Y5 [~l- Y6 Wl [:]) [~l 
Yl + Y2 + Y3 + Y4 - 8Y5 + 4Y6 = 0 

Yl + Y2 + Y3 + Y4 + Y5 + Y6 = 1 
all var ~ 0 
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On simplification, we have 

mm tyo = 18Yl + 27Y2 + MY6 

s.t. 3Yl + Y2 - 2Y3 - 3Y5 + Y6 = 0 

5Yl - 2Y2 - 2Y5 - Y6 = 0 

Yl + Y2 + Y3 + Y4 - 8Y5 + 4Y6 = 0 

Yl + Y2 + Y3 + Y4 + Y5 + Y6 = 1 
all var 2: 0 

Obviously (1/6, 1/6, ... , 1/6) is an interior point solution and objective 
function value is zero. 

Algorithm. The Karmarkar algorithm proceeds as 

Step 1. Set k = 0, XO = (l/n, l/n, ... , l/n)T. 

Step 2. If the desired accuracy E > 0 such that CT xk ::; E is achieved, 
then stop with xk is an approximation to the optimal solution. 
Otherwise, go to Step 3. 

Step 3. Here we find a better solution. 

Dk = diagonal matrix formed with diagonal elements as 

the components of xk 

Bk - [ ADk 1 
1,1, ... ,1 

dk = - [I - BI (BkBn-1 Bk] DkC 

k (1 1 1 ) T a ( dk ) Y = ;;;,';;;" ... ,;;;, +;;;, Ildkll for some 0 < a ::; 1 

x k+1 = Dkyk 
eTDkyk 

Set k = k + 1 and go to Step 2. 

Note that in this computational procedure xk is always an interior 
feasible solution; Dk is an n-dimensional matrix with ith element of 
vector xk as its ith diagonal element. Bk is the constraint matrix of 
the LPP in the Karmarkar's standard form; dk is the feasible direction 
of the projected negative gradient; yk is a new interior feasible solution 
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in the transformed space; and xk+l is a new interior feasible solution 
in original space. 

To make the algorithm more accessible, let us workout a problem. 

Example 6. Find the solution of the following LPP using the Kar­
markar's method. 

min f = 2XI + X2 - X3 

s. t. X2 - 33 = 0 

Xl + X2 + X3 = 1 

XI,X2,X3 ~ 0 

Use tolerance 0.075 for testing the convergence of the procedure. 

First we see that the LPP is in the Karmarkar's standard form, 
which satisfies both assumptions A(I) and A(2). Hence, we start with 

° (1 1 1) 
X = 3' 3' 3 . 

Note that A = [0,1, -1] and C = (2,1 - If. 

Now we check Step 2. f(xO) = 2/3 => 0.05, go to Step 3. 

For Step 3, we define 

Then ADo = [0,1/3, -1/3] and 
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[ 
2] [ 2/3 1 = 1/3 

-1 -1/3 

or, 

[
1 0 0] [1/3 1/3 

1- B15 (BoB15t Bo = 0 1 0 - 1/3 5/6 
o 0 1 1/3 -1/6 

1/3] 
-1/6 
5/6 

[ 
2/3 -1/3 -1/3] 

= -1/3 1/6 1/6 
-1/3 1/6 1/6 
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Moreover, the moving direction is given by 

1/3] [2/3] -1/6 1/3 
1/6 -1/3 

with norm Iidoll, length of vector dO defined by 

Iidoll = J( -4/9)2 + (2/9)2 + (2/9)2 = 2V6/9. 

Let us choose a = 1/03 (see r = 1/ In(n - 1)) to obtain a new 
solution in transformed space 

[
1/3] [-4/9 [1/3] [-1/9] [2/9] 

yO = 1/3 + ~ . ~ . 2~ 2/9 = 1/3 + 1/18 = 7/18 
1/3 2/9 1/3 1/18 7/18 

Hence, the new interior feasible solution is given by 

Xl = DoYo = (2/27,7/54,7/54) = (2/9,7/18,7 /18? 
eTDoYo 1/3 

Note that 
f(x l ) = 4/9 > 0.075 

Certainly, there is improvement over the first starting estimation, but 
tolerance limit is not satisfied. Thus, we have to repeat the algorithm 
until required tolerance limit is satisfied. 

However, if we choose a = 2/03, then 

[
1/3] [-4/9] [1/9] 

yO = 1/3 + ~ . ~ . 2~ 2/9 = 4/9 
1/3 2/9 4/9 
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This time eT DoYo = 1 and hence 

Xl = (1/27,4/27, 4/27f 

Now f(xl) = 2/27 < 0.075. Thus, xl = (1/27,4/27, 4/27)T is taken 
as an approximation to the optimal solution. 

Problem Set 5 

1. Solve the following LPP by revised simplex method 

mm Xo = Xl + X2 + X3 

s.t. Xl - X4 - 2X6 = 5 

X2 + 2X4 - 3X5 + X6 = 3 

X3 + 2X4 - 5X5 + 6X6 = 5 

Xi 2:: 0, i = 1 to 6 

Suggestion. Take Xl, X2, X3 as the starting basic variables. 

2. Use any method which seems to be convenient to find the optimal 
solution of the LPP 

min Xo = Xl + 2X2 + 3X3 - X4 

s.t. Xl + 2X2 + 3X3 = 15 

2XI + X2 + 5X3 = 20 

Xl + 2X2 + 5X3 + X4 = 10 

Xl, X2, X3, X4 2:: 0 

Suggestion. Follow Remark 4, Section 3.4 or use the revised 
simplex method. 

3. Solve Example 2 using the revised simplex method in reference 
to big-M method. 

4. Use revised dual simplex method to solve the LPP 

max z = - 2XI - X3 

s.t. Xl + X2 - X3 2:: 5 

Xl - 2X2 + 4X3 2:: 8 

Xl, X2, X3 2:: 0 
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5. Find the optimal solution of the following using bounded variable 
simplex method. 

max z = 3XI + 5X2 + 3X3 
s.t. Xl + 2X2 + 2X3 ::; 14 

2XI + 4X2 + 3X3 ::; 23 

o ::; Xl ::; 4, 0 ::; X2 ::; 5, 0 ::; X3 ::; 3 

6. Solve the following LPP using bounded variable technique 

max z = 4YI + 2Y2 + 6Y3 
s.t. 4YI - Y2 ::; 9 

- Yl + Y2 + 2Y3 ::; 8 

- 3YI + Y2 + 4Y3 ::; 12 
1 ::; YI ::; 3, 0 ::; Y2 ::; 5, 0 ::; Y3 ::; 2 

7. Use the bounded variable technique to solve the linear program­
ming problem formulated in Problem 9, Problem set 1. 

8. A company manufactures two type of toys A-type and B-type in 
a machine centre. The productions times for one toy of types A 
and Bare 10 and 12 minutes, respectively. The total machine 
time available is 2500 minutes per day. In one day the company 
can sell between 150 and 200 toys of A-type, but not more than 
45 toys of B-type. Overtime may be used to meet the demand 
at an additional cost of $0.5 per minute. 

(a) Assuming that the unit profits for toys of types A and Bare 
$6 and $7.5, respectively, formulate a model and determine 
the optimal production level for each type of toys as well as 
any overtime needed at the machine center. 

(b) If the cost per overtime minute is increased to $1.5, should 
the company use overtime. 

Suggestion. Define Xl = number of toys of A-type per day, X2 = 
number of toys of B-type per day, xt = unused minutes of the 
machine per day, x3" = overtime of the machine in minutes per 
day. Note that the LP solution can not yield both xt and x3" at 
positive level simultaneously. This means that either xt or x3" 
can be positive, but never both at the same time. This observa­
tion ensures the validity of the model. 
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9. Solve the following LPP by decomposition principle, and verify 
your answer by solving it using revised simplex method. 

max z = 8XI + 3X2 + 8X3 + 6X4 

s.t. 4XI + 3X2 + X3 + 3X4 ::; 16 

4XI - X2 + X3 ::; 12 

Xl + 2X2 ::; 8 

3XI + X2 ::; 10 

2X3 + 3X4 ::; 9 

4X3 + X4 ::; 12 

Xi ~ 0, i = 1 to 4 

10. Consider the LPP with bounded constraints 

max z = {CT X : L ::; AX ::; U, X ~ O}, 

where Land U are constant column vectors. Let us define the 
slack vector Y ~ 0 such that AX + Y = U. Show that this LPP 
is equivalent to 

max z = {CT X : AX + Y = U, 0 ::; Y ::; U - L, X ~ O}. 

Using above procedure solve the LPP 

max z = 5XI - 4X2 + 6X3 

s.t. 20::; Xl + 7X2 + 3X3 ::; 50 

10 ::; 3XI - X2 + X3 ::; 20 

15 ::; 2XI + 3X2 - X3 ::; 40 

XI,X2,X2~0 

This is referred to as bounded interval programming. 

11. Convert the LPP of Problem 19, Problem set 4 into Karmarkar's 
standard form. 

12. Apply Karmarkar's algorithm to solve the following linear pro-
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gramming problems 

(a) mm z = -Xl + 1 

s.t. X2 - X3 = 0 

Xl + X2 + X3 = 1 

Xl, X2, X3 2:: 0 

(b) min z = -Xl - 2X2 + 4X5 

s.t. X2 - X3 = 0 

2XI - 2X2 + 4X3 - 4X5 = 0 

Xl + 2X2 + X4 - 5X5 = 0 

Xl + X2 + X3 + X4 + X5 = 1 

Xl,X2,X3,X4,X5 2:: 0 



Chapter 6 

Sensitivity Analysis 

Sensitivity analysis, sometimes referred to as post optimal analysis 
is an essential part of the optimization techniques. This chapter is 
devoted to sensitivity analysis, a process applied to the optimal table 
of any linear programming problem when some changes are proposed 
in the original problem. The last section gives an introduction to 
systematic sensitivity analysis or parametric programming. 

6.1 Introduction 

Given a LPP in standard form, the problem is completely specified 
by the constraint matrix A, the right hand side vector (availabilities) 
b, and the cost vector C. We assume that the LPP has an optimal 
solution with the data set (A, b, C). In many cases, we find the data 
set (A, b, C) needs to be changed within a range after we obtained 
the optimal solution, and we are interested to find the new optimal 
solution. 

Thus, the possible changes are 

(i) Change in the cost vector; 

(ii) Change in the right hand side vector (availability); 

(iii) Change in the constraint matrix. 

With the help of sensitivity analysis a relatively small amount of work 
is applied to the optimal table of the LPP to find the optimal solution 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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of the changed problem which saves time, labour and space. 

Remarks. 1. There are cases when rigorous changes are made in the 
original linear programming problem, there is no alternative but to go 
back to the beginning and re-solve the problem. 

2. In this chapter we shall be interested in discrete changes in the 
data. The effect of the continuous (parametric) change in data on the 
optimal solution will be discussed in Chapter 18. 

When we incorporate any of the above changes in the original prob­
lem, either the optimal table remains unchanged or the optimality cri­
teria is disturbed or the feasibility is disturbed or both are disturbed. 
To restore optimality we shall use the simplex method, while the dis­
turbed feasibility is restored by using the dual simplex method. 

The combined disturbance in optimal criteria and the feasibility in 
the optimal table will be treated as a comprehensive problem in the 
problem set. 

Now, we discuss the above possible changes in a sequential manner. 
Before we do any thing, let us recall the structure of the simplex table. 

Simplex Table 

Basis Xl ... Xm Starting BFS Solution 

Z Zl - Cl ... Zm -Cm . .. C~XB = C~B-lb 

XB B-lAl ... B-lAm B-1 B-lb 

Here Zj - Cj = C~B-lAj - Cj, j = 1,2, ... , n, Aj is the jth column of 
the coefficient matrix A, when the LPP is written in standard form. 

6.2 Change in the Cost Vector 

The change in cost of variables has a direct impact on optimal criteria 
(z- row) which has its entries as Zj - Cj = C~B-l Aj - Cj. If the optimal 
criteria is disturbed due to cost change, then use simplex method to 
restore optimality which results in a new solution. 

The two types of changes are possible: 

(i) Change in cost of a nonbasic variable. With the change in cost of 
a nonbasic variables the relative cost of this variable is changed. 
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Obviously, there is no change in relative cost of any other vari­
able. If sign of the relative cost is changed then bring this vari­
able into the basis to get the new optimal solution. 

Let the LPP be max Z = CT X, subject to AX = b, X ::::: o. 
Suppose Xk is a nonbasic variable and its cost Ck is changed to 
Ckflck, where kEN, the index set of nonbasic variables. The 
new relative cost of Xk turns up 

Since CJ; is fixed and cost of all remaining variables are kept 
fixed, there will be no change relative cost of any other variable. 
The optimal solution remains same if 

otherwise the optimality is disturbed which can be restored by 
simplex method to find new optimal solution. 

(ii) Change in cost of a basic variable. With change in the cost of a 
basic variable all Zj -Cj will change except for the basic variables. 
Note that CJ;B- 1 can not be taken from the optimal table as 
CJ; has changed. There will also be a change in the objective 
function value. 

Let cJ' the cost of jth basic variable is shifted to Cj + ,6,Cj, where 
j E B, the index set of basic variables. Then relative cost of each 
nonbasic variable is changed as 

where a k and Ck are the coordinate vector and cost of kth non­
basic variable, respectively. 

To stay optimal solution as it is, we must have 

This implies 

flc· > Zk - Ck for kth nonbasic variable 
J - k' -aj 
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Hence, we can define 

{ 
zk - Ck 

!:l~j = max k ' 
k -a. 

J 

aj > 0, (6.1) 

_ . {Zk - Ck 
!:lCj = mm k ' 

k -a. 
J 

aj < 0, (6.2) 

which ensures the variation limits in cost of jth basic variable 

!:l~j :S !:lCj :S !:lej. 

If !:lCj goes out of these limits for at least one nonbasic variable, 
this implies optimality is disturbed. Calculate fresh objective 
function value using 

and apply simplex method to restore optimality which results in 
new optimal solution. 

Example 1. Suppose that we are given the LPP 

max Xo = 2Xl + 3X2 + 4X3 

s.t. Xl + 2X2 + 3X3 :S 11 

2Xl + 3X2 + 2X3 :S 10 

Xl, X2, X3 2: 0 

with its optimal table as 

Table 1 

BV Xl X2 X3 81 82 

Xo 0 1/2 0 1 1/2 

X3 0 1/4 1 1/2 -1/4 

Xl 1 5/4 0 -1/2 3/4 

Soln 

16 

3 

2 

(a) Within what range the cost of Xl varies so that the optimality 
remains unaffected. 

(b) Within what range the cost of X2 varies so that the optimal 
solution remains unaffected. 
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(c) Discuss the effect of changing the costs 2,3,4 of the decision 
variables Xl, X2, X3 to 1,2,2. 

For part (a), there will be a change in relative cost of Xl. Note that 
Xl is a basic variable, and hence, the cost of basis C~ has changed, and 
C~B-l (simplex multiplier) can not be taken from the optimal table. 
Let cost of Xl be Cl for which we have to determine the variation. The 
cost of basis is (4, clf. For no change in the optimal solution, we must 
have Zj - Cj = C~B-l Aj - Cj 2: 0 for all nonbasic variables. Calculate 

[ 1/2] 
-1/2 

[ -1/4] 
3/4 

2: 0 =? Cl 2: 4/3 

The common value of Cl E [8/5,4] satisfies all the above three inequal­
ities, and this is the range in which Cl may vary without affecting the 
optimality. 

For part (b), note that X2 is a nonbasic variable. There is no change 
in C~. Hence, take C~B-l from the table which is available below 
starting BFS. Hence, 

Thus, for C2 E (-00, 7/2], there is no change in the optimal solution. 

For part (c), we observe that cost of basic and nonbasic variables 
have changed. We shall not calculate Zj - Cj for all basic variables as 
these are bound to be zero in every simplex table. With the change 
of the objective coefficients from 2,3,4 to 1,2,2, the new cost of the 
basis is C~ = (2, If. Calculate new Zj - Cj for all nonbasic variables 
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as 

New Z2 - C2 = (2, 1) - 2 = -1/4 [1/4] 
5/4 

New Z4 - C4 = (2,1) - 0 = 1/2 [ 1/2] 
-1/2 

New Z5 - C5 = (2,1) - 0 = 1/4 [ -1/4] 
3/4 

Thus the optimality is disturbed as the new relative cost of X2 has 
turned to be negative. Before proceeding further, calculate 

New !(XB ) ~ (2,1) [:] ~ 8. 

After incorporating these changes in Table 1, we have 

Table 2 

BV Xl X2 1 X3 81 82 Soln 

Xo 0 -1/4 0 1/2 1/4 8 

X3 0 1/4 1 1/2 -1/4 3 

f- Xl 1 
1 5/ 4 1 

0 -1/2 3/4 2 

The variable X2 enters (having most negative relative cost) and Xl 

leaves the basis (minimum ratio rule), see Table 2. Table 3 gives the 
optimal solution of the changed problem. 

Table 3 

BV Xl X2 X3 81 82 

Xo 1/5 0 0 2/5 2/5 

X3 -1/5 0 1 3/5 -2/5 

X2 4/5 1 0 -2/5 3/5 

The optimal solution: Xl =0, x2=8/5, x3=13/5, 
xo=42/5. 

Soln 

42/5 

13/5 

8/5 

optimal value 
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Remarks. 1. For parts (a), this is sufficient to mention the optimal 
table only, if cost of X3 is specified. 

However, if formulas (6.1) and (6.2) are used then only optimal 
table will serve our purpose. Note that B = {3, I} and if = {2, 4, 5}. 
Hence, 

Ll~l = max{ -2/5, -2/3} = -2/5 

LlCl = min{2} = 2. 

Thus, 

2. For part (b), mentioning the optimal table is sufficient provided 
we add the information that Sl, S2, are slack variables and A2 = (2,3f. 
Extract C'j;B- 1 from the given optimal table. 

3. Case (c) is related to simultaneous change in the costs of basic 
and nonbasic variables. 

6.3 Changes in the Right-hand Side Vector 

In a LPP, if the change in right hand side of the constraints is made 
then the solution column, B-1b, and the objective function value, 
!(XB) = C'j;B- 1b are affected. This change corresponds to two cases. 

(i) If all entries of the new solution column turn out to be non­
negative, then the existing table remains optimal with the new 
solution and new optimal value. 

Let the LPP be max z = C T X, subject to AX = b, X ::2: o. Sup­
pose right hand side entry bk of the vector b = (b 1 , b2 , ... ,bm)T 
is shifted to (b 1 + b2 + ... + bk + Llbk, ... , bmf. Then the new 
solution column is 

where ek = (0,0, ... , 1, ... ,of has 1 at kth position. 

Let B-1 = ({3ik)mxm. The optimal basis remains the same if 
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or 

f3lk 0 

f32k 0 
XB + b..bk > 

f3mk 0 

If B denotes the index set of basic variables, then we have 

Xq + b..bkf3ik 2: 0, q E B, i = 1,2, ... ,m (6.3) 

Further, (6.3) gives 

Obviously, we define 

b..h = m?J( { Xj3q , f3ik > o} . 
t - ik 

- . { Xq } b..bk = m~n -f3 ,f3ik < 0 . 
t - ik 

Thus, if b..bk satisfies 

b..Qk ::; b..bk ::; b..bk, 

the same basis remains intact. 

(6.4) 

(6.5) 

In this way the same set of basic variable with changed values 
according to formula (6.3) produce the new solution and new 
objective value is C~X'a. 

(ii) The second possibility is that b..bk is assigned beyond the above 
limits. Then at least one of the entry in new B-Ib is negative, 
i.e., feasibility is disturbed. Restore the feasibility using the dual 
simplex method to get the optimal solution of the revised prob­
lem. 

Example 2. Consider the LPP 

max Xo = 3XI + 2X2 + 5X3 

s.t. Xl + 2X2 + X3 ::; 43 

3XI + 2X3 ::; 46 

Xl + 4X2 ::; 42 

Xl, X2, X3 2: 0 
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The optimal table of this LPP is 

Table 4 

BV Xl X2 X3 81 82 83 Soln 

Xo 4 0 0 1 2 0 135 

X2 -1/4 1 0 1/2 -1/4 0 10 

X3 3/2 0 1 0 1/2 0 23 

83 2 0 0 -2 1 1 2 

Find the optimal solution when following modifications are proposed 
in the above LPP. 

(a) b = (43,46,42f is changed to b' = (60,64, 59f. 

(b) b = (43,46, 42f is changed to b' = (45,46, 40)T. 

(c) Within what range the first component of right hand side vector 
varies so that the optimal basis remains unaltered. 

For part (a), new solution column is B-lb', i.e., 

Since B-lb' ~ 0, it follows that feasibility remains unaltered, and only 
the value of the basic variables are changed. New objective function 

I . CTX CTB-lb'· va ue IS B B = B ' l.e., 

(1, 2,0)(60,64, 59)T = 188. 

The same basis remains optimal, and hence, the optimal solution of 
changed problem is 

Xl = 0, X2 = 14, X3 = 32, max value Xo = 188. 

For part (b), note that 
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Thus, the feasibility is disturbed. .Calculate new !(XB ) and then 
restore the feasibility by the dual simplex method. The new !(XB ) = 
CT B-1b' is B 

(1,2,0)( 45,46, 40f = 137. 

Incorporate the new values of the solution column and !(XB) in Table 
4 to write next table. 

Table 5 

BV Xl X2 X3 81 1 82 83 Soln 

Xo 4 0 0 1 2 0 137 

X2 -1/4 1 0 1/2 -1/4 0 11 

X3 3/2 0 1 0 1/2 0 23 

+- 83 2 0 0 8J 1 1 -4 

From the dual simplex method, 83 leaves and 81 enters, see Table 5, 
which yields the following optimal table. 

BV Xl X2 X3 81 82 83 Soln 

Xo 5 0 0 0 5/2 1/2 135 

X2 1/4 1 0 0 0 1/4 10 

X3 3/2 0 1 0 1/2 0 23 

81 -1 0 0 1 -1/2 -1/2 2 

The revised optimal solution remains unchanged, except slack is shifted 
to the first constraint. 

(c) For this part of the example, we use the formulas (6.4) and 
(6.5). Note that B = {2, 3, 6} and i = 1,2,3 and k = 1. Thus, 

LlQ1 = max{ -20} = -20, 

Llb1 = min{l} = 1, 

This ensures that for same optimal basis to stay 

Remarks. 1. For parts (a) and (b) there is no need of mentioning the 
original LPP, provided we are given that the constraints are of the 
type :::; with nonnegative right hand side vector. 
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2. In the above analysis, only one iteration has restored the feasi­
bility. Usually, it may take more iterations to restore feasibility. 

3. Note that in part (c), we have considered the variation of bl 

only, while b2 and b3 are fixed. We have not derived any result which 
accounts for simultaneous change in all components, a complicated 
situation due to appearance of a system of inequalities. 

6.4 Change in the Constraint Matrix 

So far, we have dealt with the changes in cost vector and right hand 
side vector. Further, we proceed to analyze the situation with the 
changes in constraint matrix. In general, the changes made in con­
straint matrix may result in different optimal basis and optimal solu­
tions. We discuss five possible changes, viz., adding a constraint or a 
variable, removing a constraint or variable, and change in some column 
of the constraint matrix A. 

Let us consider the LPP 

min z = Xl - 2X2 + X3 

s.t. Xl + 2X2 - 2X3 :S 4 

Xl - X3 :S 3 

2Xl - X2 + 2X3 :S 2 

all var Xi 2: 0 

The optimal table of the above LPP is 

Table 6 

B.V. Xl X2 X3 81 82 

z -9/2 0 0 -3/2 0 

X2 3 1 0 1 0 

82 7/2 0 0 1/2 1 

X3 5/2 0 1 1/2 0 

83 Soln 

-1 -8 

1 6 

1 7 

1 4 

1. Addition of a constraint. If a new constraint is added to a LPP, 
then we have to make two observations: 
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(i) Whether the constraint to be added is satisfied by the given 
optimal solution, then there will be no effect on adding this con­
straint; 

(ii) If this constraint is not satisfied, then addition will affect the 
optimal solution. Addition of such a constraint first will disturb 
the simplex format. When the simplex format is restored the 
feasibility will get disturbed. Restore the feasibility by the dual 
simplex method to find the new optimal solution. 

Remarks. 1. It is worth mentioning to point out that addition of a 
constraint (provided it affects the optimal solution) always worsens 
the current optimal value of the objective function as the set of basic 
feasible solutions has shrunk. 

2. For equality constraint to be added, we split this into two in­
equality constraints. Certainly one of the inequality constraint will 
be satisfied by the optimal solution and other one is considered for 
addition in the LPP. 

Example 3. Consider the LPP whose optimal solution is given in 
Table 6. 

(a) Add the constraint Xl +X2 ~ 4 to the LPP, and find the solution 
of the new problem. 

(b) Add the constraint Xl + X2 2: 7 to the LPP, and find the solution 
of the changed problem. 

For part (a), Note that the constraint Xl + X2 ~ 4 is not satisfied 
by the given optimal solution, and hence, its addition will impact the 
optimum solution. Since this is the fourth constraint, we add 

in the last row of Table 6. 

Make zero in z-row below basic variables that will bring the table 
into simplex format. This operation causes the disturbance in feasi­
bility. We use the dual simplex method to restore the feasibility. All 
iterations are shown in Table 7. 
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Table 7 

BV Xl X2 X3 81 82 83 1 84 Soln 

z -9/2 0 0 -3/2 0 -1 0 -8 

X2 3 1 0 1 0 1 0 6 

82 7/2 0 0 1/2 1 1 0 7 

X3 5/2 0 1 1/2 0 1 0 4 

f-- 84 -2 0 0 -1 0 ED 1 -2 

1 1 0 0 0 0 1 4 

z -5/2 0 0 -1/2 0 0 0 -6 

X2 1 1 0 1 0 0 0 4 

82 3/2 0 0 1/2 1 0 0 5 

X3 1/2 0 1 1/2 0 0 0 2 

83 2 0 0 1 0 1 -1 2 

New optimal solution: Xl = 0, X2 = 4, X3 = 2, min value z = -6. 

For part (b), the addition of Xl +X2 ~ 7 means we add Xl +X2-84 = 
7. Multiply the inserted 84-row by -1 and add to X2-row to bring the 
table into simplex format, see Table 8. 

Table 8 

BV Xl X2 X3 81 82 83 84 Soln 

z -9/2 0 0 -3/2 0 -1 0 -8 

X2 3 1 0 1 0 1 0 6 

82 7/2 0 0 1/2 1 1 0 7 

X3 5/2 0 1 1/2 0 1 0 4 

f-- 84 2 0 0 1 0 1 0 -1 

1 1 0 0 0 0 -1 7 

The variable 84 desires to leave the basis but there is no entering 
variable and hence, no feasible solution exists. 
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2. Addition of a variable. Addition of a new variable causes addi­
tion of some column in the optimal table which may affect the optimal 
criteria. Suppose that a new variable, say xn+1 is identified after we 
obtained the optimal solution X* of the original LPP. Assume that 
en+1 is the cost coefficient associated with Xn+1, and An+1 is the as­
sociated column in the new constraint matrix. Our aim is to find an 
optimal solution of the new linear program 

max z = CTX + en+IXn+1 

s.t. AX + An+1xn+1 = b 

X ~ O,Xn+1 ~ ° 

Observe that we can set Xn+1 = 0, then (X,O)T becomes a basic 
feasible solution to the new LPP. Hence, the simplex algorithm can be 
started right away. Also, note that X* is an optimal solution to the 
original problem, the relative costs Zj - ej, j = 1,2, ... , n + 1 must be 
nonnegative. There fore, we have to check additional relative cost 

If zn+1 - Cn+1 ~ 0, then the current solution X* with xn+1 = ° 
is the optimal solution to the new problem. and we have not to do 
anything. On the other hand if Zn+1 - en+1 < 0, then Xn+1 should 
be included in the basis. Continue simplex iterations till an optimal 
solution to the new LPP is available. 

Consider the LPP 

min Z = 2XI + X2 + M RI + M R2 

s.t. 3XI + X2 + RI = 3 

4XI + 3X2 - 82 + R2 = 6 

Xl + 2X2 + 83 = 3 
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The optimal table of this LPP is 

Table 9 

BV Xl X2 82 RI R2 83 Soln 

Z 0 0 -1/5 2/5-M 1/5-M 0 12/5 

Xl 1 0 1/5 3/5 -1/5 0 3/5 

X2 0 1 -3/5 -4/5 3/5 0 6/5 

83 0 0 1 1 -1 1 0 

Example 4. If in the above LPP, a variable X3 with cost 1/2 and 
column A3 = (0.5, 2)T in constraint matrix is added to the LPP, then 
reprocess the optimal table of the given problem to get the optimal 
solution of the new LPP. 

The relative cost of X3 and its coordinate vector are computed. 
The analysis is given as 

Z3 - C3 = CEB- I A3 - C3 = (2/5,1/5,0)(0,5, 2f - 1/2 = 1/2. 

Thus, the optimal criteria is disturbed. Calculate the column below 
X3, i.e., a 3 = B- I A 3 as 

-1/5 

3/5 

-1 

Insert variable X3, Z3 - C3 and a 3 in Table 9. Further iterations are 
shown below. 



184 CHAPTER 6. SENSITIVITY ANALYSIS 

BV Xl X2 x31 82 Rl R2 83 Soln 

Z 0 0 1/2 -1/5 2/5-M 1/5-M 0 12/5 

Xl 1 0 -1 1/5 3/5 -1/5 0 3/5 

+-- X2 0 1 [l] -3/5 -4/5 3/5 0 6/5 

83 0 0 -3 1 1 -1 1 0 

Z 0 -1/6 0 -1/5 8/15 - M 1/10 - M 0 11/5 

Xl 1 1/3 0 0 1/3 0 0 1 

X3 0 1/3 1 -1/5 -4/5 1/5 0 2/5 

83 0 1 0 2/5 1/5 -2/5 1 6/5 

Optimal solution: Xl = 1, X2 = 0, X3 = 2/5, Z = 11/5. 

Remark. In case a new variable X3 having cost 3 and column (1,2, 3)T 
is added to a LPP, then for the changed problem 

new Z3 - C3 = C~B-l A3 - C3 = (2/5,1/5,0)(1,2, 3f - 3 = -11/5. 

We need not to go further in this case as the optimal solution remains 
unchanged. 

3. Deletion of a constraint. While deleting a constraint we observe 
two situations: 

(i) If any constraint is satisfied on the boundary, i.e., slack or surplus 
variable corresponding to this constraint is at zero level then 
deletion of such a constraint may cause change in the optimal 
solution. 

(ii) If any constraint is satisfied in interior of PF, i.e., slack or sur­
plus variable corresponding to this constraint are positive, then 
deletion of such a constraint will not affect the optimal solution. 

In other words situation (i) is a binding on the optimal solution, while 
situation (ii) is a nonbinding on the optimal solution. 

Remark. We shall observe that deletion of a constraint amounts to 
addition of a variable. 
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Example 5. Consider the LPP 

max Z = 6X1 + 2X2 + 10X3 

S.t. 3X1 - X2 + X3 ::; 10 

Xl + X3 ::; 8 

X2 + 2X3 ::; 5 

Xl, X2, X3 2: 0 

The optimal table of this LPP is 

zOO 0 2 0 4 40 

Xl 1 -1/2 0 1/3 0 1/6 5/2 

o o -1/3 1 -1/3 3 

X3 0 1/2 1 o o 1/2 5/2 

185 

Show that (a) deletion of 1st and IIlrd constraints affects on the op­
timal solution; (b) deletion of IInd constraint does not change the 
optimal solution. 

Let us work out the deletion of 1st constraint. This constraint is 
of the type 

... + 81 = ... 

and is satisfied on the boundary of the feasible region because 81 = O. 
Thus its deletion will impact the optimal solution. 

Add a variable -8~ (8~ 2: 0) to this constraint to have 

/ .. , + 81 - 81 = ... 

Now, treat the problem as addition of a variable. Note that, Zj - Cj 

for 8~ = -relative cost of 81 = -2, and 

[
-1/3] 

Column below 8~ = -column below 81 = 1~3 
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BV Xl X2 X3 S 1 Sl S2 S3 Soln 

Z 0 0 0 -2 2 0 4 40 

Xl 1 -1/2 0 -1/3 1/3 0 -1/6 5/2 

+- S2 0 0 0 [1/3[ -1/3 1 -1/3 3 

X3 0 1/2 1 0 0 0 1/2 5/2 

Z 0 0 0 0 0 6 2 58 

Xl 1 -1/2 0 0 0 1 1/2 11/2 

S 0 0 0 1 -1 3 -1 9 

X3 0 1/2 1 0 0 0 1/2 5/2 

Optimal solution: Xl = 11/2, X2 = 0, X3 = 5/2, z = 58. 

Similarly, the deletion of third constraint can be carried out. How­
ever, it requires three iterations to reach at the conclusion that deletion 
of third constraint results in unbounded solution. 

For case (b), the second constraint is satisfied as a strict inequal­
ity, because S2 = 3, i.e., inside the feasible region Pp, and hence, its 
deletion causes no changes in the optimal solution. 

Note that in part (a) we may also get alternate optimal solution 
as relative cost of nonbasic variable X2 is zero. 

Remarks 1. For deleting a constraint having surplus variable, we add 
s~(2': 0) as 

I I 
... - Si + Si = .... 

To apply deletion, bring s~ into the basis. 

2. For equality constraint, add Si - s~ and bring anyone of these 
variables into the basis. Calculate freshly Zj - Cj and a j for s. These 
entries for one will be negative of the other. 

3. Sometimes it is more profitable (provided a LPP is given) to 
workout all iterations freshly after removing the constraint physically 
from the LPP. 

4. Deletion of a variable. We observe for the two situations: 

(i) If we delete nonbasic variable or a basic variable (at zero level) 
in the optimal solution, there will be no change in the optimal solution. 

(iiO However, deletion of a positive basic variable will change the 
optimal solution. 
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But, deleting a basic variable with positive value is equivalent to 
convert this into nonbasic. For the purpose, first we remove the entire 
column from the optimal table associated with the basic variable to 
be deleted and then multiply the entire row in front of this variable 
by -1. This will certainly disturb the feasibility. Now, use the dual 
simplex method to restore feasibility. This is clear from the following 
example. 

Example 6. Delete the variable X3 from the LPP with the optimal 
Table 6. 

Since X3 is a basic variable with positive value 4 in the optimal table 
(see Table 6), its deletion will affect the optimal solution. Cancel the 
column corresponding to X3 and multiply by -1 to all the entries in X3-

row. Note that the feasibility has been disturbed due to the occurrence 
of -4 in the solution column. Now, apply the dual simplex method to 
restore the feasibility. 

BV Xl X2 X3 81 82 83 1 Soln 

z -9/2 0 -3/2 0 -1 -8 

X2 3 1 1 0 1 6 

82 7/2 0 1/2 1 1 7 

f-- X3 -5/2 0 -1/2 0 8J -4 

z -2 0 -1 0 0 -4 

X2 1/2 1 1/2 0 0 2 

82 1 0 0 1 0 3 

83 5/2 0 1/2 0 1 4 

Optimal solution: Xl = 0, X2 = 2, minimum value z = -4. 

Remark. In working out the above example, we started the dual sim­
plex iteration, even though the body matrix does not contain identity 
submatrix. This is possible by adding a nonbasic variable x~ with cost 
-C3 and the coefficient column - A3 so that the column corresponding 
to x~ comes out to be (0; 0, 0, -If. Removing the column associated 
with X3 and adding the column associated with x~ will not affect the 
existing optimal solution. Now, multiplying by -1 will produce the 
identity submatrix. Note that x~ will not enter the basis as a~ 2': 0 
(the coordinate vector of x~). 
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5. Change in column of the constraint matrix. The change in 
coefficients associated with a variable may effect the optimal criteria. 
We consider the LPP max z = cT X subject to AX = b, X ~ o. Two 
cases arise: 

First, we discuss the change in coefficients of constraint matrix 
associated with a nonbasic variable. This will change the whole column 
(coordinate vector) below this variable in the optimal table. 

Suppose the aikth entry of the column Ak corresponding to kth 
nonbasic variable is shifted to A~ = Ak + 8ikei, here kEN, the index 
set of nonbasic variables and ei is the column vector with 1 at ith 
position and zero elsewhere. We decide the limits of variation aik such 
that the optimal solution remains same. 

When Ak is changed to A~, this will affect the relative cost of Xk. 
The new relative cost of Xk becomes C];B-1 A~ -Ck. The optimal table 
remains same if 

or 
C];ak + 8ikC];B-1ei - Ck ~ 0 

Let B-1 = [,81, ,82, ... , ,8m]. Then the above expression is simplified to 

zk - ck + 8ikC];,8i. 

But ,8i is the coordinate vector of ith variable in the starting basis. 
Hence, 

!:. > _ Zk - Ck 
U~k - ,8i· 

This gives the variation in element aik of the column Ak in constraint 
matrix so that the optimal solution remains same. If it is violated 
then obviously the optimal criteria is disturbed. Restore the optimal 
criteria by the simplex method to get the new optimal solution. 

Suppose the coefficients of constraint matrix associated with some 
basic variable in a LPP considered above are changed. Let the column 
Ak associated with basic variable Xk is changed to A~, where k E B. 
Then add a variable x~ with same cost as that of Xk and column A~ 
in constraint matrix. Compute 

, CTB-1Ak' zk - Ck = B - Ck, 

if z~ -Ck ~ 0, there is no effect of such change, otherwise the optimality 
is disturbed and to restore optimality bring x~ into the basis. 'Ifeat Xk 
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as the artificial variable and force to come out of the basis. In the last 
optimal table the value of x~ in the solution is nothing but Xk with 
the new column. 

Example 7. Suppose the column of Xl in the LPP with the optimal 
Table 6 is changed to Al + G, where G = (-4,2, If. Then, find the 
optimal solution of the changed problem. 

Compute new Zl - Cl = Cj;B-l(Al + G) - Cl = Cj;B- l Al - Cl + 
CTB-lG . B ' l.e., 

-9/2 + (-3/2,0, -1)( -4,2, If = 1/2. 

New a l = B-l(Al + G) = B- 1 Al + B-lG, i.e., 

Since the optimal criteria is disturbed, we use the regular simplex 
method to restore optimality and the optimal solution is given in the 
next table. 

BV Xl 1 X2 X3 81 82 83 Sain. 

Z 1/2 0 0 -3/2 0 -1 -8 

X2 0 1 0 1 0 1 6 

f- 82 
1
9/ 2

1 
0 0 1/2 1 1 7 

X3 3/2 0 1 1/2 0 1 4 

Z 0 0 0 -14/9 -1/9 -10/9 -79/9 

X2 0 6 

Xl 1 1/9 2/9 2/9 14/9 

X3 0 5/3 

The new optimal solution: Xl = 14/9, X2 = 6, X3 = 5/3 Z = -79/9. 

Remark. If the LPP is given and Al = (1,1,2) is changed to (-1,4, 3)T, 
then it can be verified that optimality is retained and hence, it is not 
needed at all to calculate the new a l . 
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Example 8. Let the column in the constraint matrix of a LPP associ­
ated with Xl be changed to (6,0, -7) T for which the optimal solution 
is given in Table 9. Find the optimal solution of the new problem. 

Add a new variable X3 with the same cost as that of Xl, i.e., 2 and 
column (6,0, _7)T in A. The relative cost of X3 is 

Z3 - C3 = C~B-I A3 - 2 = (2/5,1/5,0)(6,0, -7f - 2 = 2/5, 

and 

BV Xl X2 

Z 0 0 

+---- X I 1 0 

X2 0 1 

83 0 0 

Z 0 -1/9 

X3 5/18 0 

X2 

83 

-1/5 

3/5 

-1 

0] [6] [ 18/5] 
~ ~7 -~~5 

x31 82 RI R2 

2/5 -1/5 2/5-M 1/5-M 

1 18/ 5 1 
1/5 3/5 -1/5 

-24/5 -3/5 -4/5 3/5 

-1 1 1 -1 

0 -2/9 1/3-M 2/5-M 

1 0 1/3 0 

0 

0 

83 Soln 

0 12/5 

0 3/5 

0 6/5 

1 0 

0 7/3 

0 1/6 

2 

1/6 

Observe that X3 has the same cost as that of Xl and its column is the 
proposed column for Xl. Hence, in the revised LPP X3 plays the role 
of Xl. Thus, 

optimal solution: Xl = 1/6, X2 = 2, min value z = 7/3. 

6.5 Special Cases 

In such type of situations we are encountered simultaneous changes in 

(a) cost and availability or 

(b) cost and coefficient matrix A or 

( c) availability and coefficient matrix. 
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We discuss only one case and others can be understood by com­
bining the analysis done earlier. We solve one problem pertaining to 
simultaneous changes in the cost vector and the right hand side vector. 

Example 9. Consider the LPP 

max txo = 5X1 + 4X2 

s.t. 6X1 + 2X2 ~ 24 

Xl + 2X2 ~ 6 

- Xl + X2 ~ 1 

X2 ~ 2 

Xl, X2 ~ 0 

The optimal table of the above LPP is 

BV Xl X2 81 82 83 

z 0 0 3/4 1/2 0 

Xl 1 0 1/4 -1/2 0 

X2 0 1 -1/8 3/4 0 

83 0 0 3/8 -5/4 1 

84 0 0 1/8 -3/4 0 

84 Soln 

0 21 

0 3 

0 3/2 

0 3/2 

1 1/2 

Two types of changes are proposed in the above LPP: 

(a) Suppose that the profit coefficients are assigned the values $1, 000 
and 4,000; 

(b) The right hand side vector is changed to (28,8,1, 2)T. 

Show that these changes render the LPP table nonoptimal and non­
feasible. Find the optimal solution of the revised LPP. 

Let us calculate the right-hand entries 

1/4 -1/2 0 0 28 3 

New B-1b = -1/8 3/4 0 0 8 5/2 

3/8 -5/4 1 0 1 3/2 

1/8 -3/4 0 1 2 -9/4 
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This shows that feasibility is disturbed. 

Since Xl, X2, 83, 84 are basic variables, it follows that with change 
in cost vector there will be change in relative cost of nonbasic variables 
81 and 82· 

Calculate the entries: 

New Z3 - C3 = (1000,4000,0,0)(1/4, -1/8,3/8, 1/8f = -250 

New Z4 - C4 = (1000,4000,0,0)(-1/2,3/4, -5/4, -3/4)T = 2500 

This implies that optimality is also disturbed. 

To deal with this situation, apply the technique suggested in Prob­
lem 17, Problem set 4 as follows to have 

BV Xl X2 81 82 1 83 84 Soln 

Z 0 0 -250 2500 0 0 13000 

Xl 1 0 1/4 -1/2 0 0 3 

X2 0 1 -1/8 3/4 0 0 5/2 

83 0 0 3/8 -5/4 1 0 3/2 

~ 84 0 0 1/8 1-3/ 4 1 0 1 -9/4 

Z 0 0 500/3 0 0 10000/3 5500 

Xl 1 0 0 0 9/2 

X2 0 1 0 0 1/4 

83 0 0 0 1 21/4 

82 0 0 -1/6 1 0 -4/3 3 

The new optimal solution and optimal value: Xl =10/3, x2=2, 
z=34000/3. 

6.6 Parametric Programming 

The effect of discrete changes in the model parameters C, b and A have 
been studied in Sections 6.1-6.5, just concluded. Another common 
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approach to sensitivity analysis is to vary one or more parameters 
continuously over some interval(s) to see when the optimal solution 
changes. Here we discuss how continuous changes affect the optimal 
solution of the problem. 

For instance in Section 6.3, rather than beginning by testing the 
specific changes from b2 = 46 to b2 = 64, might instead set b2+o:t. Here 
0: is the constant which decides the relative change of the parameter 
t in bi . Suppose bi is the production capacity of Plant i = 1,2,3. It is 
possible to shift some of the current production of a company product 
from Plant 2 to Plant 3, there by increasing b2 and by decreasing b3 . 

If b3 is decreased twice as fast as b2 increases, then b2 = 46 + t and 
b3 = 42 - 2t, where t measures the amount of production shifted. Then 
0:1 = 0, 0:2 = 1 and 0:3 = -2 in this case. 

Systematic Change in the Cj Parameters. For this case the 
objective function of the ordinary linear programming model 

is replaced by 

n 

max z = LCjXj 
j=1 

n 

max z(t) = L(Cj + O:jt)Xj, 
j=1 

where the O:j are given input constants representing the relative rate 
at which the coefficients are being changed. Therefore, gradually, in­
creasing t from 0 changes the coefficients at these relative rates. This 
may also be based on how the coefficients (e.g." unit profits) would 
change together with respect to some factor measured by t. For any 
given value of t, the optimal solution of the corresponding LPP can be 
obtained by the simplex method. Observe that for t = 0, this is just 
the original problem. 

Our objective is to find the optimal solution of the modified LPP 
(maximize z (t) with respect to original constraints) as t increases from 
o to any specified positive number. This is portrayed graphically in 
Figure 6.1. The function z(t) must be piecewise linear and convex, see 
Problem 14. 

The solution procedure is based directly upon the sensitivity analy­
sis procedure for investigating changes in the Cj parameters. The only 
basic difference that changes are now expressed in terms of t rather 
than as specific numbers. 
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z( t) 

t-axis 

Figure 6.1 

Algorithm. The algorithm follows as 

Step 1. Solve the problem for t = 0, by the simplex method. 

Step 2. Remove the z-row and insert the new objective function z(t). 
Bring the table in simplex format using elementary row opera­
tion. 

Step 3. Increase t ~ 0 until one of the nonbasic variable has its coefficient 
negative (or until t has been increased just to change the sign). 

Step 4. Use this variable as the entering variable for an iteration of the 
simplex method to find the new optimal solution. Return to Step 
3. 

Example 10. Consider the LPP 

max z = 3Xl + 5X2 

s.t. Xl:S 4 

2X2 :S 12 

3Xl + 2X2 :S 18 

Xl, X2 ~ 0 

Suppose the cost of the first item increases two times faster than the 
decrease of the cost of second item, i.e., (}:l = 2 and (}:2 = -1. Now, 
the modified problem is 

max z(t) = (3 + 2t)Xl + (5 - t)X2 

s.t. Xl:S 4 

2X2 :S 12 

3Xl + 2X2 :S 18 

Xl,X2~0 
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Discuss all cases of the parametric changes. 

As Step 1, the optimal table for t = 0 is 

BV Xl X2 81 82 83 Soln 

z 0 0 0 3/2 1 36 

81 0 0 1 1/3 -1/3 2 

X2 0 1 0 1/2 0 6 

Xl 1 0 0 -1/3 1/3 2 

In Step 2, the z-row is replaced by z(t)-row. This disturbs the simplex 
format in z-row. To return to simplex execute the following operation 

z(t)-row + (3 + 2t) x Xl-row + (5 - t) x X2-row. 

The new relative cost of nonbasic variables 82 and 83 are 

3 + 2t 5 - t 9 - 7t ---+--=--
3 2 6' 

3 + 2t 0 _ 3 + 2t . 
-3-+ --3-' 

and the new objective function value is 

2(3 + 2t) + 6(5 - t) = 36 - 2t. 

With these calculations the next table is 

BV Xl X2 81 82 83 Soln 

z(t) 0 0 0 (9- 7)/t (3 + 2t)/3 36 - 2t 

81 0 0 1 1/3 -1/3 2 

X2 0 1 0 1/2 0 6 

Xl 1 0 0 -1/3 1/3 2 

Range of t : 0 ::; t ::; 9/7. 

The stopping rule says that the current basic feasible solution will 
remain optimal as long as the relative cost of nonbasic variables remain 
nonnegative. : 

379 
- - - t > 0 for 0 < t < -, 26-' --7 
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2 
1 + st 2:: 0, for all t 2:: o. 

Therefore, after increasing t past t = 9/7, 82 will be the entering 
variable. 81 leaves the basis and the new optimal solution is 

BV Xl X2 81 82 83 Soln 

z(t) 0 0 (-9 + 7t)/2 0 (5 - t)/2 27 + 5t 

82 0 0 3 1 -1 6 

X2 0 1 -3/2 0 1/2 3 

Xl 1 0 1 0 0 4 

Range of t : 9/7 ::; t ::; 9/5. 

Again, for deciding next entering variable, we compute 

5-t 
-- > 0 for t > 5 2 - -

After increasing t beyond 5, we shall get new optimal solution, and 
hence, the range for second optimal table is 9/7 ::; t ::; 5. To go 
beyond this, 83 is the entering variable and X2 is the leaving variable. 
The optimal table is 

BV Xl X2 81 82 83 Soln 

z( t) 0 -5 +t 3 + 2t 0 0 12 + 8t 

82 0 2 0 1 0 12 

83 0 2 -3 0 1 6 

Xl 1 0 1 0 0 4 

Range of t : 9/7 ::; t ::; 5. 

Systematic Changes in the bi Parameters. For this case the 
one modification made in the LPP is that bi is replaced by bi + ait for 
i = 1,2, ... , m, where ai are given input constants. Thus, the LPP 
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becomes 

n 

max z(t) = L CjXj 
j=l 

n 

s.t. L aijXj :::; bi + ait, i = 1,2, ... , m 
j=l 

Xj 20, j = 1,2, .. . ,n 

197 

The purpose is to identify the optimal solution as a function of t. 
With this formulation, the corresponding objective function value has 
the piecewise linear and concave form as shown in Fig. 6.2. 

z(t) 

t-axis 

Figure 6.2 

AlgorithIll. The algorithm follows as 

Step 1. Solve the problem for t = 0, by the simplex method. 

Step 2. Use formula B- 1(b + at) to introduce changes in the right-side 
entries of the optimal table. 

Step 3. Increase t 2 ° until one of the basic variable has its value in the 
right-side column go negative (or until t has been increased just 
to change the sign). 

Step 4. Use this variable &s the leaving variable for an iteration of the 
dual simplex method to find the new optimal solution. Return 
to Step 3. 
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Example 11. Let us take the LPP 

and modify in the form 

max z = 2Xl + X2 

s.t. 4Xl + X2 ::; 4 

Xl + 2X2 ::; 2 

xl,x22:0 

max z(t) = 2Xl + X2 

s.t. 4Xl+X2::;4-t 
Xl + 2X2 ::; 2 + 2t 
Xl, X2 2: 0 

Discuss all changes in parameter t giving different optimal solutions in 
different intervals. 

For t = 0, the optimal table for the original LPP is 

BV Xl X2 81 82 Soln 

z 0 0 3/7 2/7 16/7 

Xl 1 0 2/7 -1/7 6/7 

X2 0 1 -1/7 4/7 4/7 

Compute 

B-t-l] ~ [6/7] +t [2/7 -1/7][-1] 
2 + 2t 4/7 -1/7 4/7 2 

[(6 - 4l)/7] 
(4 + 9t)/7 

and the objective function value in terms of t as 

C~B-l(b + at) = (2,1) . ((6 - 4t)/7, (4 + 9t)/7) = (16 + t)/7. 

BV Xl X2 81 82 Soln 

z 0 0 3/7 2/7 (16 + t)/7 

Xl 1 0 2/7 -1/7 (6 - 4t)/7 

X2 0 1 -1/7 4/7 (4 + 9t)/7 

Range of t : 0 ::; t ::; 3/2. 
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6 - 4t 3 
Xl = -7- 2': 0, fort::::; 2' 

4 + 9t 
X2 = -7- 2': 0, for t 2': o. 

Thus, the optimal basis will remain the same when t varies in the 
range: 0 ::::; t ::::; 2/3. Increasing t past t = 3/2 requires making Xl as 
the leaving variable for the dual simplex iteration. 82 enters the basis 
and the next optimal table is 

z 2 o 1 o 4 - t 

82 -7 0 -2 1 -6+4t 

1 1 o -7t + 30 

Range oft : 3/2 ::::; t ::::; 30/7. 

Thus the two basic variables 

82 = -6 + 4t, X2 = -7t + 30 

remain nonnegative in the range 3/2 ::::; t ::::; 30/7. Increasing t past 
t = 30/7, the X2 becomes eligible to leave the basis, but no entering 
variable is found and hence, for t > 30/7 the LPP becomes infeasible. 

Problem Set 6 

1. Let max z = C T X, subject to AX = b, X 2': o. Determine how 
much the components of the cost vector C can be perturbed 
without affecting the optimal solution. 

2. Let max z = CT X, subject to AX = b, X 2': O. Discuss the 
variation in right-hand side vector so that same basis remains 
optimal. 

3. Discuss the effect of changing the column of the coefficient matrix 
corresponding to nonbasic variable. 

4. Consider the LPP and its optimal table given below 

mm z = 2XI + 3X2 

s.t. Xl + 3X2 2': 5 

2XI + X2 2': 6 

XI,x2:2:0 
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BV Xl X2 Sl S2 Soln 

Xo 0 0 -4/5 -3/5 38/5 

X2 0 1 -2/5 1/5 4/5 

Xl 1 0 1/5 -3/5 13/5 

(a) Within what range the cost of Xl can vary so that the op­
timal solution remains unchanged. 

(b) Within what range the right-hand side entry of the second 
constraint varies so that the given optimal basis remains 
unchanged. 

5. Find the limit of variation of the column vector Ak so that the 
optimal solution of the LPP max z = CT X, subject to AX = 
b, X 2: 0 stays unchanged when (i) Ak E B; (ii) Ak ~ B. 

6. Consider the LPP and its optimal table of the preceding problem. 

(a) If a constraint Xl + X2 = 4 is added to the LPP, find the 
optimal solution of the new LPP; 

(b) If a constraint Sl 2: 1 is added, find the optimal solution of 
the revised problem; 

(c) If the column of the constraint matrix associated with Xl is 
changed to (2, 5)T, find the optimal solution of the resulting 
LPP. 

Suggestion. For part (b), break Xl + X2 = 4 in two constraints 
Xl + X2 :::: 4 and Xl + X2 2: 4. Now, add these two constraints. 
Addition of Xl + X2 :::: 4 will cause no effect (as it is satisfied by 
the given optimal solution). Hence, add XIX2 2: 4 only. 

7. Find the optimal solution of the LPP with optimal table 6 in 
Section 6.4, when 

(a) The column corresponding to Xl is changed to Al + <5, <5 = 
(-4,2, If; 

(b) If the second constraint is replaced by Xl + X2 2: 4, then 
find the optimal solution of changed problem; 

(c) If Xl is replaced by -Xl in the whole LPP, then find the 
optimal solution of the new LPP. 



6.6. PARAMETRIC PROGRAMMING 201 

Suggestion. For part (b), first add Xl + X2 2 4, and then delete 
Xl - X3 ~ 4. In case of part (c), multiply by -1 to Zl - Cl and 
aI, and use simplex method to restore optimality. 

8. Following is the optimal table of a LPP in which Sl, S2, 83 2 0 
are the slack variables when the LPP is written in standard form. 

BV Xl X2 Sl S2 S3 Soln 

Xo 0 0 7/6 13/6 0 218/3 

S3 0 0 3/2 -25/2 1 5 

Xl 1 0 1/3 -2/3 0 16/3 

X2 0 1 -1/6 5/6 0 10/3 

Using sensitivity analysis find the optimal solution in each of the 
cases: 

(a) adding a variable X3 with column vector (3; 1,0, 5)T; 

(b) the variable X2 is made unrestricted in sign. 

Suggestion. For part (b) add a variable x; with cost -C2 and 
column -A2 . 

9. Consider the following linear program 

min Z = 2Xl + X2 - X3 

s. t. Xl + 2X2 + X3 ~ 8 

- Xl + X2 - 2X3 ~ 4 

Xl,X2,X3 20 

First, use the revised simplex method to find the optimal solution 
and its optimal dual variables. Then use sensitivity analysis to 
answer the following questions. 

(a) Find a new optimal solution if the cost coefficient of Xl is 
changed from 2 to 6. 

(b) Find a new optimal solution if the coefficient of X2 in the 
first constraint is changed from 2 to 1/4. 

(c) Find a new optimal solution if we add one more constraint 
X2 + X3 = 3. 
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(d) If you were to choose between increasing the right-side of the 
first and second constraints, which one would you prefer? 
Why? What is the effect of this increase on the optimal 
solution of the objective function. 

(e) Suppose that a new activity X4 is proposed with a unit 
cost of 4 and consumption vector A4 = (1,2)T. Find the 
corresponding optimal solution. 

10. Given the LPP 

max z = 14xl + 20X2 + lOx3 

s.t. 6Xl + 10x2 + 3X3 :S 100 

8Xl + 10X2 + 6X3 :S 120 

4Xl + 8X2 + 9X3 :S 150 

Xl, X2, X3 :2 0 

(i) Solve by revised simplex method; 

(ii) Find the value of Cl so that Xl contributes in the optimal 
solution; 

(iii) What is the lower limit for C2 so that X2 remains in the 
optimal solution? 

(iv) What will be the impact on optimal solution if bl is changed 
from 100 to 103? from 100 to 200? 

11. Solve the LPP 

max z = 2Xl + 3X2 

s.t. xl-x2:21 

3Xl + 2X2 :S 5 

Xl, X2 :2 0 

Use the optimal table of the above LPP and then apply the 
sensitivity analysis to solve 

max z' = 2Xl + 3X2 + X3 

s.t. Xl - X2 + X3 :2 1 

3Xl + 2X2 :S 5 

Xl + X2 + X3 = 3 

Xl, X2 :2 0 
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12. Consider the LPP whose optimal solution is given in Table 6. 

13. 

Show that 

(a) deletion of 1st and IIIrd constraints affects on the optimal 
solution; 

(b) deletion of IInd constraint does not change the optimal so­
lution. 

Consider the problem 

max Z = 3XI + 4X2 

s.t. 2XI + 3X2 ~ 120 

2XI + X2 ~ 100 

X2 ~ 16 

XI,X2 ;:::: 0 

Its associated optimal table is 

BV Xl X2 Sl S2 S3 Soln 

Z 0 0 5/4 1/4 0 175 

Xl 1 0 -1/4 3/4 0 45 

S3 0 0 -1/2 1/2 1 6 

X2 0 1 1/2 -1/2 0 10 

The right hand side vector is changed to (100,40, 20)T and the 
cost coefficients of decision variables Xl, X2 are assigned the val­
ues 4,1, respectively. Find the optimal solution of the revised 
LPP. 

Suggestion. New B-Ib = (5, -10, 30)T and new Z3 - C3 = -7/2 
and Z4 - C4 = -5/2. Apply generalized simplex method, i.e., X2 

leaves and S2 enters. This is a problem when the optimality and 
feasibility are disturbed simultaneously. 

14. Consider the function z(t) function shown in Fig. 6.1 for para­
metric linear programming with systematic changes in the Cj 

parameters. 

(a) Explain why this function is piecewise linear; 

(b) Show that this function must be convex. 
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15. Consider the function z(t) function shown in Fig. 6.2 for para­
metric linear programming with systematic changes in the Cj 

parameters. 

(a) Explain why this function is piecewise linear? 

(b) Show that this function must be concave. 

16. Consider the LPP at the starting of the Section 6.4. Suppose 
a uniform parametric change is made in each right-side entry of 
the LPP. Determine the interval in which the parameter may 
vary so that optimal solution does not change. 

Suggestion. New solution column is B-1(b+a) = B-1b+B-1a, 
i.e., 

The same basis remains optimal if 6 + 2a ~ 0 =:> a ~ -3, 7 + 
5a/2 ~ 0 =:> a ~ -14/5, 4 + 3a ~ 0 =:> a ~ -4/3. All these 
inequalities are satisfied for a ~ -4/3. 



Chapter 7 

Transportation Problems 

The chapter starts with a description of a transportation problem and 
different heuristics to find the initial basic feasible solutions. In the 
next section, the procedure to find an optimal solution is explained. 
Section 7.3 is on the transportation through transshipment. In the end 
we introduce the Assignment problem, and the Hungarian algorithm 
to find its optimal solution. 

7 .1 Introduction 

The transportation problem is a special type of a linear programming 
problem used for studying the optimal shipping pattern. In this pro­
cess, any material is to be transported from different sources to differ­
ent destinations. The transportation model assumes that the shipping 
cost on a given route is directly proportional to the number of units 
shipped on that route. In general, the transportation problem can 
be extended to areas other than the direct transportation of a com­
modity, including among others, inventory, employment schedule, and 
personnel assignment. 

Let Si, i = 1,2, ... ,m and D j , j = 1,2, ... , n be m sources and n 
destinations, respectively. We define the following quantities: 

ai = the quantity of material available at source Si, i = 1,2, ... ,m. 

bj = the quantity of material required at destination D j, j = 
1,2, ... ,no 

Cij = unit cost of transportation from source Si to destination Dj . 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Every transportation problem can be represented by a matrix of 
order m by n, called the cost matrix or effectiveness matrix. For 
m = 3, n = 4, the structure of cost matrix is 

Destinations ~ Dl D2 D3 D4 Availabilities 

Sources t or supply t 
~ ~ ~ ~ 

51 Xu X12 X13 X14 al 

~ ~ ~ ~ 
52 X21 X22 x23 X24 a2 

~ ~ ~ ~ 
53 X31 X32 X33 X34 a3 

Requirements 
bl b2 b3 b4 

ordemands~ 

Here 51, 52, 53 are the sources, and D l , D 2 , D 3 , D4 are the 
destinations. The entries ai, bj and Cij of the cost matrix are given. 
The Xij is the number of units of the material to be transported from 
source 5 i to destination D j . We have to determine Xij such that the 
product L: CijXij is minimum with the restrictions that sum of ith row 
is ai, and that of jth column is b j . In other words, the objective is to 
find how much material should be transported from each source 5 i to 
each destination D j so that the cost of transportation is minimized. 
Thus, the transportation problem can be mathematically expressed as 

m n 

min Xo = L L CijXij (7.1) 
i=1 j=l 

n 

s.t. LXij ~ ai, i = 1,2, ... ,m (supply) (7.2) 
j=1 
m 

LXij ~ bj , j = 1,2, ... ,n (demand) (7.3) 
i=1 

Xij ~ 0 for all i and j. 
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If 
m n 

Lai = Lbj 
i=l j=l 

the LPP is a balanced transportation problem, otherwise it is un­
balanced. From (7.2) and (7.3), it is obvious that there are m + n 
constraints and mn decision variables. However, it can be verified 
that out of these only m + n - 1 constraints are linearly independent, 
i.e., the rank of coefficient matrix is m + n - 1. This is what follows in 
the next proposition. 

Proposition 1. In a balanced transportation problem with m sources 
and n destinations, only m+n-1 constraints are linearly independent. 

Proof. The set of constraints of a balanced transportation with m 
sources and n destinations are given by 

n 

L Xij = ai, i = 1,2, ... , m (row constraints) (7.4) 
j=l 

m 

LXij=bj, j=1,2, ... ,n (column constraints) (7.5) 
i=l 

To show that m + n - 1 constraints are linearly independent, it is 
sufficient to verify that anyone of the m + n constraints can be written 
as linear combination of the others. 

Add all the row constraints and n - 1 column constraints to have 

m n m 

LLXij = Lai 
i=l j=l i=l 

n-l m n-l 

LLXij = Lbj 
j=li=l j=l 

Subtracting (7.7) from (7.6), we get 

m n n-l m m n m 

LLXij - LLXij = Lai - Lbj + LXin 
i=l j=l j=l i=l i=l j=l i=l 

m 

= L Xin (balanced TP) 
i=l 

(7.6) 

(7.7) 
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Thus, nth column constraint has been written as the difference of the 
sum of all row constraints and sum of n - 1 column constraints, as 
asserted. This proves the proposition. 

Remark. As a consequence of the Proposition 1 the LPP generated by a 
transportation model with m sources and n destinations will have m + 
n - 1 basic variables and remaining (m - 1) (n - 1) nonbasic variables. 
Thus, a balanced transportation with m sources and n destinations 
will have at most 

(mn)! 
(m + n - l)!(mn - m - n + I)! 

basic feasible solutions. 

For many applications, the supply and demand quantities in the 
model (the ai and bj ) will have integer values, and the implementation 
will require that the distribution quantities (the Xij) also be integer. 
Fortunately, because of the special structure, if such a model has any 
feasible solution, it always will have an optimal solution with just 
integer values, and this solution will be found by the solution procedure 
described in Section 7.2. 

Here, we shall be using the simplex type of algorithm to obtain the 
optimal solution. For this we need a starting basic feasible solution 
(BFS). There are numerous methods for finding the initial basic feasi­
ble solution of a transportation problem. However, we illustrate a few 
which are commonly used in practice. 

(i) North-West rule (N-W rule) 

(ii) Least cost method (LCM) 

(iii) Vogel approximation method (VAM) 

(iv) Russell approximation method (RAM) 

N orth-West rule. In this method, we allocate min( ai, bj ), where ai 
is the availability at source i and bj is the requirement at destination j 
to the north-west corner of the cost matrix. The row or column which 
is satisfied is ignored for further consideration. Find the north-west 
corner in the remaining submatrix and allocate in the above manner. 
Continue the process till all the rows and columns are satisfied. 
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Consider the transportation given in Table 1. 

Table 1 

15 

5 50 

At the start, the N-W corner is Xu position. The maximum pos­
sible allocation at this position = min{ aI, bl } = min{15,30} = 15. 
Enter 15 at Xu position and subtract 15 from al and bl. The first 
column is satisfied and hence, ignore this column from Table 1 to de­
cide the next N-W corner. In the remaining table, Xl2 is N-W corner. 
Now, allocate min{15, 20} = 15 to this cell and subtract 15 from b2 
and latest al. In this way the first row is satisfied. Ignore this row 
for further allocation. In the remaining table X22 is the N-W corner. 
By the above procedure 5 units are allocated to X22 cell. Repeat the 
procedure till all the rows and columns are satisfied. All calculations 
are shown in Table 1. 

The starting BFS and the cost of transportation are 

Xu =15, xl2=15, X22 = 5, X23=35, X33=5, X34=50; xo=830. 

Remark. This method is independent of the cost distribution in the 
transportation table. Due to this reasoning the north-west corner rule 
is least preferred to other methods to be discussed very shortly for 
finding initial basic feasible solution of a transportation problem. 

Least cost method. Here, we allocate min(ai' bj ) to the cell having 
lowest cost in the cost matrix. Ignore the row or column which is 
satisfied. Carryon allocations in the same way for the remaining 
submatrix. In case of tie for the lowest cost cell, choose a cell which 
can accommodate maximum allocation, otherwise choose arbitrarily. 
Again, consider the preceding example. The calculations for LCM are 
shown in Table 2. 

The cell with lowest cost is X34. The maximum allocation to this 
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Table 2 

30M 

10 

5 50 

cell is 50. Subtract 50 from a3 and b4 which ensures that the fourth 
column is satisfied. Ignoring this column, the cell with lowest costs in 
the remaining table are in the cells XI2 and X31. We arbitrarily choose 
XI2 cell and make maximum possible allocation of 20 units. Subtract 
20 units from b2 and al. Now, the second column is satisfied. In the 
remaining table the cell with lowest cost is X31. The maximum possible 
allocation is in this cell is 5 units. Subtract 5 from bl and b4 (latest) 
and connote till all the rows and columns are satisfied. 

The starting BFS and the cost of transportation are 

XI2 = 20, XI3 = 10, X2I = 10, X23 = 30, X31 = 5, x34 = 50; Xo = 470. 

Vogel approximation method. In this method, we start with cal­
culating the difference of smallest cost and next higher to the smallest 
cost for each row and column. These differences are called the row and 
column penalties, respectively. 

Step 1. Take the first row and choose its smallest entry and subtract this 
from the entry next higher to smallest entry, and write in front 
of row on the right. This is the penalty for first row. In this 
way compute penalty for each row. Similarly, calculate column 
penalties and write them in the bottom of the cost matrix below 
corresponding columns. 

Step 2. Select the highest penalty and observe the row or column for 
which this corresponds. Then, make allocation min( ai, bj ) in the 
cell having lowest cost in the selected row or column. 

Step 3. Ignore for further consideration the row or column which is satis­
fied. Calculate fresh penalties for the remaining submatrix as in 
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Step 1 and allocate following the procedure of Step 2. Continue 
till one row or column remains to be satisfied. This last row or 
column is made satisfied according to LCM. 

Rules for tie. In case of tie for largest penalty choose the lowest 
cost cell in all tied rows and columns for allocation. Again, if there 
is a tie for the lowest cost cell, select one for allocation which gives 
minimum Cij Xij. 

Remarks. 1. If an allocation is not made in the lowest cost cell of a 
row or column with largest difference of smallest and next higher to 
smallest cost of that row or column, then penalty per unit cost will 
increase for any other choice for allocation. The VAM works on this 
logic. 

2. The penalty for {2, 2,4, 5} = 0. 

Again consider the same example (for the last time). 

Table 3 

30 

10 48" 2 

5 50 MA 1 1 

.!5 .20 48" Sf) 

A1f A1f 
3 4 

2 

4 4 

4 

The starting BFS and cost of transportation are 

X13=30, X21 =10, X22=20, X23=10, X31 =5, X34=50; xo=410. 

Russell approximation method. For each source i, determine Ui 

which is the largest unit cost Cij in ith row. For each destination j, 
determine Vj which is the largest unit cost of jth column. For each 
variable Xij calculate tlij = Ui + Vj - Cij. Select the variable Xij with 
most positive value tlij (in case of tie select arbitrarily). This is the 
cell where allocation is to be made. Ignore the row or column which 
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is satisfied and do the same thing in the remaining matrix. If at any 
stage only one row or column remains to be unsatisfied, then just fill 
up entries so that all supply or demand are satisfied. The BFS of the 
transportation problem based on this method can be seen in Table 4 
below. 

Table 4 

~3 
30 

15 40 55 L-____ 4-____ ~ ______ ~ ____ ~ 

15 20 40 50 

The starting BFS and cost of transportation are 

XI3=30, X22=20, x23=1O, x24=1O, X3I =15, X34=40; xo=410. 

Degenerate BFS. While finding the initial basic feasible solution 
by any method, if a row and column are satisfied simultaneously (ex­
cept the last allocation), we get a degenerate basic feasible solution. 
To get the degenerate BFS anyone of these is assumed to be satisfied 
and put '0' for the unsatisfied. The following example (see Table 5) 
worked out by LCM will make the context clear. 

Table 5 

20 30 

20 60 

The degenerate BFS and cost of transportation are 

Xu = 20, XI3 = 30, X22 = 50, X23 = 0, X33 = 20, X34 = 60; Xo = 500. 

Remark. We have seen that the N-W corner gives poor starting BFS. 
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Consequently, more simplex iterations are required to reach the opti­
mality. The LCM gives a reasonable good initial BFS. But the VAM 
or RAM always give the starting BFS which is nearer to the optimal 
or sometimes optimal (see Example 3). Hence, the VAM or RAM are 
usually used to find the initial BFS so that few iterations are required 
to reach the optimality. 

Let us mention two facts which are easy to prove: 

Fact 1. The necessary and sufficient condition for a transportation prob­
lem with m sources, ai availability at ith source; and with n des­
tinations, bj requirement at jth destination to have initial basic 
feasible solution is that 

m n 

Lai = Lbj. 
i=l j=l 

Fact 2. A balanced transportation problem has always an optimal solu­
tion. 

7.2 Optimal Solution from BFS 

Here, we describe the technique how to reach the optimal solution from 
a given initial basic feasible solution. The method described below is 
known as u-v method or modified distribution method (MODI) and 
goes in the name of Charnes and Cooper. 

Take a balanced transportation problem with m sources and n 
destinations as primal problem 

m n 

min L L CijXij 
i=l j=l 

n 

s.t. LXij=ai, i=1,2, ... ,m 
j=l 

m 

LXij=bj, j=1,2, ... ,n 
i=l 

x·· > 0 ZJ -

Let Ui be the dual variable associated with ith row constraint i 
1,2, ... , m and Vj be the dual variable associated with jth column 
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constraint. Then the dual of the above problem is 

m n 

max L aiui + L bjvj 

i=l j=l 

s.t. Ui + Vj :S Cij 

Ui, Vj unrestricted 

We have proved in Proposition 1 that in a basic feasible solution of 
the primal m + n - 1 variables are basic and remaining are nonbasic. 
Suppose that the dual variables are chosen in such a way that 

Ui + Vj = Cij in m + n - 1 basic cells 

Ui + Vj :S Cij in remaining cells (nonbasic cells) 

Such a choice of the dual variables implies that dual slack variables 
rij = 0 in basic cells and rij ~ 0 in nonbasic cells. Hence, for basic 
cells 

Xij ~ 0, rijXij = O. 

For the remaining cells 

Xij = 0, rijXij = O. 

Observe that this choice of dual variables satisfies the complimentary 
slackness property (see the remark of Theorem 5, Chapter 4) and 
hence, it provides an optimal solution of the transportation problem. 

The computational procedure may be summarized as 

Step 1. Introduce the dual variables Ui and Vj corresponding to each ith 
row and jth column, respectively. Write Ui in front of each ith 
row and Vj at the top of each column. Take anyone of the Ui or 
Vj to be zero. 

Step 2. For basic cells (which contain allocations), Ui +Vj = Cij (equiva­
lent to Zj - Cj = 0 for basic variables in simplex method). This 
relation assigns values to all Ui and Vj. 

Step 3. For nonbasic cells (which have no allocations), calculate Ui +Vj­

Cij, and write them in S-W corner of the concerned cell. 
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Step 4. If all S-W entries are :S 0, the BFS we are testing is optimal. If, 
at least one of the S-W entries is positive, then this BFS is not 
optimal. In this situation, look for the most positive S-W entry 
in the cost matrix. This decides the entering variable. 

Step 5. Assign e quantity in the cell having the most positive S-W entry, 
and make a loop as follows. 

Rule for making the loop. Start from e cell and move horizon­
tally and vertically to the nearest basic cell with the restriction that 
the turn (corner) of the loop must not lie in any nonbasic cell (except 
e-cell). In this way, return to the e-cell to complete the loop. 

Add or subtract e in cornered entries of the loop maintaining feasi­
bility, and value of e is fixed as the minimum of the entries from which 
e has been subtracted. Inserting the fixed value of e, we get next BFS 
which improves the initial transportation cost. While inserting the 
value of e one cell assumes 0 value. We shall not mention 0 value as 
this is the leaving variable, i.e., this cell has become nonbasic. Thus, 
one iteration of the simplex type algorithm is over. This gives the 
improved value of the objective function. Again, use the latest BFS, 
and repeat Steps 1 through 5 until every S-W entry turns out to be 
:S O. This is the optimal solution. 

Remarks. 1. A loop may cross itself, and even crossing point may be 
in nonbasic cell. 

2. A loop can skip over some basic cell or nonbasic cell in a row 
and column. However, the successive lines must be perpendicular. 

3. There always exists a unique loop starting from a given nonbasic 
cell. 

Let us workout some problems based on this discussion. 

Example 1. Consider the following transportation problem with ini­
tial basic feasible solution (obtained by LCM) and find its optimal 
solution. 

For Step 1, introduce the dual variables UI, U2, U3 corresponding to 
three rows and write them in front of each row. Similarly, introduce 
VI, V2, V3, V4 corresponding to the columns and write them at the 
top of each column. Fix any of the dual variables UI, U2, U3, and 
VI, V2, V3, V4 at zero level. However, for convenience, see the row 
which has maximum basic cells. Assign zero value to the dual variable 
associated with this row. In case two or more rows have the same 
maximum number of basic cells, then the tie can be broken arbitrarily. 
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15 15 30 

50 

15 20 35 

15 30 25 45 

In Table 6, each row has two basic cells. Any of the Ui, U2, U3 may be 
assigned zero value. Suppose Ui =0. 

Table 6 

Vi = 1 
1 2 3 4 

Ui = 0 
15 15 

01 m 
7 6 2 5 

25fe 25+e 
Pl --=5l I 

U2 =-1 

4 3 I 2 

2te 
7 

" 15 u 

Rl 2l 

In Step 2, we calculate the values of other dual variables using the 
relation: Ui + Vj = Cij for basic cells. The possible equations for basic 
cells are 

Ui + Vi = 1 

Ui + V2 = 2 

U2 + V3 = 2 

U2 + V4 = 5 

U3 + V2 = 3 

U3 + V4 = 7 

(7.8) 

With Ui =0, the above system of equations gives (in a sequence) 

Vi = 1, V2 = 2, and U3 = 1, V4 = 6, U2 = -1, V3 = 3. 
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Thus, we have computed each dual variable. In practice, we do not 
solve these equations, but determine all the dual variables directly on 
the table. 

In Step 3, we calculate Ui + Vj - Cij for each nonbasic cell and write 
them in the south-west corner. In the above example for the nonbasic 
cells X13, 

Ul + V3 - Cij = 0 + 3 - 3 = 0 

and X14, 

Ul + V4 - C14 = 0 + 4 - 2 = 2. 

Similarly, compute for other nonbasic cells. We enter these numbers 
on the south-west corner of these cells. This is done for every nonbasic 
cell. 

To execute Step 4, if all S-W entries are :::; 0, the basic feasible 
solution that we are testing is optimal and algorithm stops. Here, all 
S-W entries are not:::; 0, see Table 6 and hence, we go to the next step. 
Look for the most positive entry in S-W corners. This is available at 
two places, viz., at the intersection of the first row and fourth column, 
and at the intersection of third row and third column. Hence, there 
is a tie for the most positive S-W entry, see Table 6. Break the tie 
arbitrarily to decide the entering variable. Suppose, we consider the 
nonbasic cell C33, i.e., nonbasic variable X33 to enter the basis. 

In Step 5, we make a loop according to the rule as explained earlier. 
Assign e value to this cell, and subtract and add e at corners of the 
loop to maintain feasibility. Now, decide the value of e by taking 
minimum of the entries from which e have been subtracted, i.e., 

e = min{20, 25} = 20. 

Table 7 

L2 4 

15 30 

50 

15 20 35 
15 30 25 45 
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Insert this value of () which causes X34 to leave the basis, and the 
new BFS is given in Table 7. Thus, the first iteration is over. 

To carry the second iteration, again introduce freshly the dual 
variables and find their values with the help of basic cells. Then, 
compute S-W entries as above. Note that all S-W entries are :S 0, and 
hence, the BFS is optimal one, see Table 8. 

Table 8 

VI = 1 V3 = 1 V4 = 4 
1 2 3 4 

UI = 0 
15 15 

-=2l 01 
7 6 2 5 

5 45 

-=5l -=3l 
4 3 2 7 

U3 = 1 15 20 

-=2l Rl 
Thus, the optimal solution and the optimal value are 

Xu = 15, XI2 = 15, X23 = 5, X24 = 45, X32 = 15, X33 = 20; Xo = 365. 

Remarks. 1. It is a point of caution that, if we break a tie by taking 
CI4 as () cell in Table 6, then it requires two iterations to reach the 
optimality while in the preceding case only one iteration was required 
to get the optimal table. When we take CI4 cell as () cell, the loop 
will skip a basic cell and two nonbasic cells in the first iteration. This 
verification is left to the reader. 

2. If the size of the problem is large, then it is difficult to draw the 
loop by using the above technique. A definite way of finding the loop 
is as follows: 

Sketch the flow chart of the order in which dual variables have been 
determined from (7.8). For the above problem the flow chart is given 
in Fig. 7.1. Since we have taken () cell at (U3, V3) position, see Table 
6. So, join U3 and V3, and complete the loop in any direction. One of 
the direction is 
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< VI 

UI 

V2 ~ U3 .... V4 --~ 

Figure 7.1 

Alternative optimal solution. An optimal table of a trans­
portation problem is supposed to have an alternative optimal solution 
if at least one of the S-W entry is zero, equivalently relative cost of at 
least one non basic variable is zero. Convert this nonbasic cell as basic 
cell by assigning e to this cell and make the loop. 

Let us consider the optimal solution given in Table 8. Since S-W 
entry in CI4 is zero, decide this cell for assigning e, i.e., this cell is made 
basic. Add and subtract e to maintain feasibility, and then make a 
loop as shown in Table 9. Here, the value of e is given by 

e = min{15, 20, 45} = 15. 

Table 9 

1 2 3 4 

15 15-8 
r=2l rOl 

8 

7 6 2 5 

5+8 45-8 
Fsl R I 

4 3 t 2 7 

15+8 20-8 

I-2l -=2l 

Inserting e = 15 in Table 9, we get the following alternative optimal 
table 
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1 2 3 4 

15 15 

7 6 2 5 

20 30 

4 3 2 7 

30 5 

The optimal solution and optimal transportation cost are 

Xu = 15, X14 = 15, X23 = 20, X24 = 30, X32 = 30, X33 = 5; Xo = 365. 

Example 2. Take the degenerate BFS of the transportation problem 
of Table 5, and find the optimal solution. 

Introduce the dual variable as in Example 1 and computing the 
S-W entries, we find that all these entries are :::; 0, and hence, the 
degenerate BFS is itself the optimal solution, see Table 10. 

Table 10 

2 3 7 1 

20 30 

Ol 01 
4 1 5 8 

50 0 

-=4l -=9l 
3 4 7 1 

20 60 

--=Il --=Il 

The optimal solution and optimal transportation cost are 

Xu = 20, X13 = 30, X22 = 50, X23 = 0, X33 = 20, X34 = 60; Xo = 500. 

Note that the problem has an alternate optimal solution, since S-W 
entry in cells C13 and C14 are zero. Let us make the nonbasic variable 
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XI3 to enter the basis. Write e here and make a loop. Assigning e = 30, 
we get a nondegenerate optimal solution as 

Xll = 20, XI2 = 30, X22 = 20, X23 = 30, X33 = 20, X34 = 60; Xo = 500. 

If the CI4 cell is made basic by assigning e quantity and making 
the loop, we get the second alternate alternate optimal solution as 

Xll = 20, XI4 = 30, X2I = 50, XI3 = 0, X33 = 50, X34 = 30; Xo = 500. 

Transportation problem as a maximization case. Usually, the 
maximization transportation problem is converted into minimization 
problem by anyone of the procedures: 

(i) All Ci/S are multiplied by -1 and the problem is solved as min­
imization problem. Remember to multiply the minimum value 
available at the end by -1. 

(ii) All Ci/S are subtracted from the largest cost of effectiveness ma­
trix and then problem is solved as a minimization problem. To 
write the minimum value, allocations are multiplied by the orig­
inal Cij'S. 

7.3 Unbalanced Thansportation Problem 

To deal with an unbalanced transportation problem CL: ai I- 1:: bj ) 

to obtain its BFS or the optimal solution, we first convert this into a 
balanced transportation problem as follows: 

Create a dummy row (dummy source) if total demand exceeds 
total supply or a dummy column (dummy destination) if total supply 
exceeds total demand. The supply or demand at the dummy origin is 
equal to the symmetric difference of total supply and total demand. 

Let us solve an unbalanced transportation problem as our next 
example. 

Example 3. A company has facilities at cities A, Band C which 
supply warehouses at cities D, E and F. The monthly factory capacities 
are 50, 150 and 200 units, respectively. The monthly requirements are 
100, 130 and 200 units, respectively. The shipping cost per unit are 
given in the following network. 
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(a) Formulate the LP model for this problem. 

(b) Also, write dual of the above problem. 

(c) Use the VAM to get the starting BFS. 

(d) Find the optimal solution. 

(e) Does there exist an alternative optimal solution? If it exists, 
then find it. 

(f) Is the optimal solution degenerate? If it exists, write why? Oth­
erwise give reasons for its absence. 

(g) If the penalties per unit cost for the unsatisfied demand are 5, 
2, 1 for the cities D, E and F, then find the optimal solution. 

The effectiveness matrix of the problem is 

D E F 

A 50 

B 150 

c 200 

100 130 200 
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(a) LPP formulation: 

min Xo = 2xn + X12 + 4X13 + 3X21 + X22 + 2X23 + 5X31 + 6X32 + 7X33 

s.t. Xn + X12 + X13 = 50 

X21 + X22 + X23 = 150 

X31 + X32 + X33 = 200 

X11 + X21 + X31 ::s: 100 

X12 + X22 + X32 ::s: 130 

X13 + X23 + X33 ::s: 200 
Xij 2: 0, i = 1,2,3; j = 1,2,3. 

(b) To write its dual, first we write the last three constraints (as­
sociated with columns) as 2: constraints to covert this into canonical 
form, see Chapter 4. 

The dual LPP is 

max Yo = 50Ul + 150u2 + 200U3 - 100Vl - 130v2 - 200V3 

s.t. Ul-Vl::S:2 

Ul - V2 ::s: 1 

Ul - V3 ::s: 4 

U2 - Vi ::s: 3 

U2 - V2 ::s: 1 

U2 - V3 ::s: 2 

U3 - Vi ::s: 5 

U3 - V2 ::s: 6 

U3 - V3 ::s: 7 

Ul, U2, U3 unrestricted, Vi, V2, V3 2: O. 

Here Ul, U2, U3 and Vi, V2, V3 are the dual variables corresponding to 
the row constraints and the column constraints, respectively. 

(c) To find its initial basic feasible solution, first we write the prob­
lem as balanced balanced transportation problem. Since the demand 
is more than the supply, we add a fictitious supply, i.e., one additional 
row is attached with the cost matrix. The supply at the dummy origin 
is 430 - 400 = 30 units. The initial BFS (computed using VAM) of 
the balanced transportation is given in the following table. 

The starting BFS and the cost of transportation are 

X12 = 50, X22 = 80, X23 = 70, X31 = 70, X33 = 130, X43 = 30; Xo = 1470. 
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26 1 1 1 

156 1 1 -

100 200 1 

30 J(( 0 

.13Q- 200 
.stY Wi 

At:( 

2 2 
1 0 2 
3 5 3 

(d) Optimal solution. As usual, we apply the u-v method to find 
its optimal solution. After the first iteration, we observe that all S-W 
entries :::; 0, and thus, the BFS obtained in (c) is optimal, see Table 
11. 

Table 11 

v )1 = 5 v )2 = 6 v 3= 7 
2 1 4 

Ul =-5 50 

i--=1J -=2l 
3 1 2 

U2 =-5 

-=3l iOl 
150 

5 6 7 
U3 = 0 100 80 20 

0 0 0 
U4 =-7 

-=2l 1-=11 
30 

(e) Since at least one of the S-W entry is '0', and hence, an alter­
native optimal solution exists. Bring the nonbasic variable X22 of this 
cell into the basis cell. By making a loop we find that () = 80, and 
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hence, one of the alternative optimal solution is 

X12 = 50, X22 = 80, X23 = 70, X31 = 100, X33 = 100, X43 = 30. 

(f) The optimal solution is not degenerate as all basic variables 
4 + 3 - 1 = 6 are having positive values. 

(g) Insert the penalties 5, 2 and 1 in the last row. To find the 
optimal solution under this restriction, we first find the initial BFS by 
VAM. 

100 

1 
1 
3 

The initial BFS is 

j3(}-

.stY 

0 
0 
5 

~ 111 

1-56 11-

~ 111 

30 ]if 1 - -

200 
MD 
A(( 

2 
3 

X12 = 50, X23 = 150, X31 = 100, X32 = 80, X33 = 20, X43 = 30. 

and the corresponding transportation cost is 1500. It can be easily 
verified that this BFS is an optimal solution. 

Note. The initial basic feasible solution of a transportation problem 
is usually obtained by North-West rule (NW-rule), Least cost method 
(LCM) and Vogel approximation method (V AM) . In most of the practi­
cal problems, the transportation problems are found to be unbalanced. 
It is but natural to search the initial BFS which is very nearer to the 
optimal solution so that computational labour and time is saved to 
reach the optimality. Here, we suggest a simple algorithm which is 
applicable for all heuristics employed to find the initial BFS. 
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Algorithm. The algorithm consists of the following steps: 

Step 1. Ignore the dummy row or column for calculation, and apply any 
method to allocate the resources in all cells (except the dummy 
cells ). 

Step 2. In Step 1, all row constraints are satisfied (if demand exceeds 
supply) or all column constraints are satisfied (if supply exceeds 
demand). Now, allocate the excess demand or supply to dummy 
cells so that it does not violate supply and demand restrictions. 

Let us consider the unbalanced transportation problem 

50 

50 

50 

30 40 55 

A comparison of initial transportation costs calculated by different 
approaches is given as 

Heuristics Conventional approach Suggested 

NW Rule 1690 1690 

LCM 1670 1570 

VAM 1620 1540 

The heuristic proposed here most often results in better transporta­
tion cost than obtained by the techniques available in the literature. 
First, this exploits the full potential of any heuristics, and then the 
distribution is made independent of any priority to the dummy cells. 

7.4 Transshipment 

When the items to any destination from any source or destination 
directly or through some other transition node are transported, the 
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process is called the transshipment. Hence, in the transshipment all 
sources and destinations can function in any direction. Usually, in 
the absence of the transshipment, the transportation cost goes higher. 
Hence, the transshipment is very useful to reduce the transportation 
cost. In the transshipment, we have usually two type of problems, 
viz., (a) transshipment through sources and destination; (b) transship­
ment through transition nodes. 

(a) Transshipment through sources and destinations. As 
usual the cost matrix is between sources and destinations. The second 
cost matrix is given among sources, and the third cost is among desti­
nations. Then to solve a transportation problem with transshipment 
we adopt the following procedure. 

(i) Make the fourth cost matrix with sources 8 1,82 , ... , 8m , D 1 , D 2 , 

... , Dn and destinations 8 1,82 , ... , 8m, D1 , D2 ,· •. , Dn. 

(ii) Add L ai or L bj to each of the availabilities and requirements. 
In case L ai and L bj are different, then add larger of the L ai 

and L bj , which is called buffer stock. The buffer stock should 
be sufficiently large so that all the original supply (or demand) 
units pass through the transshipment nodes. 

Let B be the desired buffer stock. Then 

B = max {supply, demand}. 

Example 4. Solve the following transportation problem using the 
transshipment process. 

Here 81 and 8 2 are the purely sources and have zero requirement, 
and to make them destinations, we add B (buffer stock) 

B = max{350, 400} = 400 

in the bottom of columns 1 and 2, respectively. Similarly, D1 and D2 
are purely destinations and as sources these have nothing to supply, 
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100+40C 

250+40C 

400 

400 

400 400 200 + 400 200 + 400 

and hence, 400 is added in the third and fourth rows. Also, add 400 
to the availability in the first and second row, and to the demand at 
third and fourth column, see Table 12. The resulting transportation 
model is unbalanced. Hence, add fictitious sources SF, since demand 
is higher than supply (2: ai < 2: bj). This will make the problem as a 
balanced transportation problem, see Table 13. First, we find its BFS 
by VAM. 

Table 13 

150 200 150 sOO JOO 1j{{ 111111 

250 056256 111111 

400- 2-----

~ 22----

SF 50 W 000---

4etr 4{)(( 600 600-
25(}- 200 200 200-

.ue-
0 0 0 0 
0 0 2 2 

0 0 2 4 

2 2 
2 
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Now, we check the above BFS for optimality. Introduce the dual 
variables UI, U2, U3, U4, U4, and VI, V2, V3, V4 corresponding to the rows 
and columns respectively. Compute their values using the basic cells 
and the relation Ui + Vj = Cij. Then compute the S-W entries of the 
basic cells using the expression Ui + Vj - Cij. This analysis is shown in 
the following table. 

VI = 0 V2 = -1 V3 = 2 
0 1 2 4 

UI = 0 150 
I-2l 

200 150 500 

1 0 4 6 
250 400 650 

I-Il ~ 
2 4 0 2 

U3 =-2 400 400 

-=4l Pl 101 
4 6 2 0 

400 400 

-=8l I-IT1 R 
0 0 0 0 

U5 =-4 50 50 

-=4l --=5l -=2l 
400 400 600 600 

All the S-W entries are :::; O. This tells us that the basic feasible 
solution by VAM is optimal. The optimal solution can be read from 
the flow chart as depicted in Fig. 7.2. 

Figure 7.2 
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Dl has received 200 from 8 2 through 8 1 

D2 has received 150 from 8 2 through SI 

The optimal cost = 1250 

Note. This can be verified that the optimal transportation cost without 
transshipment (solution of the first cost matrix) is 1500. 

(b) Transshipment through transition nodes. Let us workout 
next example of the transshipment in which sources can not function as 
destinations. However, some destinations are supplied through some 
transition nodes and within themselves also. The following example 
will make the context clear. 

Example 5. The network in Figure 7.3 gives the shipping routes from 
source 1 to destinations 5 and 6 through intermediate destinations 3 
and 4. The unit cost of transportation is shown on the respective arcs. 
Formulate the problem as transshipment model and then solve. 

150 6 100 

4 

5 
3 

250 8 300 
---~2 JL--------< 6 

Figure 7.3 

First, we formulate the problem. From network, observe that the 
nodes 1 and 2 are purely supply nodes, while 3, 4 and 5 are transship­
ment nodes, and node 6 is purely a destination node. 

Supply at a purely supply node = Original supply 

Supply at transshipment node = Original supply + Buffer 

Demand at purely demand node = Original demand 

Demand at a transshipment node = Original demand + Buffer 

Also, from the network, nodes 1 and 2 (sources) can not supply 
directly to the destinations nodes 5 and 6, and hence, big M is to be 
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inserted in the cost matrix in corresponding cell. Similarly, nodes 5 
can not supply to transshipment nodes 3 and 4, and again big M is 
inserted in the appropriate cells. The buffer stock B is 

B = max{150 + 250, 300} = 400. 

Thus, to make the cost matrix we take nodes 1 to 5 as the sources 
and the nodes 3 to 6 as the destinations. Add the buffer stock to nodes 
3 to 5 as these are transition nodes and have nothing to supply. Also, 
add the buffer stock to the nodes 3 to 5 when these act as destinations. 
Note that the node 5 is already having the requirement of 100. Hence, 
the final requirement at the node 5 will be 500. All these calculations 
have been soon in the following table: 

3 4 5 6 

150 150 

2 
250 

3 
250 400 

4 

400 

5 
100 300 400 

400 400 500 300 

In the above table we have shown its BFS. This can be verified to 
be optimal by the u - v method. The outcome of the transshipment 
network is shown in Figure 7.4. From Fig. 7.4, it is clear that the des­
tination 6 gets its requirement fulfilled from the destination 5 through 
the transshipment node 4. 

Remark. In Example 5, we have adopted a special technique to find 
the initial BFS. Ignore all cells with big M. Move satisfying column­
wise making allocation at the lowest cost entries. Thus, consider 8 1 , 

D1 and the first column. Then 8 2 , D2 and the second column, and 
similarly, third and fourth columns, respectively. 
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150 150 

250 250 
--~2 

Figure 7.4 

7.5 Assignment Problems 

An assignment problem is a particular case of the transportation prob­
lem. The transportation problem reduces to the assignment problem, 
if m = nand ai = bi = 1, i = 1,2, ... ,n. It means that the variable 
Xii can take value 0 or 1 only. The LPP formulation of the assignment 
problem is 

n n 

mm f = LLCijXij 

i=1 j=1 

n 

s.t. LXij = 1 
j=1 

n 

Xij = 0 or 1, 1 ::; i, j ::; n 

Since, the assignment problem is a particular case of the trans­
portation problem wherein workers and jobs are treated as sources 
and destinations, respectively as well as the supply at each source, 
and demand at each destination are equal to 1. The assignment prob­
lem involves assignment of jobs to workers on a one-to-one pattern. 
The number of jobs is presumed to be equal to the number of work­
ers. However, if this is not the case, either fictitious jobs or workers 
as required can be created to satisfy this assumption. The time Cij 

required by the ith worker to complete the jth job is known. The 
objective here is to assign a job to every worker so that all jobs are 
completed in the minimum total time. 

All the techniques developed in Sections 7.1-7.3 to find the op­
timal solution of the transportation problem are also applicable here. 
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However, due to its typical formulation we will discuss special designed 
technique widely known as the Hungarian method developed by Konig 
and Egervary. 

Theorem 1. If the cost matrix for an assignment problem has non­
negative entries and at least n zeroes, then an optimal solution to the 
problem exists if n of the zeroes lie in the positions of the ones of some 
n x n permutation matrix P. The matrix P represents an optimal 
assignment. 

Proof. In the situation described, the cost can never be smaller 
than zero, and we have found an assignment for which the cost is zero. 

This theorem provides a way to construct an algorithm for assign­
ment problems. We will show that we can modify the cost matrix 
without changing the optimal solution. The algorithm will then at­
tempt to carry out this modification to reach a situation in which the 
cost matrix has at least one zero in each row and in each column. 

Theorem 2. Suppose that C = (Cij) is the cost matrix for an n x n 

assignment problem, and X = [Xij] is an optimal solution to this 
problem. Let C' be the matrix formed by adding a to each entry in 
the rth row. Then, X is an optimal solution to the new assignment 
problem defined by C'. 

Proof. The objective function for the new problem is 

n n n 

z' = L L CijXij(j -# r) + L(crj + oo)xrj 
i=l j=l j=l 

n n n 

= LLCijXij +00 LXrj 
i=l j=l j=l 

n n 

= LLCijXij + a, 
i=l j=l 

since each row sum is 1. Therefore, the smallest value for z' will be 
obtained when 

n n 

Z = LLCijXij 
i=l j=l 

is smallest; namely, it is obtained when X = X. 
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7.6 Hungarian Method 

The Hungarian method to solve the assignment problem is outlined 
with the help of a numerical problem. We assume here that the 
cost matrix has nonnegative entries. Before begin with the Hungarian 
method we need a reduced cost matrix defined as 

Reduced Matrix. A matrix which contains at least one zero in 
each row and in each column is called a reduced matrix. A reduced 
cost matrix is obtained as follows: Subtracting the lowest entry of 
a row from the remaining entries of this row. Do this for each row. 
Observe that whether, we have received the reduced cost matrix. If 
not, then do the same procedure for the columns which do not have 
at least one zero. 

Sometimes it is convenient and the solution converges rapidly, if 
we reduce the matrix by applying column reduction first and then row 
reduction. A such type of case has been mentioned in the Problem set 
of the Chapter 8. 

Example 6. Four persons A, B, C, D are assigned to work on four 
different machines. The following table shows how long it takes for a 
specific person to finish a job at a specific machine. 

Persons 

A 

B 

C 

D 

Machines 
I II III IV 

8 26 17 11 

13 28 4 26 

38 19 18 15 

19 26 14 10 

Find the optimal allocation, i.e., how the machines should be as­
signed to A, B, C, D so that the job is completed in minimum time. 

Step 1. First, we get the reduced matrix, see Table 14. The reduced cost 
matrix defines an assignment problem that has the same optimal 
solutions as that of the original cost matrix. 

Step 2. For the first assignment, choose the row having only one zero and 
box this zero and cross all other zeros of the column and row in 
which this boxed zero lies. Next, examine other rows containing 
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Table 14 

0 14 9 3 

9 20 0 22 

23 0 3 0 

9 12 14 0 

single zero and do the same job. If there are more that one zero 
in any row, then leave it for the time being. Now, repeat the 
same procedure for the columns. This gives Table 15. 

Table 15 
I II III IV 

A [QJ 14 9 3 

B 9 20 [QJ 22 

c 23 [QJ 3 )( 

D 9 12 14 [QJ 

Step 3. If each zero of the reduced matrix is either boxed or crossed, 
and each row and column contains exactly one boxed zero, then 
optimality is reached, and this occurs in Table 15. 

The optimal assignment: A ------t I, B ------t I II, C ------t II, D ------t IV. 
The optimal value = 41. 

If all the zeros are boxed or crossed and even then each row and 
each column does not contain a boxed zero, it is not possible to get the 
optimal solution at this stage. We proceed further to deal with this 
structure. Again, the algorithm is explained by solving a problem. 

Example 7. Consider the following assignment problem and find its 
optimal solution. Does the problem has alternative optimal solutions? 



236 CHAPTER 7. TRANSPORTATION PROBLEMS 

5 5 7 4 8 

6 5 8 3 7 

6 8 9 5 10 

7 6 6 3 6 

6 7 10 6 11 

Step 1 gives the following reduced matrix, see Table 16. Now, box 

Table 16 

1 0 0 0 1 

3 1 2 0 1 

1 2 1 0 2 

4 2 0 0 0 

0 0 1 0 2 

and cross zeros in accordance to Step 2, see Table 17. 

Table 17 

1 [QJ X X 1 

3 1 2 [QJ 1 

1 2 1 X 2 

4 2 [QJ 'j( )( 

[QJ Xl: 1 'j( 2 

Every zero is either boxed or crossed, even then each row and 
column does not contain exactly one boxed zero, i.e., the optimality is 
not reached. 

We proceed by drawing minimum number of horizontal and vertical 
lines so that all the zeros are covered (each horizontal line must pass 
through an entire row and each vertical line must pass through an 
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entire column). This can be accomplished easily by first covering zeros 
in that row or column which has maximum number of zeros. If there 
exists a tie break it arbitrarily and further search the rows or columns 
having next lower to highest number of zeros in some column or row 
and continue this process till all zeros are covered, see Table 18. Note 
that four lines are needed to cover all zeros this is due to fact that only 
four assignment could be made previously in Table 17. 

Table 18 

-1- - -{}- -{}- -Q- -1- -
I 

3 1 2 Q 1 
I 

1 2 1 Q 2 
I 

-4- -2- - -{}- -Q- -{}-
I 

-{}- -{}- -1- - -Q- -2- -
I 

Locate the smallest entry from the uncovered entries, say x. Sub­
tract x from all elements not covered by these lines and add x to all 
those elements that lie at the intersection of these lines. The entries 
lying on these lines but not on the intersection must be left unchanged. 
After these changes are incorporated, the revised cost matrix is given 
in Table 19. 

Table 19 

1 0 0 1 1 

2 0 1 0 0 

0 1 0 0 1 

4 2 0 1 0 

0 0 1 1 2 

Now, apply the Hungarian algorithm freshly to come to the stage 
so that each row and column contains exactly one boxed zero. In 
Table 19, there is no single zero in any row or column. We should go 
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for rows with two zeros from above. In the first row cells (1,2) and 
(1,3) have zeros. We can box anyone of them. Let us break the tie 
arbitrarily, and box zero of cell (1,2). Cross all zeros in first row and 
second column. Move row-wise and note that now cell (4, 1) contains a 
single zero, and hence, box it and cross all zeros of fourth row and first 
column. After these steps, no single zero is available in any row. Same 
thing happens for columns. Again, cells (2,4) and (2,5) contain two 
zeros each. Let us box zero of cell (2,4) and cross all zeros in second 
row and fourth column. Now, the third and fourth rows have single 
zero in cells (3,3) and (4,5). Box these zeros. Thus, we get Table 20 
which contains exactly one zero in each row and column, and hence, 
the optimal assignment is reached. 

Table 20 

1 [QJ X 1 1 

2 X 1 [QJ X 
0 1 [QJ X 1 

4 2 X 1 [QJ 

[QJ X 1 1 2 

The optimal assignment: 1 -----t 2, 2 -----t 4, 3 -----t 3, 4 -----t 5, 5 -----t l. The 
optimal value = 29. 

The problem has alternative optimal solutions, see just next Re­
mark l. 

Remarks. l. Sometimes there is no single zero in any row and column 
of the reduced matrix. In this case arbitrary choice of zero (to be 
boxed) in the row or column which has minimum number of zeros 
is advisable, see Table 20 just above. Note that in such situations 
the assignment problem has alternative solution. For above problem 
alternate optimal assignments are 

The optimal assignment: 1 -----t 3, 2 -----t 4, 3 -----t 1, 4 -----t 4, 5 -----t 2. The 
optimal value = 29. 

The optimal assignment: 1 -----t 2, 2 -----t 5, 3 -----t 4, 4 -----t 3, 5 -----t l. The 
optimal value = 29. 

The optimal assignment: 1 -----t 3, 2 -----t 2, 3 -----t 4, 4 -----t 5, 5 -----t l. The 
optimal value = 29. 
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2. If the problem is maximization, a simple modifications is done 
in the cost matrix. First, multiply each entry Cij by -1, then add to 
each entry the negative of the smallest entry. This results in a new cost 
matrix with nonnegative entries, and now the Hungarian is applicable. 

3. An assignment may be be an unbalanced problem. Suppose 
five jobs are to assigned to six workers. Then, a dummy job is to be 
created so that square cost matrix is available and dummy in row or 
column the costs are taken to be zero. 

Finally, we solve a special problem which is solved as an assignment 
problem. 

Example 8. A trip from Chandigarh to Delhi takes six hours by bus. 
A typical time table of the bus service in both the directions is given 
below. 

Departure Route Arrival Departure Route Arrival 

Chandigarh number Delhi Delhi number Chandigarh 

06.00 a-+ 12.00 5.30 1-+ 11.30 

07.30 b-+ 13.30 09.00 2-+ 15.00 

11.30 c-+ 17.30 15.00 3-+ 21.00 

19.00 d-+ 01.00 18.30 4-+ 00.30 

00.30 e-+ 06.00 00.30 5-+ 06.00 

The cost of providing this service by the transport depends upon the 
time spent by the bus crew away from their place in addition to service 
times. There are five crews and there is a constraint that every crew 
should be provided at least 4 hours of rest before the return trip again 
and should not wait for more than 24 hours. The company has resi­
dential facilities for the crew at both the cities. Determine the service 
schedule so that the waiting time is minimum. 

As the service time is constant, it does not affect the decision of sta­
tioning the crew. If all crew members are asked to reside at Chandigarh 
(so that they start from and come back to Chandigarh with minimum 
halt at Delhi), then waiting time at Delhi for different line connections 
may be calculated as follows: 

Since the crew has layover of more than 4 hours between the bus 
trips, the layover time between the trip a and trip 1 will be from 12.00 
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(day) to 5.30 AM (next day), i.e., 17.5 hours. Likewise 

Bus route no Layover times 

a ----) 2 12 day to 9 AM next day = 21 

a ----) 3 12 day to 15 =24 

a ----) 4 12 day to 18.30=6.5 

a ----) 5 12 day to 0.00=12 

b ----) 1 13.30 to 05.30=16 

and so on. 

When the crew is assumed to reside at Chandigarh, the cost matrix 
is constructed as 

Layover times when the crew reside at Delhi 

1 2 3 4 5 

a 17.5 21 3 6.5 12 

b 16 19.5 1.5 5 10.5 

c 12 15.5 21.5 1 6.5 

d 4.5 8 14 17.5 23 

e 23 2.5 8.5 12 17.5 

Similarly, if crew is is assumed to reside at Delhi (so that they start 
from and come back to Delhi with minimum halt at Chandigarh), then 
minimum time waiting time at Chandigarh for different bus routes is 
given in the following table. 

Layover times when the crew reside at Chandigarh 

1 2 3 4 5 

a 18.5 15 9 5.5 0 

b 20 16.5 10.5 7 1.5 

c 0 20.5 14.5 11 5.5 

d 7.5 4 22 18.5 13 

e 13 9.5 3.5 0 18.5 
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Construct the final cost matrix by taking smaller layout times be­
tween bus trips with the help of above two tables, provided the value 
is more than 4 hours. The final cost matrix is 

1 2 3 4 5 

a 17.5 15 9 5.5 12 

b 16 16.5 10.5 5 10.5 

c 12 15.5 14.5 11 5.5 

d 4.5 8 14 17.5 13 

e 13 9.5 8.5 12 17.5 

The Hungarian method can now be applied for finding the optimal 
connections which give minimum overall layout times, and hence, the 
minimum cost of bus service operations. This method is well explained 
well in Examples 6 and 7, therefore we directly write the out come of 
the method of assignments. The reduced cost matrix is shown in Table 
21. It is obvious that the four assignments can not be made at this 

Table 21 
2 3 4, 5 

, 
a 12 9.5 3.5 ~ 6.5 

, 
b 11 11.5 5.5 ~ 5.5 

, 
c 6,-5- -l8- -9 - §,~5- -(} -

, 
d -{}- 3~5- 9,-5- ~3- £,-5-

, 
e 4,-5- -}- - -(} - ~~5- 9--

stage. Hence, only four horizontal and vertical lines are needed to 
cover all zeros, see again Table 21. 

Now, subtract 3.5 (minimum of all uncovered zeros) from each 
uncovered entries and add this quantity to the entries being at the 
intersection of horizontal and vertical lines. The remaining entries are 
to be kept unchanged, see Table 22. Now, by the usual method, we 
get the following optimal assignment table. 

From Table 22, we get the following assignments: 



242 CHAPTER 7. TRANSPORTATION PROBLEMS 

Table 22 
1 2 3 4 5 

a 8.5 5 [Q] X( 3 

b 
7.5 7 2 [Q] 2 

c 6.5 9 9 9 [Q] 

d [Q] 2.5 9.5 16.5 8.5 

e 4.5 [Q] X 7 9 

Crew Residence at Service number Waiting hours 

1 Chandigarh dl 4.5 

2 Delhi 2e 9.5 

3 Delhi 3a 9.0 

4 Chandigarh b4 5.0 

5 Delhi 5c 5.5 

Total minimum waiting time = 4.5 + 9.5 + 9 + 5 + 5.5 = 33.5 = 33 
hours and 30 minutes. 

Problem Set 7 

1. Plant superintendent of an industry has to assign four different 
categories of machines to five type of tasks. The number of 
machines available in the four categories are 25, 30, 20 and 30. 
The number of jobs available in four categories are 20, 20, 30, 15, 
and 20. Machine category 4 can not be assigned to task 4. For 
the unit costs given below, determine the optimal assignment of 
machines to tasks. 
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Task type -t A B C D E 
Machine category 1 

1 10 2 3 15 9 

2 5 10 15 2 4 

3 15 5 14 7 15 

4 20 15 13 11 8 

2. Suddenly, due to change in the government policy on octroie 
and entry tax the unit transportation from factory A to city F 
is decreased to 1 in example of Section 7.3, then explain how the 
optimal solution is affected (without finding the initial BFS). 

3. Solve the following transportation problem under the restriction 
that the requirement at Destination 2 must be shipped only from 
Source 3. 

150 

f-----.--+------.-+-,----j 200 

L-_---'--__ L--_----l 30 
100 130 200 

Suggestion. Cross the cells with C12, C22, C42. Allocate 130 in cell 
C32 and find optimal solution for the remaining two columns. 

4. If demand at destination F in the example of Section 7.3 must 
be exactly satisfied, then find the optimal solution under this 
restriction. 

Suggestion. Add the fictitious source to make the problem bal­
anced, and cross the cell with C43. This will not permit dispatch 
to this cell from the fictitious source. 

5. In Kargil, the heavy fighting is going on with terrorists at four 
hill stations Dl, D2, D3 and D 4 . The food is to be supplied to 
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28 

23 

19 

5 15 20 25 

these stations by three air crafts 8 1 , 8 2 and 83. The following 
cost matrix is given 

In this cost matrix, let ai denote the total number of trips that 
aircraft 8 i can make in one day, bj denote the trips required at 
the hill station D j in one day, Cij denote the amount of food 
grain that aircraft 8i can to carry to hill station D j. How many 
trips by the aircrafts 8 i should make to hill stations D j so that 
maximum amount of food can be supplied. 

6. Consider the following transportation problem 

50 

50 

50 

30 40 55 25 

Find the initial BFS using N-W rule, LCM, VAM. Modify the 
VAM by calculating the penalties as differences of the lowest cost 
and highest cost for each row and column, and then compute the 
initial BFS using allocation rules of VAM. Which heuristic gives 
the better BFS. 

7. A transportation model has m sources and n destinations. Given 
that supply is more than demand. How many basic feasible 
solutions does this problem has? 
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8. The following table shows all the necessary information on the 
available supply from each warehouse, the requirement of each 
market and the unit transportation cost in each N-W entry. The 
shipping manager has worked out the following schedule from 
experience: 12 units from A to II, 1 unit from A to III, 9 units 
from A to IV, 15 units from B to III, 7 units from C to I and 1 
unit from C to III. 

I 11 III IV 

A 

B 

c 
7 12 17 9 

(a) Verify whether the manager has made the optimal schedule. 

(b) If the manager is approached by a carrier of route C to II 
who offers to reduce his rate in the hope of getting some 
business, by how much the rate be reduced by the carrier 
before the manager should consider giving him business. 

(c) If the supply from warehouse B reduces to 12 units and si­
multaneously the requirement of market III reduces further 
to 10 units, will the original optimal optimal schedule be 
affected? Write the optimal solution in this situation. 

9. The following is the optimal table of a transportation problem. 

25 

20 10 

20 0 

5 25 
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The dual variables corresponding to the destinations are -1,2,1,3, 
respectively and those corresponding to sources are 1,2,0,1, re­
spectively. Find the optimal transportation cost in two different 
ways. 

10. In the following transportation model, if a unit is not shipped, 
a storage must incur. Let the storage cost per unit at sources 
Sl, S2 and 8 3 be 3, 2 and 1, respectively, then find the optimal 
solution. 

D1 D3 

81 20 

82 40 

83 50 
30 25 45 

11. A company has plants at A, Band C which have capacities to 
assemble 300, 200 and 500 cars per day. The assembling cost 
(per car) in these plants are $70, 60, and 66, respectively. Four 
retail customers have placed orders on the following pattern 

Consumer Cars required per day Price offered ($ per car) 

I 

II 

III 

IV 

400 

250 

350 

150 

100 

100 

100 

103 

Shipping costs in rupees per car from plants to customers are 
given in the following table. 

I II III IV 

A 3 5 4 6 

B 8 11 9 12 

C 4 6 2 8 

Find the optimal schedule of the above problem. 
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12. A company dealing in international trading buys no-band textile 
outlets from China, India and the Philippines, ships to either 
Singapore or Taiwan for packing and labeling, and then ships to 
the USA and France for sale. The transportation costs per ton 
in $ between sources and destinations are given in the following 
table: 

China India Philippines USA France 

Singapore 50 

Taiwan 60 

90 

95 

70 

50 

150 

130 

180 

200 

Suppose the company purchased 60 tons of no-bland from China, 
45 tons from India and 30 tons from Philippines. The USA mar­
ket demands 80 tons of labeled products and the France market 
55 tons. Assume that the packaging and labeling do not change 
the weight of textile products. 

(a) If both Singapore and Taiwan have unlimited packaging and 
labeling capacity, formulate a linear programme to help the 
company minimize the shipping cost. 

(b) If Singapore can process at most 60 tons of no-bland, what 
will be change in your formulation? 

(c) If Singapore can process at most 60 tons of no-bland and 
Taiwan can process at most 75 tons, what will happen to 
your formulation? 

(d) Under condition (c), try to reduce the linear program to 
two independent transportation problems. 

13. An industry has three assembly plants for scooters at cities 1, 
2 and 3. The scooters are shipped to retail customers 6, 7 and 
8 from storage centers located at cities 4 and 5. The shipping 
cost per scooter (in $100) are shown on the arcs of the following 
network. 

(a) Solve the problem as transshipment model, and find the 
optimal solution. 

(b) Suppose that the distribution centre 4 can sell 200 scooters 
in the local market directly to the customers. Find the new 
optimal solution. 
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900 J-----i;.~ 800 

1100 ------;;.~900 

1000 )------;;.~ 1300 

14. There are six skilled workers and six machines. In the following 
matrix the efficiency of each worker to work on each machine 
is given. Formulate the problem so that maximum efficiency is 
utilized. 

5 5 7 4 8 1 

6 5 8 3 7 2 

6 8 9 5 10 3 

7 6 6 3 6 4 

6 7 10 6 11 5 

3 2 9 6 5 7 

15. Find the minimum number of man hours required to complete 
the jobs Jl, h, hand J4 by persons M 1, M2, M3 and M4 under 
the restriction that job h can not be assigned to person M 2 • 

The cost matrix is given as 

4 4 10 5 

6 6 13 8 

5 8 2 2 

9 13 7 7 

16. The secretary of a school is taking bids on the city's four school 
bus routes. Four companies have made the bids (in rupees) as 
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Routes 

1 2 3 4 

1 4000 5000 - -

- 4000 - 4000 2 

Companies 

3 3000 - 2000 -

4 - - 4000 5000 

detailed in the following table: Suppose each bider can be as­
signed only one route. Use the assignment model to minimize 
the school's cost of running the four bus routes. 

17. In the modification of a plant layout of a factory four new ma­
chines M I , M 2 , M 3 , M4 are to be installed in a workshop. There 
is provision at five places A, B, C, D, E for installation. Because 
of the space limitations the machine M2 can not be installed at 
the position A. The cost of installation machine i at jth place 
are shown below. 

Locations 

A B C D E 

9 11 15 10 11 

- 11 7 10 9 
Machines 

13 11 16 14 15 

14 8 19 7 13 

Suggestion. This is unbalanced assignment problem. Introduce 
one fictitious machine in fifth row and assign zero cost to each 
cell in this row. Now, the problem is amenable to the Hungarian 
algorithm. 

18. A cycle company has four distribution centres and four sales­
men to operate at these centres. The distribution centres are 
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not having equal potential for sales in the open market. It is 
estimated that a typical salesman operating in each distribution 
centre would bring the following annual revenue 

Distribution centre I II III IV 

Annual sales ($) 126000 105000 84000 63000 

The four salesman also differ in their ability. It has been ob­
served that, working under the same conditions, their annual 
sales would be proportional as follows: 

Salesman ABC D 

Proportion 7 5 5 4 

If the criteria is to maximize total sales, then the intuitive answer 
is to assign the best salesman to richest distribution centre, the 
next best salesman to the second richest, and so on, verify this 
answer by assignment by assignment technique. 

Suggestion To avoid fraction values of annual sales of each sales­
man at each distribution centre, for convenience consider their 
annual sales as 21 (the sum of all proportions), taking $1,000 as 
one unit. The following cost matrix is obtained 

Distribution centre 

I II III IV Sales proportion 

A 42 35 28 21 7 

B 30 25 20 15 5 

Salesman C 30 25 20 15 5 

D 24 20 16 12 4 

Sales (in $1,000) 6 5 4 3 

Solve the problem as a maximization assignment problem. 

19. A small airline company, owing five planes operates on all seven 
days of a week. Flights between three cities A, Band C according 
to the following schedule is given below. 
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Flight From Departure To Arrival 

no. time time 

(hours) (hours) 

1 A 09,00 B 12.00 

2 A 10.00 B 13.00 

3 A 15.00 B 18.00 

4 A 20.00 C Midnight 

5 A 22.00 C 02.00 

6 B 04.00 A 07.00 

7 B 11.00 A 14.00 

8 B 15.00 A 18.00 

9 C 07.00 A 11.00 

10 c 15.00 A 19.00 

Find how the planes should be assigned to the flights so as to 
minimize the total layover cost. It is assumed that that the 
layover cost on a route in both directions is equal to the sum of 
the squares of the layover times between the flights. 

20. An airline that operates seven days a week has time-table as 
shown below. Crew must have minimum layover of 5 hours be­
tween the flights. Obtain the pairing of flights that minimizes 
the layover time away from home. For any given pairing, the 
crew will be based at the city that results in smaller layover. 

Delhi-Jaipur 

Flight no. Departure Arrival 

1 7.00AM 8AM 

2 8.00AM 9.00AM 

3 1.30PM 2.30PM 

4 6.30PM 7.30PM 
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J aipur-Delhi 

Flight no. Departure Arrival 

101 8.00AM 9.15AM 

102 8.30AM 9.45AM 

103 12.00 Noon 1.15PM 

104 5.30PM 6.45PM 

For each pair also mention the town where the crew should be 
based. 

21. Multi-dimensional Transportation Problem. A shoe man­
ufacturer has R factories in various parts of the country. Each 
of the R plants can manufacture m different types of shoes. The 
shoes are to be transported from the factories to n different areas. 
The following information is available. 

aik = required number of units to be transported from the fac­
tory i to the area k; 

bjk = required number of units of type j to be transported to 
the area k; 

dij = number of units of type j available at the factory i; 

Xijk = amount of the jth type made in the ith plant transported 
to the kth area; 

Cijk = cost of transportation of one unit of the jth type from the 
ith plant to the kth area Xijk 2': O. 

Formulate the problem and state the procedure to solve it. 



Chapter 8 

N etwor k Analysis 

This chapter is devoted to different type of networks which occur in 
real life problems. The analysis of these networks have been done from 
different angles. The main topics are the Minimal spanning tree algo­
rithm, the Shortest route problem, and the Maximum flow problem. 

8.1 Introduction to Networks 

A network consists of a set of nodes linked by arcs. In Chapter 6, the 
transportation and assignment are also network problems. Here, we 
study the network in more generalized context. First, we define certain 
terms in reference to networks. The simple notation for a network is 
(N, A), where N is the number of nodes and A is the set of arcs. For 
example, in Fig 8.1: 

Figure 8.1 

N = {1, 2, 3,4, 5}, A = {(1, 3), (1,2), (2,4), (2,5), (3,4), (3,5), (4, 5)}. 

Each arc is assigned a capacity which may be flow, cost, distance 
etc. The capacity of an arc is finite or infinite. An arc is directed 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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(oriented) if it allows positive flow in one direction and zero flow in 
the opposite direction. Hence, by a directed network we mean that all 
arcs are directed. 

Again, we define a path as a sequence of distinct arcs that join two 
nodes of the flow irrespective of the direction of flow in each arc. A 
path is said to be cyclic if it connects a node to itself. In Fig. 8.1, 
arcs (3,4), (4,5) and (5,3) form a closed loop (cycle). In particular, 
a directed cycle is a loop in which all arcs are directed in the same 
direction. Nodes which are connected without loop are said to be 
acyclic. 

A connected network means that any pair of distinct nodes can be 
connected by at least one path. A tree is a connected network without 
loop. In the next section, we shall analyze such type of networks. 

8.2 Minimal Spanning Tree Algorithm 

This algorithm calculates the minimum distance between nodes con­
nected directly or indirectly. Such type of problems arise when cable 
network is to be set up for certain areas in a town or city. Here, we 
are interested that each area is connected, and the length of the cable 
is minimum. Another famous example is about the construction of 
paved roads between villages so that each village is connected by the 
paved road, and distance is minimum, i.e., such linkage is economical. 

Let {I, 2, ... , N} be the set of nodes of the network. Define 

Ck = Set of all nodes that have been permanently connected at 
iteration k. 

C k = Set of all nodes yet to be connected. 

The steps of the algorithm proceed as follows. 

Step 1. Start with any node i from given n nodes and write C1 = {i} 
which renders automatically C 1 = n - {i}. 

Set k = 2. 

Step k. Select a node j, in the unconnected set Ck-1 that gives the 
shortest distance to a node in Ck - 1 . Include node j permanently 
to Ck-1, and remove it from Ck-1 to have 

Ck = Ck-1 - {j} 
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If the set of unconnected nodes C k is empty, stop. Otherwise, 
set k = k + 1, and repeat the above step. 

Example 1. A TV company is requested for providing cable services 
to six new housing development areas. Figure 8.2 depicts the potential 
TV linkage. The cable length in miles is mentioned on each branch. 

Our objective is to determine the most economical network. 

~~--------~~~---------------15 

Figure 8.2 

The algorithm starts at node 1 (any other node will do as well), 
which gives 

C1 ={1}, C 1 = {2, 3, 4, 5, 6}. 

For second iteration, choose the node from C 1 which is nearest to 1. 
This is node 2. Hence, connect node 1 to 2 by dashed line, see Figure 
8.3, and construct the sets 

C2 = {I, 2}, C 2 = {3, 4, 5, 6}. 

For third iteration, choose the node from C 2 which gives the shortest 
distance to 1 or 2. This is node 5 which is nearest to 2. Hence, connect 
node 2 to 5 by dashed line, and write the sets 

C3 = {I, 2, 5}, C 3 = {3, 4, 6}. 

Similarly, connect node 2 to 4 by dashed line, and construct the sets 

C4 = {I, 2, 5, 4}, C4 = {3,6}. 

Now, connect node 6 to 4 by dashed line, and write 

C5 = {I, 2, 5,4, 6}, 
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In the last iteration two branches are there which give the same short­
est distance, i.e., connect node 3 to 4 or 3 to 1 by dashed line. Thus, 

C6 = {I, 2, 5, 4, 6, 3}, 

Now dashed line structure gives the shortest length of the cable. 

Optimal length = 1 + 3 + 4 + 3 + 5 = 16 miles. 

Figure 8.3 

Matrix method. The above algorithm can easily be carried out 
on the distance matrix. Execute the following steps. 

Step 1. Represent the network by distance matrix. If two nodes are not 
connected directly, then take 00 in the cell concerned. 

Step 2. Let Q be initially a null set whose elements at later stage will be 
taken as the row numbers. 

Step 3. Select row one and include this in Q. Then delete Column 1 of 
the distance matrix. 

Step 4. Find the smallest entry in all the rows contained in Q and box 
it. In case of tie, break it arbitrarily. 

Step 5. Identify the column of boxed entry of Step 4, and let let it be K. 
Include row K in Q. 

Step 6. Delete column K identified in Step 5. 

Step 7. Check whether all the columns of the matrix are deleted. If so, 
go to Step 8, otherwise go to Step 4, i.e., find the smallest entry 
of the rows contained in Q and box it. 
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Step 8. Show the arcs in the spanning tree corresponding to the boxed 
entries and total of the boxed entries gives the minimum distance 
required for spanning tree. 

Remark. We may start with any row in Step 3. 

Let us rework out the above example by matrix method. 

Write the distance matrix from the network as shown in Table 1, 
initially Q = 0. 

Table 1 

1 2 3 4 5 6 

1 - 1 5 7 9 00 

1 - 6 4 3 00 2 

3 5 6 - 5 00 10 

4 7 4 5 - 8 3 

5 9 3 00 8 - 00 

6 
00 00 10 3 00 -

Iteration 1. Set Q = {I} (any other node will work well) and write the dis­
tance matrix after deleting the first column, see Table 2. Star 
first row. Each entry of Q will be shown starred. The smallest 
entry in 1* -row is 1. Box it. 

2 

3 

4 

5 

6 

Table 2 
2 3 4 5 6 

OJ 5 7 9 00 

- 6 4 3 00 

6 - 5 00 10 

4 5 - 8 3 

3 00 8 - 00 

00 10 3 00 -
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Iteration 2. The boxed entry of Iteration 1 is in 1* -row. This is in second 
column. For Iteration 2, delete the second column of Table 1 
and star second row, see Table 3(a). The smallest entry in rows 
1 * and 2* is 3 and box it. Q = {I, 2}. 

(a) 

3 4 5 6 

5 7 9 00 

t 6 4 []] 00 

3 - 5 00 10 

4 5 - 8 3 

5 
00 8 - 00 

10 3 00 -6 

t 
3 

4 

6 

Table 3 

(b) 

3 4 6 

5 7 00 

6 GJ 00 

- 5 10 

5 - 3 

00 8 00 

10 3 -

(e) 

3 6 

5 00 

t 6 00 

3 - 10 

5 []] 

00 00 

6 10 -

f 
t 

(d) 

3 

5 

6 

3* -

5* 00 

6* 10 

Iteration 3. The boxed entry of Iteration 2 is in 2* -row and falls in Column 
5. For executing Iteration 3 delete Column 5 of Table 3(a) and 
star fifth row, see Table 3(b). The smallest entry in all starred 
rows is 4. Box 4. Q = {I, 2, 5} 

Iteration 4. The boxed entry of Iteration 3 is in 2* -row and falls in fourth 
column. To perform Iteration 4, delete Column 4 of Table 3(b) 
and star row 4, see Table 3 ( c). The smallest entry in starred 
rows (done so far) is 3. Box it. Q = {I, 2, 5, 4}. 

Iteration 5. The boxed entry of previous iteration is in sixth column and 
hence delete the sixth column star sixth row to perform the next 
iteration, see Table 3(d). The smallest entry in starred rows is 
available at two positions, i.e., row 1* and row 4*. Thus there 
is a tie. Break the tie arbitrarily by taking row 4 and box the 
smallest entry which is 5, see Table 3(d). Q = {I, 2, 5, 4, 6} 

Iteration 6. After Iteration 5, all columns have been deleted and algorithm 
stops, and Q = {I, 2, 5, 4, 3}. To write the minimum distance 
of the spanning tree add all boxed entries, and connect nodes 
corresponding to them. This will give minimum spanning tree. 
The sum of boxed entries is 1 + 3 + 4 + 3 + 5 = 16. For spanning 
tree, see Fig. 8.3. 
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Remark. The tie in Iteration 5 indicates that there exists an alternate 
minimal spanning tree. 

8.3 Shortest Path Problem 

In this section, we analyze the minimum distance between two specified 
nodes connected through various feasible paths, directly or indirectly. 
The network may be cyclic or acyclic. To solve such type of problems 
two algorithms are in common use, viz." (i) Dijkstra's algorithm, (ii) 
Floyd's algorithm. 

Dijkstra's algorithm. A network is given with different nodes 
connected directly or indirectly. This algorithm finds shortest distance 
between a source (given) and any other node in the network. The 
algorithm advances from a node i to an immediately successive node j 
using a labeling procedure. Let Ui be the shortest distance from node 
1 to node i, and dij ("2 0) be the length of (i,j)th arc. Then, the label 
for node j is defined as 

[Uj, i] = lUi + d ij , i] , dij"2 o. 
Here label [Uj, i] means we are coming from node i after covering a 
distance Uj from the starting node. The node label in this algorithm 
are of two types: temporary and permanent. A temporary label can 
be replaced with another temporary label, if shorter path to the same 
node is detected. At the stage when it is certain that no better route 
can be found, the status of temporary node is changed to permanent. 

The steps of the algorithm are summarized as follows. 

Step 1. Label the source node (say node 1) with the permanently level 
[0, -]. Set i = 1. 

Step i. (a) Compute the temporary labels [Ui+dij, i] for each node j that 
can be reached form i, provided j is not permanently labeled. If 
node j is already labeled as [Uj, k] through another node k, and 
if Ui + dij < Uj, replace [Uj, k] with lUi + d ij , i]. 

(b) If all the nodes have permanent labels, stop. Otherwise, 
select the label fUr, s] with shortest distance (= ur) from among 
all the temporary labels (break the tie arbitrarily). Set i = r 
and repeat step i. 
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Remark. At each iteration among all temporary nodes, make those 
nodes permanent which have smallest distance. Note that at any iter­
ation we can not move to permanent node, however, reverse is possible. 
After all the nodes have been label and only one temporary node re­
mains, make it permanent. 

Example 2. In the following network, five towns are connected 
through permissible routes. This distance in miles between any towns 
is given on the arc connected these towns. Find the shortest distance 
between town 1 and any other town. 

15 

~2 
20 

CD 50 

30 ~G) 
60 

Iteration O. Assign the permanent label [0, -] to node 1. 

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently la­
beled) node 1. Thus, label [95,1](1) and [30,1](1) to nodes 2 and 
3, respectively. Since [30,1] < [95,1], make label [30,1](1) as 
permanent node, see Figure 8.4. The superscript (1) denotes the 
number of iterations. 

Iteration 2. Nodes 4 and 5 can be reached from node 3, and hence label 
[40,3](2) and [90,31(2) to nodes 4 and 5, respectively. Since 
[40,3] < [90,3], make label [40,3](2) permanent. 

Iteration 3. So far, nodes 2 and 5 are temporary. Node 2 can also be reached 
from permanent node 4 and its label is changed to [55,4] (3). Since 
no other permanent node exists from where we can reach at node 
2 and [55,4] < [95,2]' make label [55,41(3) as permanent. Note 
that node 5 can also be reached from 4 with label [90,4] (3). 

Iteration 4. Only node 3 can be reached from node 2, but node 3 is already 
labeled permanently, it can not be re-Iabeled. The only tempo­
rary node is 5 and this does not lead to any other node, its status 
is changed to permanent. 

The shortest route between the source node 1 and other node in 
the network is determined by starting at the desired destination and 
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backtracking through the nodes using the information given by per­
manently labels, see Fig. 8.4. For example at node 2 we reach as 

The desired route is 1 ----7 3 ----7 4 ----7 2 with a total distance of 55 
units. 

-[9D,lln) 

[55,4](3) 
15 

~2 10 50 

J _____ 60 __ ~ G) [90,3](2) 

[90,4](3) 

Figure 8.4 

[40,3](2) 

Remark. It is advised to work on all iterations on the network. 

Floyd's algorithm. This is an efficient, simple programmed, and 
widely used algorithm that finds the shortest path between all nodes, 
all at once, while in Dijkstra algorithm we have to specify in advance 
at least least one node. The algorithm works on n-node network as a 
square matrix with n rows and n columns. Entry (i, j) of the matrix 
gives the distance dij from node i to node j, which is finite if i is 
connected directly to j, and infinite otherwise. 

The logic of Floyd's algorithm is simple. Given three nodes i, j 
and k, see Fig. 8.5 with the weights (distances) shown on the three 
arcs. It is shorter to reach k from i passing through j if 

In this situation, it is optimal to replace the direct route from i ----7 

k with the indirect route i ----7 j ----7 k. This triangle operation is 
applied to the network in a systematic way. 

The Floyd algorithm is based on the following proposition. 
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CI) __________ d_i _k ______ -?\ 

Figure 8.5 

Proposition. If we perform a triangle operation for successively val­
ues k = 1,2, ... ,n, each entry dij becomes equal to the length of the 
shortest path from i to j, assuming the weights Cij 2: o. 

Proof. We shall show by induction that after the triangle operation 
for j = jo is executed, dik is the length of the shortest path from i to 
k with intermediate nodes v ~ jo, for all i and k. The reasoning for 
jo = 1 is clear. 

Assume then that the inductive hypothesis is true for j = jo - 1. 
The proof by induction is complete, if it is true for j = jo. Consider 
the triangle operation for j = jo 

dik = min{ dik' d ijo + djok}. 

If the shortest path from i to k with intermediate nodes v ~ jo does 
not pass through )0, dik will remain unchanged by this operation, the 
first argument in min-operation will be selected, and dik will satisfy 
the inductive hypothesis. 

On the other hand, if the shortest path from i to k with inter­
mediate nodes v ~ jo does pass through jo, dik will be replaced by 
d ijo + djok. By assumption, d ijo and d jok are both optimal distances 
with intermediate nodes v ~ jo - 1, so d ijo + d jok is optimal with 
intermediate nodes v ~ jo. This completes the induction. 

The steps of the algorithm are performed as follows. 

Step O. Define the staring distance matrix DO and node sequence matrix 
SO as given subsequently. The diagonal elements are given are 
marked with (-) to indicate that they are blocked. Set k = 1. 

Step k. Define row k and column k as pivot row and pivot column. Apply 
the triangle operation to each entry dij in D k - 1 , for all i and j, 
if the condition 
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is satisfied, make the following changes: 

(a) Construct Dk by replacing dij in Dk-l with dik + dkj ; 

(b) Construct Sk by replacing Sij in Sk-l with k. 

263 

Set k = k + 1, and repeat step k till no changes are given by 
triangle operation. 

Step k of the algorithm is well illustrated by representing D k - 1 

in Figure 8.6. 

Column 

J 
1 

/L 
I ' 

Row i - - -1 d·· \ 
\ ZJ 

, / I 

Pivot row k 

Row P 

/ , 
I \ 

__ ~ dpj 
\ I ',/ 

1 

Pivot 
Column 

k 
Column 

q 

1 

/L 
I ' 

\ 
diq 1- - -

\ I , / 

/ , 
I \ 

1---__ ' dpq I- - -
\ I 
',/ 

Figure 8.6 

Here, row k and column k define the current pivot row and col-
umn. Row i represents any of the rows 1,2, ... , and k - 1 and 
row p represents any of the rows k + 1, k + 2, ... , and n. Simi-
larly, column j represents any of the columns 1,2, ... , k - 1, and 
column q represents any of the columns k + 1, k + 2, ... , and n. 
The triangle operation is applied as follows. 

If the sum of the entries on the pivot row and pivot column 
(shown by squares) is smaller than the associated intersection 
element (shown by circle), then it is optimal to replace the inter­
section distance by the sum of the pivot distances. 
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Thus, after n steps, we can determine the shortest route between 
nodes i and j from the matrices Dn and sn using the following rules: 

1. From D n , dij gives the shortest distance between nodes i and j. 

2. From sn, determine the intermediate node k = Sij which yields 
the root i -----+ k -----+ j. If Sik = k and Skj = j, stop; all the 
intermediate nodes of the roots are detected. Otherwise repeat 
the procedure between nodes i and k, and nodes j and k. 

Remarks. 1. The Floyd's algorithm requires a total of n(n - 1)2 
comparisons. 

2. At each iteration the entries on the current pivot row and column 
are left unaffected. 

Example 3. For the network in Figure 8.7, find the shortest routes 
between every pair of nodes. The distances (in miles) are mentioned 
on each arc. Arcs (2,5) and (4,5) are directional so that no passage 
is permitted from node 5 to nodes 2 and 4. All the other arcs allow 
passage in both directions. 

Figure 8.7 

Iteration O. The matrix DO and SO give the initial net work. DO is symmetric 
except that d52 = 00 and d54 = 00, because no passage is allowed 
from node 5 to nodes 2 and 3. 

Iteration 1. In first iteration (k=l), the first row and first column are pivoted 
(shaded) as shown in DO-matrix. Apply triangle operation on 
every entry (except entries on the shaded region). For doing this, 
select any entry and find the entries of the corresponding row 
and column of shaded region and take their sum if it is smaller 
than the selected entry, then box it so that it may be replaced 
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2 

3 

4 

5 

SO 
5 2 3 4 5 

00 - 2 3 4 5 

17 2 1 - [l] 4 5 

13 3 1 [lJ - 4 5 

1 2 3 -
5 7 4 

5 1 2 3 4 -

by this lower sum, leave other unchanged. For example, entry 
C23 = 8 has 3 and 4 in row and column, respectively of shaded 
region and their sum is 7 which is smaller than 8. Box it so 
that before applying next iteration it is reduced to 7. The only 
entries affected by triangle operation are C23 and C32. These have 
been boxed, and the corresponding changes are incorporated in 
D1. Because this is Iteration 1, the corresponding entries of node 
matrix SO are replaced by 1. 

-

SI 
2 3 

2 3 

4 5 

GJ [] 

2 2 1 - 1 4 5 

3 3 I I - 4 5 

4 4 [!] 2 3 - 5 

5 5 1 2 3 4 -

Iteration 2. Set k=2 after incorporating the changes of the first iteration, 
see D1 and S1. The second row and column, being pivoted are 
shaded. Apply the triangle operation for all entries in unshaded 
region, and make corresponding changes in node matrix to have 
matrices for next iteration. 

Iteration 3. Set k = 3 after incorporating the changes due to Iteration 2, the 
third row and column are pivoted. Make shaded these as shown 
by matrix D2. Apply the triangle operations in D2 and make 
corresponding changes in 81 to get matrices D2 and 82. 
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n2 S2 
2 5 2 3 4 5 

8 ~ - 2 3 2 [2] 

2 2 1 - I 4 5 

3 3 I I - 4 5 

4 4 2 2 3 - 5 

5 5 [2] [2] 3 [i] -

n3 S3 

2 3 4 2 3 4 5 

- 2 3 2 []] 

2 2 I - I 4 [1J 

3 3 I I - 4 5 

2 2 3 - 5 4 4 

3 3 3 3 -
5 5 

Iteration 4. Set k = 4, as shown by the shaded region in D3. The new 
matrices are D3 and S3. Apply triangle operation to get matrices 
D4 and S4 for next iteration. 

S4 
2 3 4 5 

- 2 3 2 4 

2 2 I - I 4 4 

3 3 I I - 4 5 

4 4 2 2 3 - 5 

5 5 3 3 3 3 -

Iteration 5. Set k = 5, as shown in shaded region of D4. By applying triangle 
operation, we observe that no further improvements are possible. 
Thus, matrices D4 and S4 are final and have all the information 
which we need. 
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To determine the shortest route between any two nodes, recall that 
a segment (i, j) represents a direct link only if 8ij = j, otherwise i and 
j are linked through at least one intermediate node. 

For instance, suppose we are interested to find the shortest route 
between nodes 1 and 5. Note that 815 = 4. This means 1 and 5 are 
not directly connected. These are to be connected through node 4. 
Again, see 

814 = 2, 845 = 5 

The partial route is 1 ----t 4 ----t 5, i.e., node 4 is connected directly, 
but 814 i- 4 implies that 1 and 4 are not connected directly, and there 
is at least one intermediate node 2 to connect 1 and 4. Again, note 

812 = 2, 824 = 4. 

Stop, because 1 and 2 are connected directly and 2 and 4 are connected 
in the same manner. Hence the desired route between 1 and 5 is 

1 ----t 2 ----t 4 ----t 5, minimum distance d15 = 15 miles 

Following the above reasoning we can find route between any other 
two nodes. 

8.4 Maximal Flow Problem 

This is a very famous problem which is closely associated with the 
determination of optimal solution of a transportation problem. Orig­
inally, the problem was invented by Ford and Fulkerson who gave its 
solution by the labeling algorithm. We have two nodes called the sink 
and source. From sink to source some fluid flows through intermediate 
nodes. The capacity of an arc here is assigned as the rate of flow, and 
the rate of flow in each arc may be unidirectional or bidirectional. 

Suppose there are two wells which supply crude oil to the refineries. 
The intermediate nodes are boosters and pipelines. Our objective is 
find the maximum flow in the network. For this we need one combined 
net work. This requirement is satisfied if we assume infinite capacity 
to supply at wells and infinite demand at refineries. 

Assume that the capacity of each branch is known in both direc­
tions. Let (i,j), i < j be an arc. Define Cij as the rate of flow in the 
direction from i to j and dji is the rate of flow in opposite direction, 
see Fig. 8.8. 
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~_C_i_j ______________________ d_iJ~. ([) 

Figure 8.8 

Algorithm. The algorithm presented here is the labeling tech­
nique. The idea of maximum flow algorithm is to find a breakthrough 
path with positive net flow that connects the source and sink nodes. 
Take an arc (i,j) with initial capacities (cij,dji ). As the computations 
of the algorithm proceed, portions of these capacities will be commit­
ted to the flow in the arc. The excess capacities of the arcs are then 
changed accordingly. For excess capacities on the arc (i,j), we use the 
notation (Cij, dji). The network with the updated excess capacities 
will be referred to as the residual network. Define 

raj, i] = Flowaj from node j to node i. 

The source node is numbered 1 and the algorithm proceeds as follows: 

Step 1. Let the index j refer to all nodes that can be reached directly 
from source node 1 by arcs with positive excess capacities, i.e., Clj > 
o for all j. On the diagram of the network, we label nodes j with 
two numbers raj, 1], where aj is the positive excess capacity, and 
1 means we have come from node 1. If in doing this we label 
the sink N, so that there is a branch of positive excess capacity 
from source to the sink, then the maximum flow along the path 
is given by h = ClN, and the excess capacity due to this break­
through path is determined by h in the direction of the flow and 
is increased by h in the reverse direction. This means that for 
source nodes 1 and sink node N the excess flow is changed from 
the current (ClN' d Nl) to 

Step 2. In case in Step 1, the sink is not labeled, Choose the smallest 
index j of the labeled nodes and search the unlabeled nodes 
which can be reached from j by arcs of positive excess capacities. 
If there are no such nodes we move to the next lowest index j and 
repeat the process. If sink is labeled, we immediately compute 

h = minimum of the excess capacities on the path to the sink. 
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Subtract h from excess capacity on the arc in the direction of 
path and add h from the excess capacity in reverse direction. In 
this way we get fresh excess capacities. Even, if the sink is not 
labeled, some unlabeled nodes (other than sink) can be reached, 
then using the general index k, we label each as follows [ak, j], 
and compute h. 

Step 3. Steps 1 or 2 give first breakthrough. Compute freshly excess 
capacities of all arcs which are changed due to first breakthrough. 

The process is repeated from Step 1 to 3 until, in a finite number 
of steps, we reach the state so that no additional nodes can be 
labeled to reach sink. This is no breakthrough. The maximum 
flow is computed by 

f = h + 12 + ... + fp , 

where p is the number of iterations to get no breakthrough. 

The optimal flow in the arc (i, j) is computed as 

where Cij and Cji are the initial capacities, and d~j and dji are 
the final excess capacities. If a > 0, the optimal flow from i to j 
is a. Otherwise, if (3 > 0, the optimal flow from j to i is (3. Note 
that a and (3 can not be positive together. 

Remark. During labeling process, we are not worried about whether 
the orientation of the arc is in the direction of our move form j to k. 
We need that the arc must have positive residual. 

The algorithm is illustrated by working out an example of maxi­
mum problem flow problem. 

Example 4. Consider the network in Figure 8.9. The bidirectional 
capacities are shown on the respective arcs. For example, for arc (3,4), 
the flow limit is 10 units from 3 to 4 and 5 units from 4 to 3. Determine 
the maximum flow in this network between source 1 and sink 5. 

The algorithm is applied in the following manner. 

Iteration 1. At the first step, find the nodes that can be reached directly from 
the source by arcs of positive excess capacity Cij > 0. These 
nodes are 2,3,4. Label these nodes with the ordered pair of 
numbers [aj, 1], where aj = Clj and 1 means we have reached 
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Figure 8.9 

from node 1. For instance, node 2 is labeled [20, 1] and likewise 3 
and 4 as [30, 1] and [10, 1], respectively. Still sink is not labeled. 
Thus, select a node with lowest index from the labeled nodes, 
i.e., node 2. Again, find nodes that can be reached from node 2 
by arcs of positive excess capacity. These nodes are 3,5. Ignore 
node 3 that has already been labeled and label sink 5 by the 
ordered pair [30,2]. Now, sink is reached and labeling process 
stops as we have got first breakthrough. The flow in the network 
can be increased by 

h = min{20, 3D} = 20. 

/' 
30 

The value of h indicates that increase of 20 units can be made 
along the path traced out in a move from source to sink. We 
can easily work backward to find the path. The label on the 
sink shows that we came from node 2. From node 2, it is seen 
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that we came from node 1. The path is 1 -----+ 2 -----+ 5. Before 
starting the second iteration, we first set the network showing 
the effect of first breakthrough. To have fresh excess capacities, 
subtract h = 20 from the direction of flow in the path, and add 
this amount in the opposite direction. Compute the residual 
capacities of each arc on the path. After first iteration, arc (1,2) 
has residual in direction of flow 20 - 20 = 0, and has in opposite 
direction 0 + 20 = 20. Similarly, arc (2,5) has 10 and 20 in 
direction of flow and in opposite direction. 

Iteration 2. Again, start from source node 1 and find the nodes that can 
be reached directly from the source by arcs of excess capacities. 
This time, we can not go to node 2 from source node 1. The 
nodes 3, 4 can be reached from source 1. Label these nodes and 
note that sink is still not reached. Choose lowest labeled index 
3 and find nodes that can be reached from 3. These are nodes 
2,4,5. But node 2,4 can not reached as arc (3,2) has no excess 
capacity in the direction 3 -----+ 2 and node 4 is already labeled. 
Label sink 5. Now the augmented path is 

1 -----+ 3 -----+ 5, 12 = min{30, 20} = 20. 

Again, before starting third iteration write fresh excess capacities 
affected due to second breakthrough path. 

[10, 1] 
~ o3?,4] 

~V~~~/520 I fO 

o ,\\J 
\0 <'0 0 

20 2 3 20 

40 0 [10, I] 40 o [10,1] 

Iteration 3. In Iteration 3, we label 3,4. Choose lowest index from 3 and 4. 
This is 3. Now, nodes 2,4,5 can not be reached from 3, since 4 
is already labeled and (3,2) and (3,5) have no excess capacities. 
Move to higher index 4. Nodes 3,5 can be reached from 4. But 
3 is already labeled. So label sink 5 and the augmented path is 

1 -----+ 4 -----+ 5, 13 = min{10, 20} = 10. 
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Iteration 4. Similarly, for the renewed network after iteration 4, the aug­
mented path is 

1 ---) 3 ---) 4 ---) 5, 14 = 10. 

More iterations are not possible after iteration 4 as there is no way 
out to reach at sink from source. The maximum flow is 

1 = !I + 12 + h + 14 = 20 + 20 + 10 + 10 = 60. 

~ 
~ ~Q!20 1 0 

o 
o 

No breakthrough path 

The optimal flow in different arcs is computed by subtracting the 
last excess capacities (when no breakthrough path is available) from 
the initial excess capacities. This is done in the table: 

Arc (Cij, dji ) - (Cip, dpi ) Flow amount Direction 

(1,2) (20,0) - (0,20) = (20, -20) 20 1 ---7 2 

(1,3) (30,0) - (0,30) = (30, -30) 30 1 ---7 3 

(1,4) (10,0) - (0, 10) = (10, -10) 10 1---74 

(2,3) (40,0) - (40,0) = (0,0) ° 2---73 

(2,5) (30,0) - (10,20) = (20, -20) 20 2---75 

(3,4) (10,5) - (0, 15) = (10, -10) 10 3---74 

(3,5) (20,0) - (0,20) = (20, -20) 20 3---75 

(4,5) (20,0) - (0,20) = (20, -20) 20 4---75 

The solution of the problem is shown by the following network. 
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Optimal flow in different arcs 

The arrows show the direction of flow and the number on each arc 
gives the optimal flow in that arc. 

Problem Set 8 

1. Determine (i) Minimal spanning tree; (ii) Shortest route from 
node 1 to node 7 using Dijkstra algorithm for the following net­
work. 

2. Apply Floyd's algorithm to the network depicted below. Deter­
mine the shortest distance between the following pairs of nodes. 

(a) From node 1 to node 7. 

(b) From node 7 to node 1. 

(c) From node 2 to node 7. 
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2 
2 

5 

1 1 

3 
7 

3. Determine the maximum flow and the optimal flow in each arc 
for the following network 

14 
4 

8 

Also, determine 

(a) the surplus capacities for all arcs; 

(b) amount of flow through nodes 2, 3, and 4. 

(c) Can the network flow be increased by increasing the capac­
ities in the direction 3 -t 5 and 4 -t 5. 

(d) Does the problem has alternate optimal solution? if yes, 
find it. 

4. Three refineries send a LPG (liquid petroleum gas) to two dis­
tribution terminals through a pipeline network. Any demand 
that can not be satisfied through network is acquired from other 
source. The pipeline network is served by three pumping stations 
as shown in the figure below. The LPG flows in the network in 
the direction of arrows. The capacity of each pipe is mentioned 
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on each arc in million bbl per day. To match the maximum 
capacity of the network, determine the following: 

(a) The daily production at each refinery. 

(b) The daily demand at each terminal. 

(c) The daily capacity of each pump. 

Refinineries Pumping stations Tenninals 
... Eo----....; ... ~ ... EO-------------..,. ... ~ ... Eo----~ ... ~ 

5. Suppose that the maximum daily capacity of pump 6 in the net­
work of Figure 8.10 is limited to 60 million bbl. Remodel the 
network to include this restriction. Then determine the maxi­
mum capacity of the network. 

6. The academic council of the Thapar Institute is seeking represen­
tations from six students who are affiliated with four academic 
societies. The academic council representation includes three ar­
eas: mathematics, management and engineering. At most two 
students in each area can be on the council. The following table 
shows the membership of the six students in the four academic 
societies: 

Society Affiliated students 

1 1,2,3 

2 1,3,5 

3 3,4,5 

4 1,2,4,6 
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The students who are skilled in the areas of mathematics, man­
agement and engineering are shown in the following table: 

Area Skilled students 

Mathematics 1,2,4 

Management 3,4 

Engineering 4,5,6 

A student who is skilled in more than one area must be assigned 
exclusively to one are only. Can all academic societies be repre­
sented on the academic council. 



Chapter 9 

Project Management 

This chapter introduces the critical path method (CPM), a technique 
used for governing the successful completion of a project. The next 
section is devoted to learning the technique how the duration of a 
project can be reduced economically. In the end the project evaluation 
review techniques (PERT) is introduced. 

9.1 Introduction 

A project consists of interrelated activities which are to be executed 
in a certain order before the entire task is completed. The activi­
ties are interacted in a logical sequence which is known as precedence 
relationship. The work on a task can not be started until all its preced­
ing activities are completed. Project management is generally applied 
for constructing items of public conveniences, large industrial projects 
etc. Every project is represented by a network for the purpose of ana­
lytical treatment. There are mainly two main techniques critical path 
method (CPM), a deterministic approach and the other one is project 
evaluation review techniques (PERT), a nondeterministic model. 

In the next two sections we introduce how to sketch the network 
and find critical path. This is sensitive as the further analysis may give 
absurd results provided the network is not correct. These two stud­
ies are also essential preliminary steps for project evaluation review 
technique. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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9.2 Critical Path Method 

The CPM is a technique designed to assist in planning, scheduling 
and controlling the projects. A project is defined to be a task which 
has a definite beginning and definite end time and consists of several 
activities or jobs. A time duration is assigned to each activity. These 
activities (jobs) must be performed in a specified sequence to complete 
the project in successful manner. In planning, we design the problem 
jobs and their durations and order sequence, while in scheduling the 
time schedule for the project is determined. The controlling comes 
into play when certain changes in the planning and scheduling are 
proposed. 

The CPM technique requires a network. Before discussing con­
struction of a network, we are supposed to be acquainted with certain 
terms. 

Network. The network of a project is the graphical representation 
of project operations (activities). 

Activity. In each network an activity is shown by an arrow. The 
arrow head indicates the direction of progress of activity. The number 
on the arrow indicates the duration time of activity. 

Node. The points at which an activity starts or ends are called 
nodes. Usually, these will be shown by circles in a network. Node 
number denotes an event. 

The problem is given in the form of data information. The first 
step is how to make the network. Each network should satisfy the 
following conditions: 

(a) Each activity must be represented by one and only one arrow. 

(b) Two activities can not have same initial and same terminal nodes, 
i.e., each activity must be identified by two distinct nodes. The 
following graph is not permissible. 

Figure 9.1 

To avoid the above situation, a dummy activity is introduced 
between such nodes. It is assigned '0' time duration. In figure 
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9.1, activities A and B have the same initial and terminal nodes 
and hence we introduce a dummy activities in either of the styles 
shown in Figs. 9.2 and 9.3. 

~2 
5 I 

(.\ I 0 

~~,~ 
6 E~ 

Figure 9.2 

Figure 9.3 

Such type of situations come in the way when some of the ac­
tivities are emanating from the same node and preceding the 
same activity. These must be separated by using the dummy 
activities. 

( c) Arrows should not form closed loop. 

(d) Starting and ending nodes should be unique. 

(e) To maintain the exact precedence relationship, we must note 
that (i) What activities must immediately precede the current 
activity? (ii) What activities must follow the current activity? 
(iii) What activities must occur concurrently with the current 
activities? 

Suppose we are given 

1. Activity C can start immediately after A and B are completed. 

2. Activity E can start immediately after only B is completed. 

Note that Figure 9.4(a) is incorrect, because it requires that A 
and B must be completed before E can start. Fig. 9.4(b) is correct 
representation of precedence by introducing a dummy activity D. 
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~7 
A 
~9 

C 
~ 

A :D 
B ~O E 

~ 

(a) (b) 

Figure 9.4 

Remark. When some activity precedes two or more activities with 
different nodes, the precedence relation is maintained by introducing 
dummy one or more dummy activities to connect these different nodes. 

Example 1. Construct a network where the activities satisfy the 
requirements: (i) A and B are the first activities of the project to 
start simultaneously; (ii) A and B precede C; (iii) B precedes D and 
E; (iv) A and B precede F; (v) F and D precede G and H; (vi) C 
and G precede I; (vii) E, H and I are the terminal activities. 

The duration of activities A, B, C, D, E, F, G, H and I are 
2, 3, 5, 2, 7, 4, 6, 11, 3, respectively. 

With the data information available from the example, the network 
is depicted in Fig. 9.5. A dummy activity (2,3) is used to produce 
unique end nodes for the concurrent activities A and B. The number­
ing of the nodes is done in a manner that reflects the direction of the 
progress. 

I 

Figure 9.5 
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9.3 Critical Path Determination 

Once the network is available, we determine the time of completion of 
the project. This time is not the sum of duration of individual activ­
ities, because some of the activities can be processed simultaneously. 
The total time of completion of a project depends on certain activities 
known as critical activities. The path connecting these activities is 
known as the critical path. The sum of durations of activities along a 
critical path determines the completion time of the project. 

Thus, our next phase of working is to find the critical path. Once 
the critical path is at hand we are supposed to answer some queries: 
(i) Has the due time of completion of the project met? (ii) How, most 
economically, the duration of the project is reduced? (iii) If an activity 
is delayed, whether will it delay the completion of the project. 

To construct the critical path define the notations: 

tij = Time duration of activity emanating from node i and ending 

at node j; 

ESi = Earliest starting time of activities emanating from node i; 

= max{ESk + tki}; ES I = 0 (by convention); 
k 

LCi = latest completion time of activities coming to node i; 

= min{LCj - tij}. 
J 

Also, ESI = LCI = 0 and LCe = ESe, £ stands for the last node. 

Critical Activity. An activity (i, j) (emanating from i and ter­
minating at node j) is called critical activity if and only if 
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(i) E8i = LCi ; 

(ii) E8j = LCj ; 

(iii) E8j - E8i = LCj - LCi = tij. 

Example 2. Find the critical path of the network of the example in 
previous section by CPM. 

Compute E 8 i for each node and insert into the rectangle kept 
below the triangle. These computations are obtained using the above 
notations as 

E81 = 0, by convention 

E82 = max{E81 + 3} = 0 + 3 = 3 

E83 = max{(E81 + 2), (E82 + On = max{2, 3} = 3 

E84 = max{(E82 + 2), (E83 + 4n = max{5, 7} = 7 

E85 = max{(E83 + 5), (E84 + 6n = max{8, 13} = 13 

E86 = max{(E82 + 7), (E84 + 11), (E85 + 3} = max{lO, 18, 16} = 18 

Now, compute LCj for each node and place them in the triangle 
kept above rectangle. In this case we move backward from the last 
node and compute as 

LC6 = 18 = E86 , by definition 

LC5 = min{LC6 - 3} = 15 

LC4 = min{(LC5 - 6), (LC6 - 11n = min{9, 7} = 7 

LC3 = min{(LC5 - 5), (LC4 - 4n = min{10, 3} = 3 

LC2 = min{(LC3 - 0), (LC4 - 2), (LC6 -7n = min{3, 5, 11} = 3 

LC1 = 0 = E81 , by definition 

The critical path is sketched by joining the nodes with double lines 
(critical activities), i.e., satisfying the conditions (i), (ii) and (iii). The 
critical path is depicted in the adjoining figure. 
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Note that (3,5) is not the critical activity, since (ii) is not satisfied. 
Also, (2,4) is not the critical activity as (iii) is not satisfied. 

Remark. The critical path has longest duration between initial node 
and the terminal node. 

9.4 Optimal Scheduling by CPM 

Every project involves two type of costs, viz." the direct and indirect 
costs. The direct costs are associated with individual activities. The 
direct cost of the project increases, if the duration of an activity is re­
duced by employing more resources, man power, instruments etc. The 
indirect costs are associated with the overhead items such as supervi­
sion etc. The indirect cost decreases, if the duration of an activity is 
reduced, since less time of supervision is needed for the execution of 
the project. The optimal scheduling by CPM means the studies of the 
cost-duration relationships. First, we study the direct cost-duration 
relationships. The graph of the direct cost relationship is depicted in 
Fig. 9.6. 

Here Tn and en represent the duration and direct costs of an ac­
tivity when it is executed under normal conditions. As already men­
tioned, the duration of an activity can be reduced by employing ad­
ditional resources. However, this will increase the direct cost of the 
project. An activity can be reduced to a certain minimum duration. 
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Direct cost 

(Tn, Cn) 
1-- ____________ _ 

I 

Duration 

Figure 9.6 

This minimum duration is called crash duration, denoted by Te , and 
the corresponding cost involved is called crash cost, denoted by Ce . 

Note that an activity with crash duration can not be further reduced 
by employing additional resources. Obviously, crash cost of an activity 
should be larger than normal cost. 

The slope of crashing an activity is given by 

Ce-Cn 
slope = ---

Tn -Te 

The slope of crashing an activity means the increment cost of expedit­
ing that activity per unit period. 

The direct cost of project increases and indirect cost decreases if 
the duration of the project is reduced. A project manager is always in­
terested to find duration T m of the project with minimum cost schedule 
(direct cost + indirect cost), see Fig 9.7. 

For direct cost relationship we use the FF (free floats) limit method. 
For this purpose, we define free floats as 

FF of (i,j)th activity = (ESj - ESi ) - tij. 

Clearly, the FF of an critical activity is zero. However, if F F = 0 
for any activity, it may not necessarily be an critical activity, i.e., a 
noncritical activity may have F F = o. Also, 

Crash limit of an activity = Current duration - Crash duration; 

F F limit = minimum of the positive F F's of the noncritical activities 

Compression limit = min{Crash limit, FF limit}. 
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Total cost 

Cost 
Indirect cost 

Direct cos' 

Duration of project 

Figure 9.7 

Remark. The other parameter called total float (TF) of an activity is 
defined as 

TF of (i,j)th activity = (LCj - ESi ) - tij' 

1. FF limit method. We work out a problem to explain how the 
duration of a project is reduced by using free floats of the noncritical 
activities. 

Example 3. Consider the project for which details are mentioned 
below 

Activity Normal Normal Crash Crash 

duration cost duration cost 

(i, j) Tn Cn Tc Cc 

(1,2) 15 600 12 1200 

(1,3) 8 700 5 1600 

(2,5) 12 750 6 1500 

(3,4) 15 650 12 1400 

(3,5) 18 700 13 1450 

(4,5) 8 500 5 950 

(a) Find by FF limit method the minimum cost schedule, if the 
project is to be completed in 28 days; 
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(b) Find the most economical schedule for 23 days; 

(c) Find the crash cost schedule. 

Figure 9.8 depicts the network. It also shows the critical path 
by double lines, and FF's are also mentioned corresponding to each 
activity. 

c1lJ cffi 31 

CD 12 
~G) FF=4 

~ ~ FF=O 18 0(0 8 FF=O 

~(3) 
FF=5 

15 
~0 

ffi 
FF=O 

tfb 
Figure 9.8 

The critical path: 1 ----t 3 ----t 4 ----t 5. Normal cost: 3900, which 
is the sum of all entries in the column of normal costs. The normal 
duration of the project: 31 days. 

Further, we are interested to reduce the time duration of the project. 
For doing this, the slope of each activity is required for comparison 
purposes. Using the formula for slope we compute 

Activity Slope 

(i, j) m 

(1,2) 200 

(1,3) 300 

(2,5) 125 

(3,4) 250 

(3,5) 150 

(4,5) 150 
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For part (a), we have to compute the optimal cost schedule for 28 
days. As the normal duration of the project is 31 days, we have to 
reduce it by 3 days. The reduction in the duration of critical activity 
will cause only change in the cost scheduling. 

The question arises which critical activity should be reduced? 

We proceed as follows: 

Reduce the critical activity on the critical path for which the slope 
is minimum. Among all critical activities, the activity (4,5) has mini­
mum slope, and hence, it is best candidate for reduction. To compute 
FF limit for (4,5) we shall take minimum of the FF's of (2,5) and 
(3,5). Thus, 

FF limit = min{4, 5} = 4 

Crash limit of activity (4,5) = 8 - 5 = 3 

Compression limit for activity (4,5) = min{3, 4} = 3 

Hence, reduce the duration of (4,5) by 3 days. The new schedule is 
given in Figure 9.9. 

ffi 
~ 12 \0f----------

ffi~ FF=1 

~ 
5* FF=O 

15 
3 ~====================~4 

ffi 
FF=O 

~ 
Figure 9.9 

The minimum cost schedule for 28 days is given by 

normal cost of the project + reduced time x slope. 
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Hence, 

minimum cost schedule for 28 days = 3900 + 3 x 150 = 4350. 

Remark. If the most economical cost schedule for 29 days is required, 
then reduce the critical activity (4,5) by two days. 

For part (b), a further reduction of 5 days is desired. Activity, 
(4,5) can not be reduced as it has reached its crash duration. In Fig. 
9.9, activity with asterisk means it has reached at its crash duration. 

The next candidates for reduction are (1,3) and (3,4). Since the 
slope of (3,4) is minimum. Hence, we reduce activity (3,4). Thus, for 
activity (3,4), 

Crash limit = 15 - 12 = 3 

FF limit = min{l, 2} = 1 

Compression limit = min{l, 3} = 1 

Hence, activity (3,4) is reduced by 1 day. The cost schedule for 27 
days is depicted in Fig. 9.10. 

ffi 15 AA 
12 

2 

0/ 
5* 

14 
;0. 4 

ffi ffi 
Figure 9.10 

Minimum cost schedule for 27 days = 4350 + 250 = 4600. 

At this stage, two critical paths have developed, and hence, reduce the 
time of both critical paths simultaneously. For critical path (1,2,5) the 
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best candidate for compression is (2,5), and for critical path (1,3,4,5) 
the best candidate is (3,4). 

Crash limit for activity (2,5) = 12 - 6 = 6 

Crash limit for activity (3,4) = 14 - 12 = 2 

Therefore, the crash limit for two paths is min{2, 6} = 2. Now, find FF 
limit for both paths separately. While considering one critical path, all 
other activities not on this path (including activities on other critical 
path) are considered noncritical activities. Hence, 

Thus, 

F F limit for activity (2,5) = min {I} = 1 

F F limit for activity (3,4) = min{l} = 1 

F F limit for two paths = min{l, I} = 1. 

Note that FF = 0 for (2,5) and (3,4), even then we have taken FF 
limits as 1, since, by definition positive F F is to be taken. 

The compression limit is min{1,2} = 1. This means that both 
candidates must be reduced by 1 day, i.e., activities (2,5) and (3,4) 
are reduced. By doing so, we get the minimum cost schedule for 26 
days in Figure 9.11. 

Figure 9.11 

Minimum cost schedule for 26 days = 4600 + 250 + 125 = 4975. 
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Now, all the activities have turned to be critical activities, and 
hence, all F F's are zero. This indicates that F F limit is infinite. 
Again, the best candidates are activities (2,5), (3,5) and (3,4), re­
spectively for the critical paths (1,2,5), (1,3,5) and (1,3,4,5), re­
spectively. 

When F F's are infinite, we compress by taking minimum of the 
crash limits. 

Compression limit = min{ll - 6, 18 - 13,13 - 12} = 1. 

Inspite of reducing the duration by one day for each of the activities 
(3,5) and (3,4), we reduce the common activity (1,3), since, slope of 
(1,3) < slope of (3,5) + slope of (3,4). The minimum cost schedule for 
25 days is shown in Figure 9.12. 

~ 10 ~ 
G) ... 5 

tfJ/ 
o~ 

5* 
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ffi 
13 

rfol 
Figure 9.12 

Minimum cost schedule for 25 days = 4975 + 125 + 300 = 5400. 

Again, best pairs for compression are activities (2,5), (3,5) and 
(3,4) on three different critical paths. Observe that (1,3) is common 
to critical paths (1,3,5) and (1,3,4,5). Hence, compression in activity 
(1,3) will further reduce both critical paths (1,3,5) and (1,3,4,5). 
This gives better schedule than reducing activities (3,5) and (3,4), 
simultaneously. In view of this 

Compression limit = min{lO - 6,7 - 5} = 2. 

The minimum cost schedule for 23 days is shown in Figure 9.13. 



Minimum cost schedule for 23 days = 5400 + 2 x 125 + 2 x 300 = 6250. 

As the common critical activity (1,3) has reached its crash du­
ration. Further, reduction in this activity is not possible. The best 
candidate pairs for reduction are (2,5), (3,5) and (3,4). It can be 
verified that compression limit is 1. Hence, reduce all these activities 
by 1 day. The most economic schedule for 22 days is shown in Figure 
9.14. 

~ 
7 

~ 

6J /' 
o~ 

5' 

~ 
3 ;00 4 

ffi 12* ffi 
Figure 9.14 

(c) Further, reduction is not possible as all the activities along one 
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of the critical paths: 1 ----> 3 ----> 4 ----> 5 have reached their crash 
duration. 

The most economic crash schedule = 6250 + 125 + 150 + 250 = 6775. 

Remark. When there are more than one critical activities as best 
candidates pairs for reduction is advisable to select the activity to be 
reduced which has larger crash limit. 

Example 4. In Example 3, if the indirect cost is $50 per day then 
find the minimum cost schedule for 28,27,26,25,23,22 days. 

Since indirect costs are the supervisory costs, we get the minimum 
cost schedule for 28 days by adding the total supervision for this pe­
riod. Hence, 

minimum cost schedule for 28 days = 4350 + 50 X 28 = 5750. 

Similarly, most economical schedule for 27 days= 4600+27x50 = 5950, 
and so on. The following table gives all details for different durations 
is 

Duration Total cost 

28 4350+28 X 50=5750 

27 4600+ 27 X 50=5950 

26 4975+ 26 X 50=6275 

25 5400+ 25 x 50=6650 

23 6250+ 23 X 50=7400 

22 6775+ 22 X 50=7875 

We have just described the optimal scheduling by CPM based on 
FF limit method and this method is preferred when the time and 
cost relationship is nearly linear. For nonlinear situations, we study 
optimal scheduling by CPM using another method called as stepping 
stone method. Because, in nonlinear case a best candidate at given 
iteration may not be best for next iteration. 

2. Stepping step method. In this method we compress that 
activity along critical path which has lowest slope by only one unit 
duration at a time. Note that we do not use free floats for this purpose. 
The sensitive point is that when we compress two critical activities on 
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different critical paths, the compression is done in such a way that 
both path remain critical. We may continue till all activities along 
some critical reach at their crash duration. 

9.5 Project Evaluation and Review Technique 

Most often, PERT is used as an abbreviation for Project (Program­
ming) Evaluation and Review Technique. The first step is to determine 
the critical path. However, in PERT duration of an activity is not fixed 
but is a random variable. For an activity (i, j), the time duration Tij is 
a random variable. It is found by experiments that probability density 
function of Tij has a graph of either the shapes, see Fig. 9.15. 

Define 

to = optimistic time, if execution goes well; 

tp = pessimistic time, if execution goes badly; 

tm = most likely time: if execution goes normal. 

Figure 9.15 

In PERT, Beta distribution is taken as the probability density func­
tion of Tij 

where 

{ 

ktp-l (1 - t) q-l , 0:::; t < 1, 
f(t) = 

0, otherwise, 

k _ f(p+ q) 
- f(p)f(q)' 

f being gamma function. 

The density function f(t) can be made to take any of the three 
shapes of Fig. 9.15 by assigning p and q appropriate values. The ex­
pected value and variance of beta distribution are computed by usual 
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methods. However, for the purpose of PERT computations we approx­
imate expected value and variance as follows. Assume that (to + tp)j2 
weighs half as much as most likely tm . Thus the expected value (mean) 
of the random variable Tij is computed using 

toHp + 2t 4 E (T:- _) = 2 m _ to + tm + tp 
tJ 3 6 (9.1) 

To ensure that ninety percent of data falls within the interval [to, tp], 
we utilize the Chebyshev inequality to find Vij, variance of the random 
variable Tij 

(9.2) 

The critical path is found as in CPM by using E(Tij ), expected value 
of Tij' 

T(shortest completion time) = L Tij 
(i,j) 

critical 
activity 

E(T) = L E(Tij) 
( i,j) 

critical 
activity 

V(T) = L Vij. 
( i,j) 

critical 
activity 

The earliest starting time of event i is denoted by Zi, which is a 
random variable. Suppose E(Zd and V(Zi) denote respectively the 
expected value and variance of the random variable Zi. If two or 
more paths lead to the same i, then we take E(Zi) to be the one 
corresponding to the path having largest value of E(Zi)' 

If there is a tie among the paths having largest E (Zi), we select the 
one which corresponds to the larger value of the variance, because it 
reflects greater uncertainty. It is very much obvious that E(Zi) = ESi 
(earliest starting time of the activities emanating from node i. The 
path is determined by E(Zd, and then the variance V(Zd is calculated 
for this path. 

Also, it is significant to mention that Zi is the sum of many in­
dependent random variables Tij , hence, by central limit theorem the 
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random variable 

Z= 
Zi - E(Zd 

JV(Zi) 

has the standard normal distribution N(O, 1). 

Example 5. Consider the data 

Activity to tp tm 

(1,2) 2 8 5 

(1,3) 1 7 4 

(2,3) 0 0 0 

(2,4) 2 6 4 

(2,6) 5 12 7 

(3,4) 3 10 7 

(3,5) 3 3 6 

(4,5) 2 8 5 

(4,6) 4 10 6 

(5,6) 2 6 4 

(a) Find the probability that the earliest (starting) occurrence time 
of event 4 is less than or equal to 13 days; 

(b) Find the probability that the project is completed in 23 days. 

Using equations (9.1) and (9.2), we compute E(Tij) and V(Tij) and 
write data in the form 

Activity E(Tij) V(Tij) 

(1,2) 5 1 

(1,3) 4 1 

(2,3) 0 0 

(2,4) 4 0.44 

(2,6) 7.5 1.36 
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Activity E(Tij) 

(3,4) 6.83 

(3,5) 5 

(4,5) 6.33 

(4,6) 5 

(5,6) 4 

The network is shown in Figure 9.16. 

7.5 

4~ 
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1.36 

0 

1 
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0.44 
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~ 
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I ~ 5 

ffi l~ iO ~4~ 4 
~ ~ffi5 ~3 ~ ~ 

GiJ 
Figure 9.16 

The critical path and its expected normal duration E(T) and vari­
ance V(T), respectively are 

1 ---+ 2 ---+ 3 ---+ 4 ---+ 5 ---+ 6, 

E(T) = 20.83, V(T) = 1 + 0 + 1.36 + 1 + 0.44 = 3.8. 
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Event i E(Zi) VZi 

1 0 0 

2 5 1 

3 5 1 

4 11.83 2.36 

5 16.83 3.36 

6 20.83 3.8 

(a) P [Z < 13] = P [Z4 - E(Z4) < 13 - E(Z4)] 
4 - JV(Z4) - JV(Z4) 

= P [Z < 13 - 11.83] 
- v'2.36 

= P(Z :S 0.7616) = 0.7794 

(b) P[T < 23] = P [T - E(T) < 23 - E(T)] 
- v'V(T) - v'V(T) 

= P [Z < 23 - 20.83] 
- v'3.8 

= P(Z :S 1.113) = 0.8665, 

The probabilities in (a) and (b) have been written from the table of 
normal distribution. 

Problem Set 9 

1. A statue is to be erected in a village square on a stone platform 
which is to be built on cement concrete foundation. The statue is 
to be prepared at another place, moved and erected. The various 
operations of the project are given below. Construct the network 
of the project. Write clearly A, B, C, etc. on the activities. 

A : Make statue 

B : Shift statue 



298 CHAPTER 9. PROJECT MANAGEMENT 

C : Erect statue 

D : Lay foundation of the platform 

E : Construct platform 

2. Draw the network of the project for which (i) activities A and 
B start simultaneously; (ii) activities A, C, B, F, G precede 
C, D, E, H, I, respectively, (iii) E precedes G and H (iv) 
D, H, I precede J, a terminal activity. 

3. Construct the project network comprised of activities A to P 
that satisfies the following precedence relationships: 

(i) A, B, and C, the first activities of the project, can be exe­
cuted concurrently; 

(ii) D, E and F follow A; 

(iii) I and G follow both Band D; 

(iv) H follows both C and D; 

(v) K and L follow I; 

(vi) J succeeds both E and H; 

(vii) M and N succeed F, but can not start until both E and H 
are completed; 

(ix) 0 succeeds M and I; 

(x) P succeeds J, Land 0 

(xi) K, N, and P are the terminal activities of the project. 

4. Write the following activities by network : 
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Activity (i-j) Activity time (days) 

A-B 3 

A-C 4 

B-C 5 

B-D 4 

C-F 4 

D-E 13 

E-G 4 

E-H 6 

F-H 9 

G-H 0 

There is a constraint that activity F - H cannot start till the 
activity D - E is considered. Determine the Critical Path and 
normal duration of the project. 

Suggestion. Here, A, B, ... , H are events (nodes). 

5. A project consists of a series of tasks labeled A, B, ... , I with 
the relationship : X < Y, Y means X and Y can not start until 
W is complete, X, Y < W means W can not start until both X 
and Yare complete. Construct the diagram using this notation 
when 

A<D, E; B<D<F, C<G; B<H; F, G<I. 

Also, find the minimum time of completion of the project when 
the time in (days) for each task is as follows: 

ABC D E F G H I 

23 8 20 16 24 18 19 4 10 

6. A reactor and storage tank are interconnected by a 7.5 cm in­
sulated process line that needs periodic replacement. There are 
valves along the lines as well as at the terminals and they need 
replacement as well. No pipe and valves are in stock. Their 
drawings are accurate and are available. The line is overhead 
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and requires scaffolding. Pipe sections can be fabricated at the 
plant. An adequate craft labour is available. The plant methods 
standard section has furnished the following data: 

Activity Time (Hrs.) Predecessor ( s) 

A Develop required 10 

material list 

B Procure pipe 200 A 

C Erect scaffold 15 

D Remove scaffold 5 H,L 

E Deactivate line 10 

F Prefabricate sections 40 B 

G Place new pipes 35 F,K 

H Fit up pipe 10 G,J 

and valves 

I Procure valves 220 A 

J Place valves 10 I,K 

K Remove old pipe 40 C,E 

and valves 

L Insulate 25 G,J 

M Pressure test 8 H 

N Clean-up 5 D,M 

and start-up 

(a) Draw the arrow diagram of this project plan. 

(b) Find the critical path and its duration. 

A small project consists of the following activities where duration 
is in days and cost is in rupees: 
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8. 

Normal Crash 

Activity Precedence duration cost duration cost 

A 6 300 5 400 

B 8 400 6 600 

C A 7 400 5 600 

D B 11 1000 4 1350 

E C 8 500 5 800 

F B 7 400 6 500 

G D,E 5 1000 3 1400 

H F 8 500 5 950 

(a) Draw the network and find the normal duration; 

(b) Find the most economical schedule if the project is to be 
completed in 21 days; 

(c) Find the minimum project duration and total cost involved. 

Consider the data of a project with duration in weeks and costs 
in rupees as shown in the following table 

Normal Crash 

Activity duration cost duration cost 

(1,2) 13 700 9 900 

(1,3) 5 400 4 460 

(1,4) 7 600 4 810 

(2,5) 12 800 11 865 

(3,2) 6 900 4 1130 

(3,4) 5 1000 3 1180 

(4,5) 9 1500 6 1800 

If the indirect cost per week is $160, find the most economical 
schedule for the completion of the project. 
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9. Show by an example that, having two critical path and common 
activity, that at times it may be economical to compress a non­
best common critical activity rather than to compress respective 
best activities along two critical paths. 

10. 

Suggestion. Observe schedule for 25 days in Example 3. 

A project consists of six activities. The time estimates in days 
of the activities are as follows. 

Activity Optimistic Most likely Pessimistic 

(1,2) 3 7 9 

(1,3) 3 4 7 

(2,4) 2 4 6 

(2,5) 1 3 4 

(3,5) 6 8 9 

(4,5) 5 7 9 

The schedule date for the event 5 is given as 19 days. What 
is the probability of this schedule being achieved? If event 4 is 
delayed by 2 days, then find the probability of the project being 
completed in time. 

11. Assuming that the expected times are normally distributed, find 
the probability of meeting the schedule date for the following 
network. The estimation of duration is given in weeks. 

Activity Optimistic Most likely Pessimistic 

(1,2) 3 6 15 

(1,3) 10 13 16 

(2,4) 6 15 18 

(3,4) 3 6 9 

(4,5) 7 7 13 

(3,5) 9 18 21 

The schedule date for the project completion is 31 days. Find 
the date on which the project manager can complete the project 
with a probability of 0.90. 
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12. The following data is available for a project. The estimation of 
duration is given in days. 

Activity Least time Greatest time Most likely time 

(1,2) 6 11 9 

(1,3) 19 23 21 

(1,4) 27 41 34 

(2,5) 17 21 19 

(2,6) 14 24 21 

(3,6) 7 13 10 

(4,7) 6 11 12 

(5,7) 8 10 9 

(6,7) 4 6 5 

Find the following: 

(a) Expected task time and their variance; 

(b) The earliest and latest expected times to reach each node; 

(c) The critical path; 

(d) The probability of node occurring at the proposed com­
pletion date if the original contract time for completion of 
project is 42.5 weeks. 

13. A civil engineering firm has to bid for the construction of a dam. 
The activities and time estimates are as follows: 

Duration (in weeks) 

Activity Optimistic Most likely Pessimistic 

(1,2) 14 17 25 

(2,3) 14 18 21 

(2,4) 13 15 18 

(2,8) 16 19 28 

(3,4) 0 0 0 

(3,5) 15 18 0 
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(4,6) 13 17 21 

(5,7) 0 0 0 

(5,9) 14 18 20 

(6,7) 0 0 0 

(6,8) 0 0 0 

(7,9) 16 20 41 

(8,9) 14 16 22 

The policy of the firm with respect to submitting bids is to bid 
the minimum amount that will give 0.95 probability of at best 
at breaking even. The fixed costs for the project are eight lacks 
and the variable cost are $9,000 every week spent working on the 
project. 

What amount should the firm bid under this policy? 

14. A promoter is organizing a sports meeting. The relationship 
among the activities and time estimates are shown in the follow­
ing table: 

Activity Task Immediate Duration 

predecessor (days) 

to tm tp 

A Prepare draft program 3 7 11 

B Send to sports authority 

and wait for comments A 14 21 28 

C Obtain promoters A 11 14 17 

D Prepare and sign document 

for stadium hire A,C 2 2 2 

E Redraft program and 

request entries B 2 3.5 8 

F Enlist Officials B 10 14 21 
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G Arrange accommodation 

for tourist teams E 345 

H Prepare detailed programme E, F 4 4.5 8 

I Make final arraignments G, H 1 2 4 



Chapter 10 

Sequencing Problems 

This chapter deals in which order (sequence) a finite number of jobs 
should be processed on finite number of machines so that the elapsed 
time (total time involved in completion of all jobs) is minimized. 

10.1 Introduction 

The selection of an appropriate order for finite number of different 
jobs to be done on a finite number of machines is called sequencing 
problem. In a sequencing problem we have to determine the optimal 
order (sequence) of performing the jobs in such a way so that the total 
time (cost) is minimized. Suppose n jobs are to be processed on m 
machines for successful completion of a project. Such type of prob­
lems frequently occur in big industries. The sequencing problem is to 
determine the order (sequence) of jobs to be executed on different ma­
chines so that the total cost (time) involved is minimum. Since these 
arrangements are large in number, in particular, 5 jobs on 4 machines 
can be processed in (5!)4 = 207360000 ways. Thus, by enumeration 
it is impossible to solve these problems even for small number of jobs 
and machines. It motivates to devise some technique which can help 
to locate the specific arrangement in limited number of iterations so 
that the elapsed time is minimized. 

Before developing the algorithm we define certain terms as 

Mij = processing time required by ith job on the jth machine 
(i = 1 to n, j = 1 to m). 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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~j = idle time on machine j from the completion of (i - 1 )th job 
to the start of ith job. 

T = elapsed time (including idle time) for the completion of all the 
jobs. 

The problem is to determine a sequence iI, i2, ... , in, where iI, i2, 
... , n is a some permutation of the integers 1,2, ... ,n that minimizes 
the total elapsed time T. Each job is processed on machine MI and 
then on machine M 2 , and we say jobs functioning order is M IM2. 
Before developing the algorithm in the next section we make certain 
assumptions. 

(i) No Machine can process more than one job at a time. 

(ii) Each job once started on a machine must be completed before 
the start of new job. 

(iii) Processing times l'vfij's are independent of the order of processing 
the jobs. 

(iv) Processing times Mij's are known in advance and do not change 
during operation. 

(v) The time required in transferring ajob from one machine to other 
machine is negligible. 

(vi) There is only one of each type of machine. 

10.2 Problem of n Jobs and 2 Machines 

We start with the simple problem of processing n jobs on two machines. 
The procedure illustrated below is due to S. M. Johnson. Let Ai and Bi 
be the processing time of ith job on machines MI and M 2 , respectively. 
To find the optimal sequence of jobs on the machine MI and M2 in 
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the order M 1M2, we write the problem in the format: 

Jobs Processing Time Processing Time 

on Machine Ml on Machine M2 

1 

2 

i 

n 

We adopt the following procedures: 

309 

Algorithm. The steps of an iterative procedure to get the optimal 
sequence for the problem of n jobs on two machines are as follows: 

Compute 

Step 1. If this processing time is in column A say A r , then process 
the job r first, if this processing time is in column B, say B s , 

then process the 8th job in the last. 

Step 2. In the case of a tie among the smallest processing timings in 
columns A and B, then proceed as 

(a) If the smallest value falls in both columns (there is a tie), 
then schedule the job in column A first and the job of column B 
in the last. 

(b) If all smallest values fall in column A, select one which corre­
sponds to the lowest entry in column B and place in the sequence 
from the left. Here all tied jobs are are processed looking for the 
lowest, next to the lowest and so on in column B. 

(c) If all smallest values fall in column B, select one which corre­
sponds to the lowest entry in column A and place in the sequence 
from the right. Here all tied jobs are are processed looking for 
the lowest, next to the lowest and so on in column A. 
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Step 3. Cross all the jobs assigned by Steps 1 and 2 and again find 
the minimum of the remaining Ai and Bi. Repeat the above 
procedure till all the jobs are assigned. 

Remark. If the smallest processing time for any job is same for both 
machines, then this can be placed from the left or right. This situation 
results in alternate optimal solution. 

The above procedure is illustrated by solving some examples. 

Example 1. There are six jobs each of which is to be processed 
through the machines Ml and M2 in order M 1M2. The processing 
time is given in hours. Determine the sequence of these jobs which 
minimizes the total elapsed time. 

Job number 1 2 3 4 5 6 

Processing time on M 1 5 9 4 7 8 5 

Processing time on M2 8 4 8 3 6 6 

Write the data in the format 

Jobs Processing Time on M 1 Processing Time on M2 

(in hours) (in hours) 

1 5 8 

2 9 4 

3 4 8 

4 7 3 

5 8 6 

6 5 6 

The minimum of all entries (processing time) in column A and B is 3, 
and this is in column B and correspond to job 4. Hence, process job 4 
in last, i.e., 

As job 4 has been placed cross the row containing job 4. Calculate 
the minimum of the remaining entries. The minimum is 4 and falls in 
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column A and B both. This minimums corresponds to job 3 for and 
job 2 for column B. Hence, place job 3 first and job 2 in last (i.e., before 
already filled space). This gives 

Calculate minimum of all entries ignoring the entries in row 2, 3 and 
4. The minimum is 5 and there is a tie as this corresponds to jobs 1 
and 6. But the lowest entry in column B is for job 6. Hence, process 
job 6 first and then job 1. The next arrangement is 

All jobs are assigned except job 5. Fill up this in the space left. The 
optimal sequence is 

I 3 I 6 I 1 I 5 I 2 141 

To compute the elapsed time and the idle time for machines Ml 
and M 2 , construct the table 

Job Machine Ml Machine M2 

Time in Time out Time in Time out 

3 0 4 4 12 

6 4 9 12 18 

1 9 14 18 26 

5 14 22 26 32 

2 22 31 32 36 

4 31 38 38 41 

From the table, we write 

Total elapsed time = 41 hours 

Idle time for M2 = 4 + 2 = 6 hour 

Idle time for Ml = 41 - 38 = 3 hours 

Idle time 

for M2 

4 

0 

0 

0 

0 

2 
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Example 2. Find the sequence that minimizes the total elapsed time 
required to complete the following tasks. The table below gives the 
processing time in hours. Also, calculate the idle time for both ma­
chines. 

Job 1 2 3 4 5 6 7 

lkfl 1 5 2 4 2 4 4 

lkf2 4 4 2 2 4 3 5 

As usual write the problem in column format, see Example 1, and 
note that 1 is minimum of all entries and this corresponds to job l. 
Hence, process job 1 first. Delete the row containing job l. 

Compute fresh minimum of all the entries in both columns, and 
this is 2. But there is a tie for 2 to appear in both columns and also at 
two places in the same column. First, break the tie according to Step 
2 (i) of algorithm. This finds placement for job 3 after job 1 and job 
4 in the last. At most two jobs may be placed at a time. Delete rows 
for jobs 1, 3 and 4. 

The next minimum is 2 in the first column and corresponds to job 
5. Place job 5 just after job 3. Delete all rows containing the jobs 
assigned so far. 

The next smallest value is 5 and there is a tie for the corresponding 
lowest entry in both columns. This implies that jobs 2 and 7 can 
be placed in any order. This indicates alternate optimal solution. 
Suppose, we first place 7 and then 2. 

The only left space is filled by the only left job 6. The optimal 
sequence is 

I 1 1 3 1 5 I 7 I 2 I 6 I 4 I 

Construct the table to find minimum elapsed time as 



10.3. PROBLEM OF N JOBS AND M MACHINES 313 

Job Machine MI Machine M2 Idle time 

Time in Time out Time in Time out 

1 0 1 1 5 

3 1 3 5 7 

5 3 5 7 11 

7 5 9 11 16 

2 9 14 16 20 

6 14 18 20 23 

4 18 22 23 25 

From the table, we conclude 

Total elapsed time = 25 hours 

Idle time for M2 = 1 hour 

Idle time for MI = 25 - 22 = 3 hour 

for M2 

1 

0 

0 

0 

0 

0 

0 

Remark. Example 2 has alternate optimal solution as jobs 2 and 7 can 
also be placed in the order job 2 and then job 7. 

10.3 Problem of n Jobs and m Machines 

Let there be n jobs to be processed through m machines M I, M 2 , ... , 

Mm in that order. If either or both of the conditions hold, then the 
problem can be related to n jobs and two machines. 

minMil 2:: m9XMij, j = 2,3, ... , m - 1 
~ ~ 

m~nMim 2:: m9XMij, j = 2,3, ... , m-l. 
~ ~ 

(10.1) 

(10.2) 

Note. If neither of the above conditions are satisfied, then no solution 
procedure is available. 

Suppose at least one of the conditions is available as valid. Then 
the algorithm proceeds as 
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Algorithm. 

Step 1. Let there be two fictitious machines FI and F2, Calculate 

FI = Mil + Mi2 + ... + Mi,m-l, i = 1,2, ... , n,(1O.3) 
F2 = Mi2 + Mi3 + ... + Mim , i = 1,2, ... , n, (10.4) 

where Mij is the processing time for ith (i = 1 textto n) job on 
machines M j (j = 1 to m). 

Step 2. Find the optimal sequence for n jobs with two machines FI and 
F2 in the order FIF2. This optimal sequence is also the optimal 
sequence for the given problem with n jobs and m machines. 

Example 3. Suppose there are five jobs each of which must go through 
machines M I , M2 and M3 in the order MI M2 M3. Processing times 
are given below. Determine the optimal sequence and total elapsed 
time. 

Jobs 1 2 3 4 5 

MI 8 5 4 6 5 

M2 6 2 9 7 4 

M3 10 13 11 10 12 

Since, min Mil = 4, max Mi2 = 9, min Mi3 = 10, and condition 
(10.2) is satisfied, the algorithm works. Introduce fictitious machines 
FI and F2, and compute processing for each job on machines FI and F2 
using relations (10.3) and (10.4). This procedure yields the following 
equivalent sequencing problem. 

Jobs 1 2 3 4 5 

FI 14 7 13 13 9 

F2 16 15 20 17 16 

Now, solve the problem as five jobs and two machines. By usual 
method of Examples 1 and 2, the optimal sequence is 

I 2 I 5 I 4 I 3 I 1 I 

Once the optimal sequence is available, we use the original data of the 
problem to find the total elapsed time and idle time for all machines. 
Suppose Id denotes the idle time in the table constructed below. 
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Job Machine Ml Machine M2 Machine M3 

Time Time Time Time Id Time Time 

In out In out in 

2 0 5 5 7 5 7 

5 5 10 10 14 3 20 

4 10 16 16 23 2 32 

3 16 20 23 32 0 42 

1 20 28 32 38 0 53 

From the data in the above table, we get 

Total elapsed time = 63 hours 

Idle time for Ml = 63-28 = 35 hours 

Idle time for M2 = 10+(63-38) = 35 hours 

Idle time for M3 =7 hours 

Similarly, the problem can be done for 4 or 5 machines. 

out 

20 

32 

42 

53 

63 

315 

Id 

7 

0 

0 

0 

0 

Remark. In addition to (10.1) and (10.2) conditions, if the following 
condition also holds 

Mi2 + Mi3 + ... + Mi,m-l = constant; i = 1,2, ... , n 

then the problem can be solved as n jobs 2 machines but in a more 
simplified way, i.e., we have to get the optimal sequence for the first 
and the last machines only. For more illustration see the next example. 

Example 4. Solve the following sequencing problem 

Jobs 1 2 3 4 5 

Ml 7 10 8 9 7 

M2 2 1 4 0 5 

M3 5 6 3 7 2 

M4 8 7 12 10 9 
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Note that both conditions (10.1) and (10.2) are satisfied. In addition, 
we also have 

Mi2 + Mi3 = 7, i = 1 to 5 

Hence, by the above remark this problem is equivalent to the following 
two machines PI == MI and P2 == M4 problem 

Jobs 1 2 3 4 5 

PI 7 10 8 9 7 

P2 8 7 12 10 9 

By the usual method the optimal sequence is 

I 1 I 5 I 3 I 4 I 2 I 

With this optimal sequence at hand construct the table to find total 
elapsed time and the idle time for different machines. Suppose I, 0 
and Id stands for time in, time out and idle time. Then 

Job Machine Machine Machine 

MI M2 M3 

I 0 I 0 Id I 0 Id 

1 0 7 7 9 7 9 14 9 

5 7 14 14 19 5 19 21 5 

3 14 22 22 26 3 26 29 5 

4 22 31 31 31 5 31 38 2 

2 31 41 41 42 10 42 48 4 

From the table we compute 

Total elapsed time = 60 hours 

Idle time for MI = 19 hours 

Idle time for M2 = 48 hours 

Idle time for M3 = 37 hours 

Idle time for M4 = 14 

Machine 

M4 

I 0 Id 

14 22 14 

22 31 0 

31 43 0 

43 53 0 

53 60 0 
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10.4 Two Jobs on Ordered m Machines 

Here we consider job 1 and job 2 to be processed on machines M I , 

M 2 , •.. , Mm. The technological order of these machines to execute 
each job is specified in advance. Certainly, the ordering is different for 
both jobs, otherwise this problem will reduce to 2 jobs on m machines 
already discussed. 

The exact or expected processing time on machines M I , M2, ... , 
Mm are given. The problem is to minimize the total elapsed from the 
start of the first job on the first machine to the completion on the last 
machine. The elapsed time for job 2 will turn to be same. The optimal 
sequence can be obtained graphically for which the algorithm is given 
as follows. 

Algorithm. The algorithm proceeds as 

Step 1. Draw two perpendicular lines, one representing the processing 
time for job 1, while job 2 remains idle, and vertical line repre­
senting the processing time for job 2, while job remains idle. 

Step 2. Mark the processing tome for job1 and job 2 on the horizontal 
and vertical line respectively according to the specified order of 
machines. 

Step 3. Start from the origin (start point), construct various blocks by 
pairing the same machines until the end point. 

Step 4. Sketch the line from origin to the end point by moving horizon­
tally" vertically and diagonally at 45° with the horizontal base. 
The horizontal segment of this line indicates that the first job 
is under process while the second job is idle. Similarly, the ver­
tical segment of the line indicates that the second job is under 
process while the first job is idle. The diagonal segment denotes 
that both jobs are under process. 

5. The path that minimizes the idle time is the optimal path for 
both of the jobs. Thus, the path on which the diagonal movement 
is maximum is to be selected. 

6. The total elapsed time is calculated by adding the idle time for 
either of the job to the completion of that job on all machines. 

The following example will make this graphical approach more illus­
trative. 
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Example 5. Use the graphical method to minimize the time required 
to process the following jobs on two machines. Find the job which 
should be processed first. Also, calculate the total elapsed time to 
complete both jobs. 

Job 1 { 
order A B C D E 

Time 3 4 2 6 2 

2 { order B C A D E 
Job 

Time 5 4 3 2 6 

Draw the lines (horizontal and vertical) OX and OY represent­
ing the processing time of jobs 1 and 2. Mark the processing time 
of these jobs as shown in Fig. 10.1. Here, VI + V2 = 2 + 3 = 
5 (idle time for job 1), and hI = 2 (idle time for job 2). 

14 

12 

Job 2 

9 

5 

o 3 7 9 15 17 
Job 1 

Figure 10.1 
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Now, draw the shaded rectangular blocks corresponding to each 
machine. Take A horizontal vs A vertical to complete the block A. 
Similarly, do for other machines. Start from the origin 0, we move 
on doing jobs avoiding the shaded rectangular blocks until the finish 
point is reached. Here it is important to note that we shall try to move 
as such as we can along a line having an angle 45° to the horizontal. 
Whenever it is not possible to move along the line having 45° degree 
with horizontal, we shall move along horizontally and vertically as 
required. 

Both jobs can not be processed simultaneously, this means that 
that the diagonal movement through blocked out ares is not permitted. 
The best path is shown by arrows in Fig 10.1. From the graph we 
conclude 

Job 1 before job 2 on machine A 

Job 2 before job 1 on machine B 

Job 2 before job 1 on machine C 

Job 1 before job 2 on machine D 

Job 2 before job 1 on machine E 

Total elapsed time = Processing time for job 1 + Idle time for job 1 

= 17 + 2 + 3 = 22 hours 

or 

Total elapsed time = Processing time for job 2 + Idle time for job 2 

= 20 + 2 = 22 hours 

Example 6. Using the graphical method calculate the minimize time 
needed to process the job 1 and job 2 on five machines A, B, C, D, E, 
i.e., on each machine. Find the job which must be done first. Also, 
determine the total elapsed time to complete both jobs. 

l{ order A B C D E 
Job 

Time 1 2 3 5 1 

Job 2 { 
order C A D E B 

Time 3 4 2 1 5 
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Draw the lines (horizontal and vertical) OX and OY representing 
the processing time of jobs 1 and 2. Mark the processing time of these 
jobs as shown in Fig. 10.2. 

Job 2 VI = 3 (idle time for job 1) 

o 3 6 9 11 12 
Job 1 

Figure 10.2 

Now, draw the shaded rectangular blocks corresponding to each 
machine. Take A horizontal vs A vertical to complete the block A. 
Similarly, do for other machines. Start from the origin 0, we move 
on doing jobs avoiding the shaded rectangular blocks until the finish 
point is reached. Here it is important to note that we shall try to move 
as such as we can along a line having an angle 45° to the horizontal. 
Whenever it is not possible to move along the line having 45° degree 
with horizontal, we shall move along horizontally and vertically as 
required 

Both jobs can not be processed simultaneously, this means that 
that the diagonal movement through blocked out areas is not permit­
ted. The best path is shown by arrows in Fig 10.2. From the graph 
we conclude 
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Job 1 before job 2 on machine A 

Job 1 before job 2 on machine B 

Job 2 before job 1 on machine C 

Job 1 before job 2 on machine D 

Job 2 before job 1 on machine E 

Total elapsed time = Processing time for job 1 + Idle time for job 1 

= 12 + 3 = 15 hours 

or 

Total elapsed time = Processing time for job 2 + Idle time for job 2 

= 15 + 0 = 15 hours 

Remark. To decide the precedence relation of two jobs on any machine 
we observe the coordinate of the south-west corner of each square. 
Suppose coordinate of any south-west corner are (x, y), x < y. Then 
job 1 precedes job 2 on that machine. 

1. 

Problem Set 10 

The following table shows the machine time (in days) for 5 jobs 
to be processed on two different machines Ml and M2 in order 
MIM2 : 

Job 1 2 3 4 5 

Ml 3 7 4 5 7 

M2 6 2 7 3 4 

Assuming passing is not permitted, find the optimal sequence of 
jobs to be processed and corresponding total idle time for the 
machines in this period. 

2. A book binder has one printing press, one binding machine, and 
the manuscripts of a number of different books. The time (in 
hours) required to perform the printing and binding operations 
for each book are shown below. It is required to determine the 
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order in which books should be processed so as to minimize the 
total time needed to turn out all the books. 

Books 1 2 3 4 5 6 

Printing time 35 130 60 30 90 120 

Binding time 80 100 90 60 30 20 

3. Find the optimal sequence that minimizes the total elapsed time 
(in hours) required to complete the following tasks: 

4. 

5. 

Tasks A B C D E F G 

Processing time on Ml 4 9 8 5 8 9 7 

Processing time on M2 5 3 2 4 1 3 5 

Processing time on lv13 7 6 8 12 6 5 11 

Find the optimal sequence that minimizes the total elapsed time 
required to complete the following tasks. Each job is processed 
in the order M 1M3M2. 

Job 1 2 3 4 5 6 7 

Processing time on Ml 13 5 6 12 6 8 7 

Processing time on M2 8 9 8 4 8 9 4 

Processing time on M3 4 5 2 5 3 4 6 

A ready-made garment manufacturer has to process seven items 
through two stages of production, i.e., cutting and sewing. The 
time taken for each of these items at the different stages are given 
below in hours. 

Items 1 2 3 4 5 6 7 

Cutting processing time 6 8 4 5 7 6 14 

Sewing Processing Time 3 7 6 4 10 6 9 

(a) Find an optimal order (sequence) of items to be processed 
through these stages so as to minimize the total processing 
time. 



10.4. TWO JOBS ON ORDERED M MACHINES 323 

(b) Suppose the third stage, i.e., pressing and packing is added. 
The processing time for this stage are as follows: 

Items 1 2 3 4 5 6 7 

Pressing & Packing Time 10 12 11 13 12 10 11 

Find the optimal order of the items to be processed as well as 
minimum total processing time. 

6. Find the optimal sequence for processing 4 jobs, A, B, C, D on 
four machines M 1 , M2, M3, M4 in the order M 1M 2M 3M4. The 
processing time for jobs (in hours) are given below. 

A 

B 

C 

D 

14 6 

13 3 

12 4 

16 3 

5 15 

10 13 

6 16 

o 20 

7. Suppose that we have four jobs J 1 , h, J3, J4 which must be 
processed through machines M 1 , M 2, M3, M4 in the following 
order. 

J1 : M1M2 M 3M4 

h: MI M3M 2M4 

h: M2 M3M4Ml 

J4 : M2M4 M3M l 

Each processing of job on a machine takes an hour. Find a 
feasible job sequence, and compute the corresponding elapsed 
time T from the start of the first job to the completion of the 
last job finished. 

8. Two jobs are to be processed on four machines M 1 , M 2, M3, 
M4. The technological order for these jobs on machines are as 
follows: 

h: MIM2 M 3M4 

h: M4M2MI M3 
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The processing time for jobs (in hours) are given below: 

5 

3 

6 

7 

8 

4 

3 

8 

Find the order of jobs to be processed on each machine. Also, 
calculate the total elapsed time. 

9. A manufacturing company processes 6 different jobs on 2 ma­
chines A and B in that order The number of units of each job 
and its processing time (in minutes) on A and B are given in the 
following table: 

Processing time 

Job Units of each job Machine A Machine B 

1 3 5 8 

2 4 16 7 

3 2 6 11 

4 5 3 5 

5 2 9 7.5 

6 3 6 14 

Find the optimal sequence, the total elapsed time and idle time 
for each machine. 



Chapter 11 

Integer Programming 

In practical problems decision variables may not be continuous. For 
studying problems where the decision variables take positive integral 
values, the integer linear programming has been developed. The proce­
dures involved in the integer linear programming are explained in this 
chapter and in the end we emphasize on its two applications, viz., the 
traveling salesman problem and Cargo loading problem. 

11.1 Introduction 

In many real life problems the decision variables make sense only if they 
are integers. For example, it is often necessary to assign activities to 
men, machines, and vehicles in integer quantities. Let us define the 
integer linear programming in a general case. 

Definition 1. An integer linear programming problem (ILPP) is 
a LPP where some or all the decision variables are restricted to be 
integer valued. 

Remarks. 1. An ILPP is said to be pure if all decisions variables 
are restricted to be integers. 

2. An ILPP is said to be mixed if some of the decision variables 
are restricted to be integers while others can assume fractional or con­
tinuous values. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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The general ILPP is written as 

opt Xo = CTX 

s.t. ailXI + ai2X2 + ... + ainXn 2':, 
X 2': o. 

Some or all of the {Xl, X2, ... ,Xn } may be integers. Separate these 
out and write 

opt Xo = CTX 

s.t. ailXI + ai2X2 + ... + ainXn 2':, =, :::::; bi , i = 1,2, ... ,m 

Xl, X2,···, Xk are integers and Xk+l, Xk+2,· .. , Xn 2': o. 

Now, we develop a method widely known as branch and bound al­
gorithm or Dakin's method for solving the integer linear programming 
problem. 

11.2 Branch and Bound Algorithm 

We would explain the Branch and Bound algorithm by an example as 
follows: 

Consider the problem 

opt Xo = 3XI + 2X2 

s.t. Xl:::::; 2 

X2 :::::; 2 

Xl + X2 2': 7/2 
Xl, X2 2': 0 and integers. 

(a) The initial step is to solve the ILPP by ignoring the restriction 
on the decision variables of being integers. 

(b) In the optimal solution, X2 turns to be fractional. But this is 
not an optimal solution in terms of integers. By restricting X2 

to be an integer optimal solution may worse but certainly not 
better as this is done by adding the constraints. If, in optimal 
table X2 = a (not positive integer), then we add the constraint 
X2 :::::; [a], where [aJ denotes the greatest integer contained in 
a.Again solve the problem for optimality. If this table contains 
both Xl and X2 as positive integers, then stop at this node and 
compute Z, the objective function value. 
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(c) Further, we see the effect of adding X2 ~ [a] + 1, and solve for 
optimality, if an integer solution is available or if infeasibility 
occurs then stop. In case of the integer solution compare the 
value z with the value computed in (b) and consider the solution 
which gives better value. 

(d) In steps (b) and (c), if neither infeasibility exists nor a integer 
solution is obtained, then we continue with further additions of 
constraints until all nodes are fathomed. 

Definition 2. A node is said to be fathomed if it satisfies one of the 
conditions. 

1. The LPP optimal solution at that node is integer valued. 

2. The LPP problem is infeasible. 

3. The optimal value of z for the LPP is not better than current 
lower bound (for max problem) and current upper bound (for 
min problem). 

In view of the above discussion, continue branching from those 
nodes only which has larger value (for max) smaller value (for min) of 
z then obtained in the recent integer solution, i.e., from unfathomed 
nodes. 

The solution of the above problem by the graphical method gives 
five vertices, viz., (0,0), (2,0), (0,2), (2,1.5), (1.5,2). Obviously, the 
maximum occurs at the vertex (2, 1.5), and the maximum value: z = 9. 
Mention this at Node 1. Since the optimal solution Xl = 2, X2 = 1.5 
is not integer valued at X2. Hence, we add the constraints X2 :::; [1.5] 
and X2 ~ [1.5] + 1, i.e., X2 :::; 1 and X2 ~ 2 to the given problem and 
proceeds as follows: 

(i) Now, with the addition of X2 :::; 1, the vertices are (0,0), (1,0), 
(2,1), (0,1). The maximum occurs at Xl = 2, X2 = 1, and the maxi­
mum value: z = 8. Write this solution at Node 2. 

(ii) However, the addition of X2 ~ 2 gives the vertices as (1.5,2), (1, 2). 
The maximum occurs at Xl = 1.5, X2 = 2 with the maximum value 
z = 8.5. Write this solution at Node 3. 

(iii) The optimal solution at Node 1 is integer valued, while at 
Node 3 improves in spite of the fact it is noninteger valued. Hence, 
Node 2 is fathomed, and we continue at Node 3. 
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(iv) Like Steps (i) and (ii), we add the constraints Xl :::; 1 and 
Xl 2: 2. For the addition of Xl :::; 1, we get the optimal solution at 
Xl = 1, X2 = 2 with the optimal value z = 7, see Node 4. This is 
fathomed as we have got integer valued solution. But the addition 
of Xl 2: 2 turns the problem infeasible, see Node 5, and hence it is 
fathomed. 

Node 1 

Node 2 

fathomed 

Node 4 

xI=2,X2=1. 

z=9 

xI=I, x2=2 

z=7 

fathomed 

I :::; 1 

Figure 11.1 

Node 3 

L-__ In_£_ea_S_ib_l_e __ ~1 NodeS 

fathomed 

From all fathomed nodes, we pick up the best solution, and this is 
Xl = 2, X2 = 1 with maximum value z = 8, see Fig. 11.1. 

Example 1. Find the optimal solution of the ILPP by Branch and 
Bound technique. Draw the diagram showing the solution inside nodes. 

max z = Xl - 2X2 + 3X3 

s.t. 2XI + 3X2 - X3 :::; 8 

Xl - X2 + X3 2: 5 

Xl, X3 2: 0, and X2 is integer. 

First, we solve the related linear programming problem by the 
simplex method (sometimes the optimal table of the related LPP may 



11.2. BRANCH AND BOUND ALGORITHM 

also be given). The related LPP is 

max z = Xl - 2X2 + 3X3 

s. t. 2X1 + 3X2 - X3 + 81 = 8 

Xl - X2 + X3 + 82 = 5 

X1,X2,X3,81,82 ~ o. 

329 

The optimal solution of the related LPP by the simplex method is 

BV Xl X2 x31 81 82 Soln 

Xo -1 2 -3 0 0 0 

81 2 3 -1 1 0 8 

f- 82 1 -1 IT] 0 1 5 

Xo 2 -11 0 0 3 15 

f- 81 3 ~ 0 1 1 13 

X3 1 -1 1 0 1 5 

Xo 7/2 0 0 1/2 5/2 43/2 

X2 3/2 1 0 1/2 1/2 13/2 

X3 5/2 0 1 1/2 3/2 23/2 

Since the above optimal solution is fractional at X2 = 13/2, while 
we need a positive integer to the above optimal table. We add the 
constraint X2 :s: 6. The effect of the addition of the constraint is 
shown in Table 1. 

Table 1 

BV Xl X2 X3 81 1 82 8 Soln 

Xo 7/2 0 0 1/2 5/2 0 43/2 

X2 3/2 1 0 1/2 1/2 0 13/2 

X3 5/2 0 1 1/2 3/2 0 23/2 

f-8 -3/2 0 0 1-1/21 -1/2 1 -1/2 

0 1 0 0 0 1 6 
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Table 1 (Contd.) 

BV Xl X2 X3 81 ! 82 8 Soln 

Xo 2 0 0 0 3 4 21 

X2 0 0 0 0 1 1/2 6 

X3 1 0 1 0 1 1/2 II 

81 3 0 0 1 1 -2 1 

As per Table 1, the optimal solution is integer valued. However, in 
case it is not integer valued, say variable X2 in the solution, we must 
have proceeded further. 

Next, we investigate the effect of adding the constraint X2 2: [13/2]+ 
1 = 7 as described in Table 2. 

Table 2 

BV Xl X2 X3 81 82 8 Soln 

Xo 7/2 0 0 1/2 5/2 0 43/2 

X2 3/2 1 0 1/2 1/2 0 13/2 

X3 5/2 0 1 1/2 3/2 0 23/2 

f-- 8 ' 3/2 0 0 1/2 1/2 1 -7 

0 1 0 0 0 -1 7 

Thus, the addition of X2 2: 7 makes the solution infeasible. 

From Tables 1 and 2, we sketch the flow diagram. Node 1 is the 
solution of the related LPP which is fractional in X2. On adding the 
constraint X2 ::; 6, we get an integer valued solution as Xl =0, x2=6, 

x3=ll with the optimal value x o=43/2. This is shown on Node 2. 
Thus, Node 2 is fathomed. 

Next, we add the constraint X2 2: 7 to the last iteration table and 
note that the resulting solution is infeasible, see Node 3. In this way, 
Node 3 is also fathomed. The flow diagram is shown in Fig. 1l.2. 
Obviously, from the diagram Fig. 1l.2, the optimal solution is 

Xl = 0, X2 = 6, X3 = ll, max value Xo = 2l. 
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xl=2, x2=13/2, x3=23 2 

Xl=O, x2=6, x3=1 
z=21 

z=43/2 

Figure 11.2 

2?7 

infeasible 

11.3 Traveling Salesman Problem 
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In a traveling salesman problem, a traveling salesman wishes to visit n 
cities and starts the journey from some city and visits each of (n - 1) 
cities once and only once and returns to the start. It is desired to find 
the order in which he should visit all the cities to minimize the total 
distance traveled. For the distance travelled, we may consider time, 
cost and other measure of effectiveness as desired. The distance, cost, 
and time etc., between any two cities are pre-assumed known. 

The problem is well known because of its easy statement but diffi­
cult solution procedure. The difficulty is entirely computational since 
the solution obviously holds. There are (n - 1)! possible tours one or 
more of which may give minimum cost. The minimum cost could be 
conceivably infinite. It is conventional to assign infinite cost between 
the city pairs that have no direct connection. To solve the traveling 
salesman problem (TSP), we need a reduced cost matrix (see Section 
7.6) at various iterations. 

Example 2. The cost between city pairs are given as 



332 CHAPTER 11. INTEGER PROGRAMMING 

Find the tour of the traveling salesman so that cost of travel is 
minimum. Given that he starts journey from city 2. 

Solution procedure. Write the problem in the matrix form, 
and get its reduced matrix by performing row operations followed by 
column operations (if necessary). Write the amount of total reduction 
on the bottom of right corner of the reduced matrix S. Both matrices 
are shown in the following table 

Cost matrix Reduced matrix 

00 5 00 9 00 0 00 4 

5 00 4 3 0 00 0 0 

00 4 00 6 00 0 2 
00 

9 3 6 00 4 0 2 00 

18 

In the reduced matrix, city pairs with cost '0' are candidates to be 
considered in the tour. From the reduced matrix (1,2), (2,1), (2,3), 
(2,4), (3,2), (4,2) are the candidate pairs. 

The least cost of exclusion (LeE) of (i, j) pair is the sum of the 
smallest cost in ith row and jth column (excluding (i,j) entry). 

Step 1. The candidate pair for which the LeE is the largest should be 
retained in the tour (in case of a tie choose arbitrarily) or this 
is convenient to move from the top most row or the left most 
column. 

Step 2. (i, j) means (i, j) pair is not included in the tour. The lower 
bound (LB) on i, j) is computed using the formula: 

LB on (i,j) = LB on parent node + LeE of (i,j). 

Step 3. To determine LB on (i,j), write the matrix of parent node by 
deleting ith row and jth column. Inclusion of (i, j) pair makes 
the cell (j, i) infeasible. Also check other infeasibility if exists. 
After this get the reduced matrix and calculate 

LB on (i, j) = LB on parent node + amount of reduction. 

Steps 2 and 3 are shown in the following cost matrices: 
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s (1,2) 

00 0 00 4 

14 - - - -

0 00 0 0 

IT JJ 
00 - 0 0 

00 0 2 00 

12 
00 - 00 ..Pi 0 

4 2 2 00 4"'--1 - ..Pi 0 00 

12 18 0 

Now, we execute the following iterations as follows: 

Iteration 1. The LCE of each candidate pair is mentioned in East-South cor­
ner (ES) of the concerned cells. Note that, according to Step 1, 
the pairs (1,2) and (2,1) have the largest LCE, and hence must 
be be retained, see matrix S. Break the tie arbitrarily, and for 
convenience we retain (1,2), i.e., row-wise. Also, 

LB on (1,2) = 22. 

Now, the set of all tours S is partitioned into two classes: 

(a) Node ~ means all tours in which salesman travels from 
city 1 to 2. 

(b) Node 1(1,2) I means all tours in which salesman does not 
travel from city 1 to 2. 

LB on (1,2): Write the matrix of (1,2) by deleting the first row 
and second column of the parent reduced matrix S. Put 00 in 
(2,1) cell. After these changes, reduce the matrix, if required, 
see matrix (1,2). 

LB on (1,2) = 18 + 6 = 24. 

Now, branching is done from the node which has the smallest 
LB, and hence in this case, branching is done from node (1,2). 
One iteration is over with outcome shown in the following graph. 

24 
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(1.2) (1.4) 

00 00 00 it 0 

100 - - - -

0 00 0 0 0 00 0 

[2 [2 ~ fT -

00 OfT 00 -
00 0 00 2 

fT 
00 OfT 2 -4 0[2 2 00 

18+4=22 22+0=22 

L-_~ __ ---' 18 

L..-_-----' 22 L..-_-----' 24 

Iteration 2. To go for the second iteration, write the matrix (1,2) from the 
parent reduced matrix S, i.e., put 00 in cell (2,1), and find the 
candidate pairs to be included in the tour. We have to be careful 
while branching is done from any node the matrix must be in the 
reduced form. By Step 1, (1,4) has the largest LeE, see matrix 
(1,2). 

-

-

-

-

LB on (1,4) = 00. 

Include (1,4) in the tour. 

(2. 1) (3.2) 

- - -

- - -

0 

0 

00 -

100 
2"0 -

ro 100 22+2=24 '---_-'--_----'-_--'-_----' 24+0=24 
o 

LB on (1,4): Write the matrix of (1,4) from the parent matrix 
(1,2) by deleting the first row and fourth column, and put 00 at 
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(4, 1) position. Reduce it, if necessary, see the table of matrix 
(1,4). 

LB on (1,4) = 22 + 0 = 22. 

What we have done in the second iteration is depicted in the 
graph: 

'--~----' 22 

'--_----' 22 '--_---' 00 

Iteration 3. Branching is done from (1,4) and (2,1) is the candidate pair 
with 

LB on (2,1) = 00. 

LB on (2,1): Write the matrix (2,1) by deleting the second row 
and first column from its parent matrix (1,4) and making the 
cell (2, 1) infeasible. 

LB on (2,1) = 22 + 2 = 24. 

The outcome of the third iteration is 

'--_---' 24 '--_---' 00 

Iteration 4. Now, branching can be done from either (2,1) or (1,2). Let us 
continue from (2, 1). Find the candidate pair to be inc! uded in 
the tour. This is (3,2). Also, 

LB on (3,2) = 24 + 00 = 00. 
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LB on (3,2): Delete the third row and second column from the 
matrix of (2,1) and put 00 on (2,3) position. After reduction, 
this ensures 

LB on (3,2) = 24. 

The outcome of the fourth iteration is 

'----_--' 24 '----_--' 00 

Branching stops when there is a single entry, and include this 
entry in the tour, i.e., (4,3). Connecting all the graphs, we get 
the left side branching of Fig. 11.3. 

We have observed that in the fourth iteration branching was also 
possible from node (1,2). This will generate another tour. So, 
start branching from (1,2) and follow the same steps as explained 
above. Observe the matrix of (1,2) which is already available in 
previous branching. From this matrix, note that cell (3,4) has 
the largest LCE, and hence it is to be retained in the tour. Also, 

LB on (3,4) = 00. 

LB on (3,4): Delete the third row and fourth column of matrix 
(1,2). Put 00 in cell (4,3). Then get it reduced to have the 
matrix of (3,4). 

LB on (3,4) = 24. 

Again, branching is done from Node (3,4). From the matrix of 
(3,4), it is obvious that (2,3) is to be included in the tour. Also, 

LB on (2,3) = 00. 

LB on (2,3): Write the matrix of (2,3) by deleting the second 
row and third column from matrix (3,4) and make position (3,2) 
infeasible (but it is already infeasible). 

LB on (2,3) = 24. 
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-

00 

-

0 

(3,4) (2,3) 

- - -

- 0 

F -

- - -

- 00100 - o 
24+0=24 '--_-'-_......L._----'._----' 24+0=24 

Since the matrix of (2,3) contains only single entry in cell (4,1), 
we include this cell in the tour. Combining all branching from 
node (1,2), we get the left side of the graph in Fig. 11.3. From 
the complete graph, we conclude: 

00 

00 

00 

Figure 11.3 

The first tour retains the candidates pairs (1,4), (2, 1), (3, 2), (4,3), 
and the tour is constituted as 

2 -- 1 -- 4 -- 3 -- 2, optimal cost of travel = 24. 
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The second tour retains the candidates pairs {( 1, 2), (3, 4), (2, 3), 
(4, I)}, and the tour is constituted as 

2 ---t 3 ---t 4 ---t 1 ---t 2, optimal cost of travel = 24. 

Remarks. 1. While solving TSP by the branch and bound tech­
nique, the reader is advised to start branching on a separate paper 
and the remaining work looking at the branching. 

2. Note that the second tour is also obtained by reversing the 
arrows. This happens as the cost matrix is symmetric. For an asym­
metric cost matrix this may not happen. 

3. Sometimes it is convenient and the solution converges rapidly if 
we reduce the matrix by applying the column reduction first and then 
row reduction. Any way, select the reduced matrix which has higher 
starting LB. This reduces the length of a tree diagram, only such 
choice of reduction is effective in the asymmetric TSP, see problem 7 
of Problem set 11. 

4. For the cost matrix of order greater than 4, one must be very 
cautious to find LB on non bar type nodes. Because at the second 
and third stage of branching, the infeasibility may enter, and hence 
determination is sensitive. Consider the situation for some problem 
given in the following graph: 

I All tours 

(2,4) 

LB on (2,4): Write the matrix (1,2), delete 2nd row and 4th col­
umn. Put (4,2) position infeasible. Also (4,1) position turns out to 
be infeasible, otherwise the tour 

is not complete. 

Formulation of TSP as Assignment Problem: A traveling 
salesman has to visit n cities. He has to start from anyone city and 
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visit each city once and only once, and return to the starting point. 
Suppose he starts from kth city and the last city he visited is m. Then 
journey from m to k is mandatory for the tour. Let Cij be the cost of 
travel from city i to city j. Then the traveling salesman problem can 
be formulated as an assignment problem given by 

m n 

mm z = LLCijXij 

i=l j=l 

n 

s.t. LXij = 1, j = 1,2, ... ,n, i of-j, i of- m 
i=l 

n 

L Xij = 1, i = 1,2, ... , n, i of- j, j of- m 
j=l 

Xmk = 1 

Xij = 0 or 1. 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

Solution procedure. Solve the problem as an assignment prob­
lem and find all assignment solutions. Any cyclic assignment solution 
is a solution of the traveling salesman problem. In case cyclic assign­
ments are not available, then include the lowest entry (other than 0) 
for the assignment. Delete the row and column of this lowest entry and 
find '0' assignment in the remaining matrix. Again, observe whether 
cyclic assignment are available, otherwise include the next higher entry 
(other than the above lowest entry) in the tour and delete the row and 
column of this choice, and find '0' assignment in the remaining ma­
trix. Continue the above procedure till at least one cyclic assignments 
is available. 

Remark. If more than one cyclic assignment solutions are available at 
any stage, the TSP has alternate optimal solutions. 

Example 3. Solve Example 2 for traveling salesman by the assign­
ment technique. 

Using the Hungarian method, the optimal solution is given by the 
assignment matrix shown below. The optimal assignment are 

1 ----? 2, 2 ----? 1, 3 ----? 4, 4 ----? 3. 

However, these assignments are not cyclic. Hence, consider the lowest 
entry 2 of cell (4,1) or (1,4), other than '0'. Thus, there is a tie for 
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ex) [QJ ex) 2 

[QJ ex) ')Q ¥ 

ex) ')Q ex) [QJ 

2 ')Q [QJ ex) 

the lowest cost entry. Break the tie arbitrarily. Let us consider 2 
in cell (4, 1) and make an assignment in this cell. Delete the row and 
column containing this entry and make '0' assignment in the remaining 
submatrix, see following matrix 

I 

[QJ I 2 00 ex) 
I 

I 

[QJ Q ex) ¥ 
I 

I 

[QJ I ')Q 00 ex) 
I 

I 

-@J - -{}- - -{}- -00- -

The next optimal assignment are (1,2), (2,3), (3,4), (4,1), and 
this is cyclic. Thus, the required tour is 

1 --72 --73 --74--7 1, Travel cost = 24. 

The alternative tour is obtained if the tie is broken by taking 2 in cell 
(1,4). The required tour in this case is 

1 --74 --7 3 --72--7 1, Travel cost = 24. 

11.4 Cargo Loading Problem 

The cargo loading problem is also known as Knapsack problem. We 
describe this problem by an example as follows: 
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Trieste food corporation plans to dispatch a truck with food items 
to another city. There are five items the corporation plans to dispatch 
with the restriction that the weight of the items on the truck must not 
exceed 115 units. The details of the food items are as 

Item no. Weight Value Value per unit weight 

1 80 40 1/2 

2 20 50 5/2 

3 30 60 2 

4 55 55 1 

5 40 60 3/2 

What should be the loading pattern so that the value of the truck is 
maximum? The divisibility of the food items is not permissible. 

Write the problem in order of increasing value per unit weight, and 
assign the index number correspondingly. 

Item no. Index no. Weight Value Value/weight 

2 1 20 50 5/2 

3 2 30 60 2 

5 3 40 60 3/2 

4 4 55 55 1 

1 5 80 40 1/2 

Node I (I) I means item with index no. 1 is completely excluded; 

Node [QTI means item with index no. 1 is completely included. 

Assuming divisibility for the last index to be included, find UB 
(Upper Bound) as 
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VB on (I) VB on (1) 

index no. weight value index no. weight value 

2 30 60 1 20 50 

3 40 60 2 30 60 

4 35 35 3 40 60 

105 155 4 15 15 

105 185 

Start branching from the node having the largest VB value, and 
hence in this case from node (1), 

VB on (1, 2) VB on (1, 2) 

index no. weight value index no. weight value 

1 20 50 1 20 50 

2 30 60 3 40 60 

3 40 60 4 45 45 

4 15 15 105 155 

105 185 

VB on (1, 2, 3) VB on (1, 2, 3) 

index no. weight value index no. weight value 

1 20 50 1 20 50 

2 30 60 2 30 60 

3 40 60 4 55 55 

4 15 15 105 165 

105 185 
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UB on (1, 2, 3, 4) UB on (1, 2, 3, 4) 

index no. weight value index no. weight value 

1 20 50 1 2 50 

2 30 60 2 30 60 

3 40 60 3 40 60 

4 55 55 5 15 7.5 

145 225 105 177.5 

infeasible 

The node (1,2,3,4) is infeasible, we continue branching from (1, 
2, 3,4) as 

UB on (1, 2, 3, 4, 5) UB on (1, 2, 3, 4,5) 

index no. weight value index no. weight value 

1 2 50 

infeasible 2 30 60 

3 40 60 

90 170 

Hence, the optimal loading pattern is 

Item Weight Value 

2 20 50 

3 30 60 

5 40 60 

90 170 

All the analysis is shown by a tree diagram depicted in Fig. 11.4. 
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lo,2,3,4,5)1-DO 10,2,3,4,5)1170 

Figure 11.4 

Problem Set 11 

1. Solve the following ILPP 

mm Xo = 2XI - X2 

S.t. Xl + 3X2 = 13 

Xl, X2 2: 0 and integers 

Suggestion. In solving the related LPP, Xl will function to give 
an identity matrix. 

2. Solve the following ILPP whose related LPP's optimal table is 
also given. 

min Xo = 6XI + 5X2 

s.t. Xl + 2X2 2: 20 

3XI + 2X2 2: 50 

Xl, X2 2: 0 and integers 
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BV Xl X2 Sl S2 Soln 

Xo 0 0 -3/4 -7/4 205/2 

X2 0 1 -3/4 1/4 5/2 

Xl 1 0 1/2 -1/2 15 

3. The optimal table of the related LPP of an ILPP is given below. 
Find the optimal solution of the ILPP 

BV Xl X2 Sl S2 Soln 

Xo 0 0 5/3 4/3 38/3 

Xl 1 0 1/3 -1/3 4/3 

X2 0 1 1/3 2/3 10/3 

Suggestion. Branch off from the value of Xl. 

4. Solve TSP for which the effectiveness matrix is given below 

00 3 2 7 

3 00 4 2 

6 13 00 5 

15 7 3 00 

5. Solve the following TSP 

00 2 5 6 19 

5 00 3 4 17 

1 3 00 2 11 

6 3 7 00 18 

11 17 18 7 00 

under the condition that the traveling salesman is asked to travel 
from city 1 to city 4 and the remaining journey is left at his 
choice. 

Suggestion. Put 00 in the cells (1, 2), (1, 3) and (4, 1), and then 
solve the problem. 
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6. Using branch and bound technique solve the traveling sales prob­
lem for which the cost of direct travel between city pairs is given 
in the table 

00 80 70 50 

20 00 60 40 

30 100 00 30 

70 50 40 00 

Suggestion. To get the reduced matrix, if we reduce row-wise fol­
lowed by column-wise then LB = 150. However, it is interesting 
to note that if the process is reversed, then LB = 170. Hence, for 
computational efficiency use the sequence of reduction for which 
LB is higher. 

7. A machine operator processes 4 type of items on his machine each 
week and is interested to find a sequence for them. The setup 
cost per change depends on the item presently on the machine 
and item to be made according to the following table 

From item 

A 

B 

C 

D 

To item 
ABC D 

00 4 7 3 

4 00 6 3 

7 6 00 7 

3 3 7 00 

If he produces each type of item once and only once, each week, 
how should he sequence the items on the machine in order to 
minimize the total setup cost. 

Suggestion. This is to be solved as traveling salesman problem. 
If we solve by assignment method, then it is obvious how the as­
signment method to solve TSP is freak. To get cyclic assignment 
when we go from 0 assignment to next higher assignment at 1 we 
get cyclic assignments but with different costs. Take that cyclic 
assignment which corresponds to minimum cost. 

8. The wandering salesman problem (WSP) is a TSP, except that 
the salesman can start wherever he wishes and does not have to 
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return to the starting city after visiting all the cities. Show how 
to transform in polynomial time any instance of the TSP to an 
equivalent instance of the WSP. 

Suggestion. By equivalent we mean that the optimal tour of one 
can be easily derived from the original tour of the other. 

9. Write the formulation of the cargo loading problem solved in 
Section 11.4 

10. A hiker plans to go on an excursion and wishes to take four items 
with him. However, he is not in a position to carry more than 
60 lbs weight. To assist in selection process he has assigned a 
value to each item in ascending order of significance as 

Item 1 2 3 4 

Weight 52 23 35 7 

Value 100 60 70 15 

What items should he take to maximize the total value without 
exceeding weight restrictions? 



Chapter 12 

Dynamic Programming 

Dynamic programming is introduced. Next its applications to solve 
various well known real life problems have been demonstrated by of­
fering various numerical problems. The last section is devoted to give 
an exposition of linear vis a vis dynamic programming. 

12.1 Introduction 

Dynamic Programming was invented by Richard E. Bellman. This 
technique became so popular that it took the place of well known sim­
plex method for linear systems. Both type of the systems, i.e., linear 
and non-linear problems have been simultaneously dealt with the help 
of dynamic programming. Dynamic programming is related to branch 
and bound in the sense that it performs an intelligent enumeration of 
all feasible points of a problem, but it does in an entirely different way. 
The idea is to work backward from the last decision to the earlier ones. 
However, it works in forward direction also. 

Suppose, we have to make a sequence of n decisions to solve a 
problem, say Dl, D2 , ... , Dn. If the sequence is optimal, the last k 
decisions 

must be optimal. That is completion of an optimal sequence of de­
cisions must be optimal. This approach is often referred to as the 
principal of optimality. 

The usual application of dynamic programming entails breaking 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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down the problem into stages (subproblems) at which the decisions 
take place and finding a recurrence relation that takes us backward 
from one stage to the previous stage. The optimal solution of one stage 
(subproblem) is used as an input to the next stage (subproblem). By 
the time we reach at the last stage, we will have at hand the optimal 
solution for the entire problem. The subproblems are linked together 
by some common constraints. As we move from one subproblem to 
the next, we must be careful for the feasibility of these constraints. 

We shall explain the method by an example, stating the shortest 
path problem for layered networks, in which the sequence of decisions 
from the last to first is clear. 

Remark. The dynamic programming programming is really simpler 
than other techniques to solve linear and nonlinear models. However, 
computationally it is not so efficient as compared to other techniques. 

12.2 Formulation 

Consider the following network (maps of various routes in going from 
A to 1). The distances between the cities are marked on the connecting 
arcs as depicted in Fig. 12.1. 

Objective. A and I are connected through different routes with 
specified distances. Our objective is to select the route along which it 
requires the minimum distance to reach I from A. 

Backward Dynamic Programming. The problem is solved in 
stages: 

Stage 1. Consider the cities G and H which are connected to destination 
I. We say G and H are on the last stage j = 1. We are com­
ing from A. Suppose we have reached G (How we reached is 
insignificant). We have only one route from G to I with distance 
5 units. 

Similarly, if we are at H, then we have only one route from H 
to I with distance 7 units. 

Thus, we have exhausted all states of the stage j = 1 (Xl = 
G,H). 

Stage 2. Now come backward to stage j = 2. The state variable can take 
three values X2 = D, E, F. 
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X2 
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Xl, X2, X3, X4 state variables 

Figure 12.1 
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5 

7 

If we are at D (how we reached at D is the least concerned), then 
there are two choices: 

Going through G requires 18 + 5 = 23 units; 
Going through H requires 17 + 7 = 24 units. 

Hence, go to G from D as it takes the minimum distance. 

Similarly, from E, we have 2 choices: 

Going through G requires 3 + 5 = 8 units; 
Going through H requires 6 + 7 = 13 units. 

Hence, go to G from E to travel the minimum distance. 

Similarly, from F, we have 2 choices: 

Going through G requires 13 + 5 = 18 units; 
Going through H requires 14 + 7 = 21. 
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Hence, go to G from F. 

Thus, we have exhausted all states of the stage j = 2 . 

Stage 3. Again, come backward to the stage j = 3, X3 can take two values 
Band C. If we are at B (how we reached, again least worried), 
we have two choices: 

Going through D requires 14 + 23 = 27 units; 
Going through E requires 21 + 8 = 29 

Hence, go to E from D. 

If we are at C, we have three options: 

Going through D requires 15 + 23 = 38 units; 
Going through E requires 11 + 8 = 19 units; 
Going through F requires 13 + 16 = 29 units 

Hence, go to E from C. 

All states of the stage j = 3 are exhausted 

Stage 4. Come backward to stage j = 4. X4 can take only one value A. 

Going through B requires 27 + 4 = 31 units; 
Going through C requires 11 + 19 = 30 units 

Hence, go to C from A. 

Finally, the optimal tour can be read from the diagram looking at 
circular indications from node A to node I. The optimal route is 

A ----> C ----> E ----> G ----> I; minimum distance = 30units. 

Remark. Decision variables are: Yl = 5, 7; Y2 = 18, 17, 3, 6, 13, 9; 
Y3 = 14, 21, 15, 11, 4,11; and the decision variables giving optimal 
policy are: 

Yl = 5, Y2 = 3, Y3 = 11, Y4 = 11. 

Forward Dynamic Programming. The above problem can also 
be solved by an another way called forward dynamic programming. 
The procedure is as follows: 
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5 
4 

7 

13 @C-- 9 

j=4 
X4 X2 

z = 1, 2, 3, 4 stages 

Xl, X2, X3, X4 state variables 

Figure 12.2 

Let us take the same map of routes as shown in Fig. 12.2. 

Consider states Band C of stage j = 3. To reach at B, there is 
only one choice, i.e., A ----+ B (4 units). Also, to reach at B again one 
choice is available with distance A ----+ C as 11 units. 

The stage j = 3 is exhausted, and we move forward to j = 2 (with 
respect to A). Here, state variable X2 can take three values, D, E, F. 

If we are at D (no matter how we reached), we have two choices: 

Coming through B requires 4 + 14 = 18 units; 
Coming through C requires 11 + 15 = 26 units 

Prefer to come through B. At E, there are two choices: 

Coming through B requires 21 + 4 = 25 units; 
Coming through C requires 11 + 11 = 22 units 
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Prefer to come from C. At F, there is only one choice: 

Coming through C requires 16 + 11 = 27 units; 

Thus, stage j = 2 is exhausted. Move forward to j = 1. Here, state 
variable Xl can take values G, H. At G, there are three choices: 

Coming through D requires 18 + 18 = 36 units; 
Coming through E requires 22 + 3 = 25 units; 
Coming through F requires 27 + 13 = 40 units 

Prefer to come from E. At H, there are three choices: 

Coming through D requires 18 + 17 = 35 units; 
Coming through E requires 22 + 6 = 28 units; 
Coming through F requires 24 = 9 = 33 units. 

Prefer to come from E. Now, j = 1 is exhausted and we are at 
destination I. To come to I, we have two choices: 

Coming through G requires 25 + 5 = 30 units; 
Coming through H requires 33 + 7 = 40 units. 

Prefer to come from G. Finally, tracing back from I, the shortest route 
is 

A --7 C --7 E --7 G --7 I; minimum distance = 30 units 

Remark. The nodes corresponding to the same stage can be directly 
connected. For such type of networks duplicate nodes may be intro­
duced, see Problem 1. 

Bellman's Optimal Principle. An optimal policy (or a set of 
decisions) has the property that whatever the initial state and initial 
decision are the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the preceding decision. 

Observe that route D --7 H was rejected. No matter what the 
previous choice have been. If specified that we are at D, we should 
do our best to do with it. The decision variable Y2 = 17 and 18 will 
decide the optimal policy irrespective of G and H, and so when we are 
at D we take Y2 = 18. 
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Thus, Bellman's optimality principle states that the problem of 
decision making must be split up in stages and the optimal decisions 
should be taken sequentially. The iterative procedure is depicted in 
Fig. 12.3. 

12.3 Recursive Relations 

Many problems can be solved by dynamic programming using Bell­
man's principle of optimality. If a problem can be decomposed into 
stages and the decisions can be taken stage-wise using the principle of 
optimality, then it can be solved by dynamic programming. 

Suppose the objective function can be written as 

N 

F= Lfi(Yd 
i=l 

The value of decision variables are dependent on the state of the sys­
tem. For example, in the previous discussion of shortest route problem 
by backward dynamic programming, for stage j = 2, we have three 
states, and when we consider state D only two decisions are possible 
D -t G or D -t H, i.e., Y2 = 18 or 17. Divide the problem of 
optimizing F in a sequential manner as described in Fig. 12.4. 

YN Yi Y2 Yl 

Figure 12.3 

fi(yd = return function due to decision Yi; 

Xi = Ti(xi+l, Yi+I), i = 1,2, ... , N - 1 are state transformation functions. 
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The problem is formulated as 

opt F = !l(Yl) + !2(Y2) + ... + fN(YN) 

s.t. alYl + a2Y2 + ... + aNYN ~,=,:S b 
ai > 0, i = 1,2, ... ,N, b> 0 are constraints 

Yi ~ 0 are decision variables 

We define the state variables as 

XN = alYl + a2Y2 + ... + aNYN ~, =, :S b 

(12.1) 

(12.2) 

XN-l = alYl + a2Y2 + ... + aN-IYN-l = XN - aNYN = TN-I (XN' YN) 

X2 = alYl + a2Y2 = X3 - a3Y3 = T2(X3, Y3) 

Xl = alYl = X2 - a2Y2 = Tl (X2' Y2) 

Thus, by defining the state variables, we have brought the given prob­
lem in the format of Fig. 12.3. Now, Dynamic Programming can be 
utilized. 

The first subproblem is shown in Fig. 12.4. 

1 F1(Xl) 
r------ --------------

I 

~ h(Yl) , 

----=;.~I ~ I • Xo: I Xl 

~----------~~---------
Figure 12.4 

If Xl is specified, the principle of optimality dictates that the deci­
sion variable Yl must be selected !l (YI) (irrespective of the preceding 
stages). Hence Yl is chosen so that !l(YI) is optimum for the state Xl. 
The optimum return from the first state Xl is 

N 

FI(Xr) = optYl L!l(YI), 
i=l 

Xl 
Yl =­

al 
(12.3) 
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Equation (12.3) expresses the information that for a given state Xl 

the optimum value h is Fl with Yl adjusted to yield this value. This 
is called one stage policy. 

The second subproblem is shown in Fig. 12.5. 

h(yd 

f-----~>[ N ~ x: 
I f : 
~ ____ 'J!.l _______ : 

Figure 12.5 

Let F2 (X2) be the optimal cumulative return from the IInd sub­
problem. Hence, 

(12.4) 

Now, principle of optimality requires that Y2 be selected to optimize 
12 for a given X2. Therefore, two stage policy can be written as 

(12.5) 

Note that here, Xl = Tl (X2' Y2) for a given point X2. 

Equation (12.5) is a function of Yl and Y2 but the principle of 
optimality has allowed us to reduce this to a function of Y2 only in X2. 

In general, we can rewrite the cumulative return at ith state. 

in the form 

(12.6) 

with the information 

(12.7) 
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The optimal value of the problem is FN(YN). Here, fi(yd is the 
return from decisions Yi, and Fi-l (Xi-I) is the optimal cumulative 
return from the preceding (i - 1) stages. Relations (12.6) and (12.7) 
are the recursive formulas for the problem in format (12.1) and (12.2). 

The above discussion is called backward recursion because the stage 
transformation is of the type Xi = Ti(Xi+1, Yi+1). This is convenient 
when XN is specified. In the above formulation, XN 2:, =,::; b is spec­
ified, and hence we used backward recursion. As in the shortest route 
problem of Section 5.1, we first fix X4 = A, and then X3 = C, X2 = E, 
Xl = G, Xo = I. 

The basic idea before dynamic programming is that we decompose 
any optimization problems in sub-problems. The contents of the re­
maining part of this chapter are optimization problems with discrete 
or continuous data. 

12.4 Continuous Cases 

In solving such type of problems calculus will be used as decision vari­
ables can take all values in a specified interest. The nature of these 
problems will be of the following types. 

objective function constraint 

+ + 
+ 

+ 

Example 1. Using the dynamic programming, find 

(a) three nonnegative real numbers such that sum of the squares 
of these is minimum with the restriction their sum is not less than 45. 

(b) the minimum of the sum of squares of these numbers whose 
product is 27. 
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For part (a), the problem is 

min 
s.t. 

Yo = yi + y~ + y~ 
YI + Y2 + Y3 ~ 45 
Yi > 0, i = 1,2,3 

359 

The problem is in appropriate format (12.1) and (12.2) and restriction 
on Yi'S to be integers is not required, and hence calculus will be used. 

The state variables are 

The 1st subproblem is 

X3 = YI + Y2 + Y3 ~ 45 

X2 = YI + Y2 = X3 - Y3 

Xl = YI = X2 - Y2 

The lInd subproblem is 

Now 

dd [(X2 - Y2)2 + Y22] _- 0 ------"- X2 d d > 0 t X2 --T Y2 = - an -2 ' a Y2 =-. 
Y2 2 ' dY2 2 

Hence, 

The last subproblem is 

using dd = 0 and observing dd2
2 > 0, we find Y3 = X3/3 is the 

Y3 Y3 
minimum point. Hence, 
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In this problem XN = X3 ;::: 45 is satisfied. For X3 = 45, the minimum 
occurs, and min = 675 when X3 = 45. Tracing back 

Y3 = ¥ = 15, since X3 = 45 

Y2 = ¥ = 15, since X2 = X3 - Y3 = 30 

YI = Xl = 15, since Xl = X2 - Y2 

Yo = 675 

For part (b) the problem is 

min 

s.t. 
Yo = yi + Y§ + y~ 
YIY2Y3 = 27 

Yi > 0, i = 1,2,3 

This is again continuous case of the type (+, .), and hence calculus is 
used. 

Define state variables 

The Ist subproblem is 

X3 = YIY2Y3 = 27 

X2 = YIY2 = :Bi 
Y3 

Xl = YI = X2 
Y2 

FI (x d = yi = (~~) 2 

The lInd subproblem is 

F2 (X2) = ~~n [(X2Y2)2 +y§]. 

The minimum occurs at Y2 = JX2 (can be checked by calculus as 
above). Hence, 

The last subproblem is 
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Again, by derivative test, we find that the minimum occurs at Y3 = 
1/3 

X3 . Thus, 

Given that X3 = 27 and this implies F3 (X3) = 27. 

Tracing back, the optimal solution is 

1/3 
Y3 = X3 , 

Y2 = Vx2 = 3, 

Y1 = 3, 

Yo = 27. 

12.5 Discrete Cases 

since X3 = 27 

since X2 = .:!:.3. = 9 
Y3 

since Xl = X2 = 3 
Y2 

In such type of problems the decision variables can take only integral 
values. We shall study following problems which are again outcome of 
four types 

(+,+), (+,.), (.,+), (.,.). 

The basic theme of this section is to get acquainted with some well­
known real problems which can be solved by dynamic programming. 

1. General Problems 

2. Reliability Problems 

3. Capital Budgeting Problem 

4. Cargo Loading Problem 

Now, we discuss these cases one by one and solve some problems 
concerning to each case. 

General problems. Any problem will be based on anyone of the 
cases mentioned above. We work out an example for the case (+,.). 
Other cases can be dealt with the similar approach. 

Example 2. Find the maximum of sum of cubes of three positive 
value integers whose product does not exceed 5. 
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The problem is formulated as 

max yr + y~ + y~ 
s.t. YIY2Y3:S 5 

Yi > 0, i = 1,2,3 are integers 

Define the state variables as 

X3 = YIY2Y3 :S 5 

X2 = YIY2 = X3/Y3 

Xl = YI = X2/Y2 

Each Yi can assume any value from 1 to 5. Also, X3 is permissible from 
1 to 5. The state variables are computed in the following tables 

Y3 Y2 
x3 2 3 4 5 x2 2 3 4 5 

1 

2 2 2 2 

3 3 3 3 

4 4 2 4 4 2 

5 5 5 5 

x2 = X3/Y3 

The whole process is decomposed into subproblems as in Example 
1. All computations have been done on the tables. 

1st subproblem 

Xl = YI 2 3 4 5 

8 27 64 125 

The optimal solution is YI = 1, Y2 = 1, Y3 = 5; optimal value = 127 
and this can be read by backtracking through (*) entries in all the 
tables of subproblems. 

Reliability problem. An electric component has three components 
1, 2 and 3 which are connected in a series, i.e., if one component fails 
the system does not work. To improve the reliability of the system each 
component is supplemented by 1 or 2 or 3 parallel units (in case any 
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lInd subproblem 

!2(Y2) = y~ F1(Xl) F2(X2) 

iR X3 1* 2 3 4 5 I' 2 3 4 5 add and ma 

I' 2' 

2 8 8 9 

3 27 27 28 

4 8 64 64 8 65 

5 125 125 126 

IIIrd subproblem 

3 3 - 13 f (y ) - y3 2 2 Po (x ) 3 3 Po (x ) 

~ X3 I' 2 3 4 5 I' 2 3 4 5 add and ma 

I 1 - - - - 2 - - - - 3 

2 I 8 - - - 9 2 - - - 10 

3 I - 27 - - 28 - 2 - - 29 

4 1 8 - 64 - 65 9 - 2 - 66 

5 1 - - - 125 126 - - - 2 127 

component fails the supplement unit starts working and the system 
remains in operation). The following data gives the cost of parallel 
units and reliability at each component. The total money available for 
the improvement is $9,000. 

Number of Component I Component II Component III 

Parallel units cost (Reliability ) cost (Reliability) cost (Reliability ) 

1 1(0.4) 2(0.5) 3(0.7) 

2 3(0.6) 4(0.6) 4(0.8) 

3 4(0.8) 5(0.7) 5(0.9) 

Here cost is given in thousands. Find the money spent on each compo­
nent for attaching supplementary units so that reliability of the system 
is maximum. 

Suppose Yi = money is spent on attaching supplementary units 
to component i, i = 1,2,3. h(Yi) = reliability of the ith compo­
nent when Yi amount is spent for attaching supplementary units to 
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component i. 

Our objective is find Yi such that reliability of the system is max­
imum. By the reliability principle, the reliability of the combined 
system is the product of reliabilities of its components. Thus, the 
problem is 

max h(YI).!2(Y2).!3(Y3) 

s.t. YI +Y2 +Y3:S 9 

Yi > 0, i = 1,2,3 

From the given table, we have 

1 

3 

4 

0.4 

0.6 

0.8 

The sate variables are 

2 

4 

5 

0.5 

0.6 

0.7 

X3 = YI + Y2 + Y3 :S 9 

X2 = YI + Y2 = X3 - Y3 

Xl = YI = X2 - Y2 

3 

4 

5 

0.7 

0.8 

0.9 

From the above tables YI + Y2 + Y3 2 6. Hence, 6 :S X3 :S 9. The 
least value of YI + Y2 = 3 = the least value of X2. The largest value 
of x2=largest value of X3 - least value of Y3 = 9 - 3 = 6. Hence, 
3 :S X2 :S 6 and Xl = YI = 1,3,4. 

Actually after getting bounds, we should decide the exact values 
which state variables take. The exact values are 

X3 = {6, 7, 8, 9}, X2 = {3, 5, 6}, Xl = {I, 3, 4}. 

The computations of state variables and all subproblems are shown 
in the next tables. Tracing back through (*) entries, the optimal 
solution is given as 

Y3 = 3, Y2 = 2, YI = 4, optimal value = 28. 

Hence 4, 2, 3 thousand rupees should be spent for attaching supple­
mentary units to 1st, lInd and lIIrd component, respectively. 
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Y Y 
x 3 4 5 X 2 4 6 1st sub-problem 

6 3 3 
Xl = I 1 2 

7 4 3 4 

8 5 4 3 5 3 FI(XI .4 .6 

9 6 5 4 6 4 

t 
X2 Xl 

lInd subproblem 

~ 2 4 6 2 4 5 2 4 5 max 

3 .5 - - .4 - - .2 - - .2 

4 - - - - - - - - - -

5 .5 .6 - .6 .4 - .3 .24 - .3 

6 .5 - .7 .8 - .4 .4 - .28 .4 

IIIrd subproblem 

F2(x2) 

~ 2 4 6 2 4 5 2 4 5 max 

6 .7 - - .2 - - .14 - - .14 

- - - .2 -7 .7 - .16 - .16 

8 .7 .8 .9 .3 - .2 .21 - .18 .21 

9 .7 .8 - .4 .3 .4 .28 .24 - .28 

Capital budgeting problem. The Punjab Supply Electricity Board 
intends to improve the total hydroelectric power P produced at three 
dams with available capital 3 units of money (in lakhs of dollars). If 
fi(Ui), the power generated from ith dam by investing money Ui is 
given as 

u~s 
t 0 1 2 3 

h 0 2 4 6 

h 0 1 5 6 

h 0 3 5 6 

Find the optimal policy for budgeting the available capital. 

4 

.8 
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The return function is defined as 

max h(ud + !2(U2) + h(U3) 
s.t. Ul + U2 + U3 ::; 3 

Ui 2: 0, i = 1, 2, 3 

The state variables are 

This implies each Ui can take values 0, 1,2,3, and state variables can 
also take values 0, 1,2,3. 

The computations of state variables and solution of all subproblems 
are: 

U ~ 0 2 3 x 0 2 3 1st sub-problem 

0 0 

0 

2 2 

0 
xl = Uj 0 I 

0 
1 

2 2 0 
Fl (Xl) 0 

3 3 2 o 3 3 2 0 

x2 Xl 

IInd subproblem 

* X2 0 1 2 3 0 1 2 3 0 I 2 3 max 

0 0 - - - 0 - - - 0 - - - 0 

1 0 I - - 2 0 - - I - - 2 
2 

2 0 1 5 - 4 2 0 - 4 3 5 - 5 

3 0 1 5 6 6 4 2 0 6 5 7 6 7 

Tracing back through (*) entries in all subproblems, the optimal 
solution is given by 

U3 = I, U2 = 2, Ul = 0, max value = 8 

2 

2 

3 

3 
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IIIrd subproblem 

F2(X2) 

~ X3 0 1 2 3 0 1 2 3 0 1 2 3 max 

0 0 - - - 0 - - - 0 - - - 0 

1 0 3 - - 2 - - - 2 3 - - 3 

2 0 3 5 - 5 2 0 - 5 5 5 - 5 

3 0 3 5 6 7 5 2 0 7 8 7 6 8 

Cargo loading problem. This problem has already been discussed 
in Section 11.4 concerning integer programming. Here, this problem 
is solved using dynamic programming. 

We have to load truck with three different items. The maximum 
allowable weight is 6. The weight and values per unit are given in 
the following table. It is required to find the loading pattern which 
maximizes value of the truck under the weight constraint. 

Item Weight per unit Value per unit 

1 

2 

3 

1 

3 

2 

15 

70 

35 

Let Yl, Y2, Y3 be the number of items of 1st, IInd and IIlrd kind, 
respectively, which are to be loaded. Then the problem is formulated 
as 

max 15YI + 70Y2 + 35Y3 

s.t. YI + 3Y2 + 2Y3 ::; 6 

Yi 2: 0, i = 1,2,3 and integers 

The state variables are given by the relations: 

X3 = YI + 3Y2 + 2Y3 ::; 6 

X2 = YI + 3Y2 = X3 - 2Y3 

Xl = YI = X2 - 3Y2 
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This is a discrete problem because Yi take only integer values, and 
hence, calculus method is not applicable. The recursive relations are: 

F3(X3) = max [h(Y3) + F2(X2)] 
Y3 

F2(X2) = max [h(Y2) + FI(XI)] 
Y2 

FI(Xt) = h(YI) 

In view of the state variables' relations: 

YI = 0, 1,2,3,4,5,6 (put Y2 = 0, Y3 = ° then YI :S 6 

gives these values) 

Y2 = 0,1,2, put YI = 0, Y3 = ° then 3Y2 :S 6 =? Y2 :S 2) 

Y3 = 0,1,2,3 (as above 2Y3 :S 6 =? Y3 :S 3) 

Solving these state variable relations, we get that Xi, i = 1,2,3 can 
take any value from 0,1,2,3,4,5,6. 

The computations of state variables and all subproblems are men­
tioned in the following tables: 

Y 2 
X 0 1 2 3 X2 0 1 2 1st sub-problem 

0 0 - 0 0 
1 - - - 1 Xl = Y 0 I 2 3 4 5 
2 2 0 - - 2 2 0 15 30 45 60 75 
3 3 I 3 3 F1(XI) 
4 4 2 0 - 4 4 I -

5 5 3 I - 5 5 2 -

6 6 4 2 0 6 6 3 0 

X2 Xl 

6 

90 
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lInd subproblem 

X2 2 0 2 max 

0 0 0 0 0 
1 0 15 15 15 
2 0 30 30 30 
3 0 45 0 45 45 
4 0 70 60 15 60 85 85 
5 0 70 75 30 75 100 100 
6 0 70 140 90 45 0 90 1I5 140 140 

IIIrd subproblem 

h(Y3) = 35Y3 F2(X2) F(X2) + h(Y3) F3(X3) 

~ x3 0 1 2 3 0 1 2 3 0 1 2 3 rna x 

0 0 - - - 0 - - - 0 - - - 0 
1 0 - - - 15 - - - 15 - - - 15 
2 0 35 - - 30 - - - 30 35 - - 30 
3 0 35 - - 45 0 - - 45 50 - - 45 
4 0 35 70 - 60 15 0 - 85 65 70 - 85 
5 0 35 70 - 75 30 15 - 100 70 85 - 100 
6 0 35 70 105 90 45 30 0 140 115 100 105 140 

Back tracing through (*) entries in all subproblems, the optimal is 
given as 

YI = 0, Y2 = 2, Y3 = 0, max value = 140 

12.6 Forward Recursions 

In case when Xo is specified, then it would be convenient to reverse the 
direction, see shortest route path problem of Section 12.1, when solved 
by forward dynamic programming. This is called forward recursion, 
and is depicted in Fig. 12.6. 

From Fig. 12.6, 

xHI = Ti+l (Xi, Vi)' i = 1,2, ... , N. 

It is convenient, in forward recursion to start with Xl instead of Xo. 
Here, the recursion formula will start with FN(XN)' In the end, given 
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YN YN-l Yi Yl 

Figure 12.6 

Xl, the functions are determined in order F l , F2 , . .. , FN (forward). 
Note that in backward recursion functions were determined in order 
FN, F N -1, ... ,Fl (backward). Here, we compute state variables for a 
stage from the state variable of earlier stage. 

12.7 Linear Programming vs Dynamic 
Programming 

This section concerns how a LPP can be solved with the help of dy­
namic programming. Consider the LPP 

opt Yo = ClYl + C2Y2 + .,. + CnYn 
(12.8) 

S.t. anYl + a12Y2 + + alnYn < bl 

a2lYl + a2lY2 + + a2nYn < b2 

+ + + < 

amlYl + am 2Y2 + + amnYn < bm 

Stage 1 Stage 2 Stage n Resources 

(12.9) 
where Yj (j = 1 to n) are nonnegative decision variables and bi 2: 0 
(i = 1 to m) are the amounts available at m resources. Assume that 
aij 2: O. We define the state variables as follows: 

Let Xlj be the amount of resource 1 allocated to the stages j, j + 
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1, ... ,n. Thus, 

X11 = a11YI + al2Y2 + ... + alnYn :::; bl 

Xl2 = al2Y2 + ... + alnYn = X11 - a11YI 

Xlj = aljYj + ... + alnYn = XI,j-1 - al,j-IYj-1 

Xln = alnYn = XI,n-1 - al,n-IYn-1 

(12.10) 

Let X2j be the amount of resource 2 allocated to the stages j, j + 
1, ... ,n. Thus, 

X21 = a2lYI + a22Y2 + ... + a2nYn :::; b2 

X22 = a22Y2 + ... + a2nYn = X21 - a2lYI 

X2j = a2jYj + ... + a2nYn = X2,j-1 - a2,j-IYj-1 

X2n = a2nYn = X2,n-1 - a2,n-IYn-1 

(12.11) 

Similarly, we define X3j, X4j, ... , Xmj. Let us introduce the notation 

(12.12) 

Thus, Xj denotes the state of the system at stage j. The amounts Xlj 

of different resources available at stage j denote the different states at 
stage j. This is depicted in Figure 12.7. 

!I(YI) = CIYI !2(Y2) = C2Y2 f~(Y~) = CiY~ fn(Yn) = CnYn 

stige st2ge ------~----~-
X~~+l .. ;+ Xn+l 

YI Y2 Yi Yn 

Figure 12.7 

As usual fi(Yi) is the return at stage i from decision Yi. Note that 
Xl :::; (bl' b2, ... ,bmf. Here, Xl is specified, and hence we use forward 
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dynamic programming. From (12.9) and (12.10), we have 

Xj+l = Tj+I(Xj,Yj), j = 1 to n. (12.13) 

where Xj = (Xlj, X2j, ... ,Xmj)T are the m resources available for al­
location to stages j, j + 1, . . . and n, that is at stage j the maximum 
quantity of m resources available for allocation are Xlj, X2j, ... , Xmj. 

At stage j, the decision variable is Yj; hence we must have 

o :S aljYj :S Xlj 

o :S a2jYj :S X2j 

Let 
. (Xlj X2j Xmj ) T - {3. mIn, , ... , -3 

alj a2j amj 
(12.14) 

Then 
o :S Yj :S (3j. (12.15) 

The recursive relations as developed in Section 12.6 are 

Fn(Xn) = optYn fn(Yn) 

Fi(Xi ) = optYi {CiYi + Fi+l (Xi+l)} , i = n - 1, n - 2, ... ,1, 
(12.16) 

where 0 :S Xij :S bi for all i and j. The better exposition of the 
theoretical ideas will be clear by solving a numerical example. 

Example 3. Solve the following LPP using dynamic programming 

max Yo = 28YI + 7Y2 

s.t. 4YI + 3Y2 :S 12 

2YI + 5Y2 :S 10 

Yl, Y2 ~ 0 

The state variables are 

Xu = 4Yl + 3Y2 :S 12 

X12 = 3Y2 = Xu - 4Yl 
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X21 = 2Y1 + 5Y2 :::; 10 

X22 = 5Y2 = X21 - 2Y1 

where Xl = (xu, X21f, X 2 = (X12' X22)T. The recursive relations are 
shown with the help of (12.9), 

where 

~2 = min ( ~, ~ ) , 

F2 (X2 ) = 7~ = 7min (~, ~). 

Now, 

{ 28 + 7 . (xu - 4Y1 X21 - 2Y1) } = max Y1 mm , 
O::;Yl::;{h 3 5 

Also, 

r.? • {xu X21} . {XU X21} 1-'1 = mIn - - = mIn - -
au' a21 4 ' 2 

This stage, being the last stage, Xu = 12, X21 = 10, and hence 
(31 = 3. Using these values, we get 

or 

{ 
7 x 10 - 2Y1 

F1(XI} = 28Y1 + 12~4' 
7 x Y1 

3 ' 

0< Y < 15 _ 1_ { 

15 < Y < 3 {_ 1_ 

126 y + 14 ---0- 1 , 

56 -;rY1 + 28, 

0< Y < 15 _ 1_ { 

15 < Y < 3 {_ 1_ 

The largest F1 (Xd is 84, which occurs for Y1 = 3. Thus optimal 
Y1 = 3, i.e., yr = 3. 

To obtain optimal Y2, i.e., Y2' note the following 

_ r.? _ • {X12 X22} _ . {xu - 4Y1 X21 - 2Y1 } 
Y2 - 1-'2 - mm 3' 5 - mm 3 ' 5 . 
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Hence, 

* . {12 - 4Yi 10 - 2Yi } * Y2 = mm 3 ' 5 = 0, because YI = 3. 

Thus 

optimal solution: YI = 3, Y2 = 0, Yo = FI(XI) = 84. 

Remark. While solving the LPP we have assumed aij 2 o. Without 
this restriction the solution becomes cumbersome. This indicates that 
dynamic programming is not a good tool to solve linear programming 
problems. 

Problem Set 12 

1. Find the minimum of sum of cubes of three positive value integers 
whose product is 6. 

2. Find the point nearest to the origin on the ellipse x 2 + y2 = 36 
in the first quadrant. 

Suggestion. Test the end points. 

3. Find the point on the line 2YI + Y2 = 6 nearest to the origin in 
the first quadrant. 

4. Find the maximum of the sum of three positive integers whose 
product is 18. 

5. If Yt, 4Y2, 2Y3 are the returns in millions of rupees from the plants 
AI, A2, A3, respectively on allocating the amounts YI, Y2, Y3 in 
millions of rupees to them, then use dynamic programming tech­
nique to find optimal values of YI, Y2, Y3 which minimizes total 
return from the plants so that the total amount invested on them 
does not exceed 10 million rupees in the case when YI can take 
the values 1,4; Y2 can take the values 3,5; and Y3 can take the 
values 1,2,3. Also, write the maximum value of the total return. 

6. A company is remodeling its three factories. It has five repair­
men who can be sent to three factories. Each repairman can be 
assigned only one factory. The table below shows the gain due 
to the repairs when the number of repairmen sent is 1 to 3. It 
is necessary that at least one repairman is sent to each factory. 
The problem is determine the repairmen who should be sent to 
each plant in order to maximize the total profit. 
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No. of repairmen 

Factory 

Delhi Jaipur Pilani 

1 

2 

3 

10 

21 

38 

17 15 

35 31 

37 42 

Use dynamic programming to solve the above problem. 

7. Use dynamic programming to solve the LPP 

max z = Xl + 9X2 

s.t. 2Xl + X2 :S 25 

Xl :S 11 

Xl,X2?: 0 

8. Use dynamic programming to solve the LPP 

max z = 3Xl + 5X2 

s.t. 3Xl + 2X2 :S 18 

Xl :S 11 

X2 :S 18 

Xl,X2?:0 

9. A student must select four elective courses from four different 
departments with the condition that he must choose at least one 
course from each department. He measures his learning ability as 
a function of the number of courses he takes in each department 
on a 100 point scale and produces the following chart. It is 
assumed that the course groupings satisfy prerequisites for each 
department. 

Course 

Department 1 2 3 4 

I 25 50 60 80 

II 20 40 90 100 

III 40 60 80 100 

IV 10 20 30 40 

Formulate the problem as a dynamic programming problem. 



Chapter 13 

Nonlinear Programming 

This chapter deals with nonlinear programming problems when the ob­
jective function includes several variables and any type of constraints. 
There are several techniques to deal with such type of problems but 
here we are concerned with the Lagrange multiplier method applica­
ble to nonlinear problems with equality constraints and Kuhn Tucker 
theory applicable to nonlinear problems with inequality constraints. 
In the last two sections, the concept of separable programming and 
duality for nonlinear programming problems are introduced. 

13.1 Introduction 

First, we develop the theory of quadratic functions which appear fre­
quently in nonlinear programming problems. 

Quadratic Form. Consider the function 

f{X) = Pl1 X! + P22X~ + ... + Pnnx~ 
+ P12 X I X2 + P13 X I X3 + ... + PlnXlXn 

+ P23 X2X3 + ... + P2n X2Xn 

+ Pn-l,nXn-lXn' 

The above function is called the quadric or quadratic form in n vari­
ables. Let us define 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Since XiXj = XjXi (commutative law for numbers), the above function 
can be written as 

=XTAX , 

where A is a real symmetric matrix of order n, because aij = aji, i, j E 
{1,2, ... ,n}. 

Definition 1. A quadratic form XT AX is said to be (a) positive 
definite, if XT AX > 0 V X # 0; (b) positive semi-definite if XT AX ?: 
o V X # 0, and for at least one nonzero X, XT AX = O. 

For example, (i) f(X) = xI + 2x§ + 3x~ is positive definite, since 
f(X) > 0 for all (Xl, X2, X3) # (0,0,0); (ii) f(X) = xI + (X2 - X3)2 is 
positive semi-definite since for X = (0,1,1), XT AX = 0 and XT AX ?: 
OV X # O. 

Similarly, we have the concept of negative definite and negative 
semi-definite simply by reversing the sense of inequality in (a) and 
(b), respectively. 

A function which escapes out of this classification is termed as 
indefinite. For example, f(X) = xI - 2x§ is indefinite. 

Characterization of the definiteness depends on the matrix A in 
XT AX. Hence we have the following simple test for definiteness. We 
define XT AX to be positive definite, positive semi-definite, negative 
definite, negative semi-definite or indefinite according to the matrix A. 

1. Matrix minor test. For any square matrix of order n, a 
principal matrix minor means any submatrix of order m(s;, n) which 
contains first m elements of the principal diagonal. These principal 
matrix minors decide the nature of XT AX. Thus, f(X) = XT AX is 

(a) positive definite if all the principal minor determinants of A are 
positive, 

Dl = au > 0, 
au a12 

D2 = > 0, 
a21 a22 
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au a12 a13 

D3 = a21 a22 a23 > 0, Dn > 0; 

(b) positive semi-definite if Dl > 0, Di 2: 0, and at least one of the 
Di = ° for i = 1,2, ... ,n; 

(c) negative definite if Dl < 0, D2 > 0, D3 < 0,··· ,(_1)iDi > 
0, i = 2,3, ... , n; 

(d) negative semi-definite if Dl < 0, D2 2: 0, D3 :S 0, ... ,(_1)i Di 2: 
0, and at least one of the Di = ° for i = 2,3, ... ,n; 

(e) indefinite, if none of the above cases happen. 

2. Eigenvalue test. Since matrix A is a real symmetric matrix 
in XT AX, it follows that its eigenvalues are real. Then XT AX is 

(a) positive definite if .Ai > 0, i = 1,2, ... ,n; 

(b) is positive semi-definite if .Ai 2: 0, and at least one of .Ai = 0, ~ = 
1,2, ... ,n; 

(c) negative definite if .Ai < 0, i = 1, 2, ... , n; 

(d) negative semi-definite if .Ai :S 0, and at least one of .Ai = 0, i = 
1,2, ... , n; 

(e) indefinite if A has both positive and negative eigenvalues. 

Example 1. Decide the definiteness of the function 

Write the function in the form XT AX as 
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Note that 

-3 -5 
Dl = -3 < 0, D2 = = -31 < 0, 

-5 2 

-3 -5 3 

2 = 27 > 0, 

3 2 -3 

and this ensures that the function is indefinite. 

Hessian matrix. Let f(X) be a function of n variables such that 
f(X) E C 2 , C 2 denotes the space of all real functions whose second 
order partial derivatives are continuous. Then the Hessian matrix of f 
is a n x n symmetric matrix of second order partial derivatives defined 
by 

H(X) = 

82 f 
8xI 
82 f 

8X28xl 

fj2 f 
8X18x2 

82 f 
8x1 

82 f 
8X18x" 

82 f 
8X28x" 

~ 82 f 82 f 
8xn8xl 8xn8x2 8XI 

Since f(X) E C2, it follows that fj2 f/ OXiOXj = 02 f / OXjOXi \:j i, j E 
{1,2, ... ,n}. 

Remark. For the quadratic form XT AX, H = 2A. This relation may 
not be true for other forms. 

The term 'V f(X), called gradient of f(X), is the column vector 

'Vf(X) = (~,~, ... ,~)T 
OXI OX2 oXn 

A necessary conditions for f(X) E C2 to have stationary points 
(critical points) is that 'V f(X) = 0, i.e., 

of of of 
OXI = 0, OX2 = 0, ... , OXn = 0. 

Solving these equations, we get the stationary points. Suppose 
X * (* * *)T . . . t Th .. = Xu X2'· .. , Xn IS a statlOnary POlll . en mllllmum or max-
imum may occur at X*. Note that it may be a saddle point or point 
of inflexion. 
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From the Taylor expansion of J in a neighbourhood of X*, we have 

J(X) = J(X*)+(X -X*)V'J(X*)+(X -X*fH(X*)(X -X*)+··· . 

This ensures that (i) if H(X*) is positive definite, then X* is a point 
of relative minimum; (ii) if H(X*) is negative definite, then X* is a 
point of relative maximum; (iii) if H(X*) is indefinite, then X* is a 
saddle point. In other situations the test fails, and we may have go to 
higher order derivatives which becomes a complicated process. 

In view of the above remark, for a quadratic XT AX, X* is a point 
of relative minimum if A is positive definite, and is a point of relative 
minimum if A is negative definite. If A is indefinite then X* is a saddle 
point. For other situations the test fails. 

Example 2. Find stationary points and classify 

J(X) = 2 + 2XI + 3X2 - xi - x§. 

The necessary condition oJ /OXI = 0 and oJ / OX2 = 0 gives rise to 
the equations 

2 - 2XI = 0 

2 - 3X2 = 0 

The solution of these equations: Xl = 1, X2 = 3/2 is the stationary 
point. The Hessian matrix 

is negative definite, and hence (1,3/2) is a point of the local maximum. 
The maximum value obtained by substituting Xl = 1, X2 = 3/2 in the 
function, is 21/4. 

Now, we discuss some classical methods for optimizing nonlinear 
functions under the influence of given set of restrictions (constraints). 

13.2 Lagrange Multipliers Method 

Consider the NLPP 

opt J(X) 

s.t. 9i(X) = 0, i = 1,2, ... ,m, 
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where X = (Xl, X2, ... ,xn)T, A = (AI, A2, ... , Am)T, and f(X), g(X) E 
C l , space of all functions whose first order partial derivatives are con­
tinuous. 

Define the Lagrange function L(X, A) as 
m 

L == L(X, A) = f(X) + L Aigi(X). (13.1) 
i=l 

The numbers Ai are called the Lagrange multipliers. The equations 

oL oL. 
OXj = 0 and OAi = 0, J = 1,2, ... ,n; i = 1,2, ... ,m (13.2) 

give the necessary conditions for determining the stationary points of 
L(X, A). We shall prove at later stage that the unconstrained L(X, A) 
and the constrained f(X) have the same set of stationary points. 
Moreover, a saddle point of L(X, A) may be an optimum point for 
f(X). 

Remark. The necessary conditions in (13.2) are also sufficient if the 
functions f(X) and each gi(X) are convex, see Section 13.4. Also, 
relative minimum is global minimum, see Theorem 1, Section 13.3. 

To test the nature of stationary points given by the solution of 
equations in (13.2), we mention without proof the sufficient condition 
for the Lagrange method by the use of the bordered Hessian matrix 
defined as 

H = B [0 p] 
pT Q 

(m+n)x(m+n) 
where 0 is a m x m zero matrix and 

p= 

09m 09m 09m 
OXl OX2 OXn 

0 2£ 0 2£ 
8xi OXlOX2 

0 2£ 0 2£ 

Q= OX20Xl a;r 

0 2£ 0 2£ 
OXnXl OXn OX2 

\1gf(X) 

\1gf(X) 

\1g~(X) 

0 2£ 
OXlOXn 

0 2£ 
OX20Xn 

0 2£ 
8Xf: 
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Here pT is the transpose of matrix P and Q is the Hessian matrix 
of the Lagrange function L. The matrix HB is called the bordered 
Hessian matrix. 

Given the stationary point (X*, >'*) for the Lagrange function L 
and the bordered Hessian matrix evaluated at (X*, >'*), then X* is 

1. a maximum point, if starting with the principal minor determi­
nant of order 2m + 1, the last n - m principal minor determinants 
of H B form an alternating sign pattern starting with (-1) m+1 . 

2. a minimum point, if starting with the principal minor determi­
nant of order 2m+ 1, the last n-m principal minor determinants 
of HB have the sign of (_1)m. 

Remarks. 1. These conditions are sufficient for identifying the extreme 
points (points of maximum or minimum). In other words a stationary 
point may be an extreme point without satisfying these conditions. 

2. Sometimes a convenient method to find stationary points re­
sulting from the necessary conditions is to select successive values of 
>. and then solve the equation for X. This is repeated until X satisfies 
all the constraints. 

Let us workout some problems on the Lagrange multiplier method. 

Example 3. Use the Lagrange multiplier method to solve the fol­
lowing NLPP. Does the solution maximize or minimizes the objective 
function? 

opt f(X) = 2xI + x~ + 3x~ + 10XI + 8X2 + 6X3 - 100 

s. t. Xl + X2 + X3 = 20 

XI,X2,X3 ~ 0 

The Lagrange function is 

L = 2xI + x~ + 3x~ + 10XI + 8X2 + 6X3 - 100 + >'(XI + X2 + X3 - 20). 
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The necessary conditions for the stationary points are 

8L 
-8 = 4Xl + 10 + ,\ = 0 

Xl 

8L 
-8 = 2X2 + 8 + ,\ = 0 

X2 

8L 
-8 = 6X3 + 6 + ,\ = 0 

X3 

8L 
8'\ = Xl + X2 + X3 - 20 = 0 

From the first three equations, it follows that 

10 +,\ 8 +,\ 6 +,\ 
Xl = --4-' X2 = --2-' X3 = --6-' 

Substitution of these values in the last equation yields 

10+'\ 8+'\ 6+'\ 
--- - -- - -- = 20 =:::} ,\ = -30. 

4 2 6 

Thus, the stationary point is X* = (5,11,4). For its test, write the 
bordered Hessian matrix 

011 1 

140 0 

1 020 

1 006 

Here n = 3, m = 1, 2m + 1 = 3. Starting from the principal minor de­
terminant of order 3, we check n-m = 2 principal minor determinants. 
Note that 

o 1 1 1 

140 0 
1~41 = = -44. 

1 020 

1 006 

Both 1~31 and 1~31 have sign of (_1)1. Thus, X* is a minimum point, 
and the minimum value of the objective function is 

!min = 2 X 52 + 112 + 3 X 42 + 10 x 5 + 8 x 11 + 6 x 4 - 100 = 281. 
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Example 4. Solve the following nonlinear programming problem by 
Lagrange multiplier method. 

max f(X) = 4xi + 2x~ + x5 - 4XIX2 

s.t. Xl + X2 + X3 = 15 

2X1 - X2 + 2X3 = 20 

Xl, X2, X3 2: O. 

The Lagrange function L(X, >.) == Lis 

L = 4xi+2x~+x5-4x1X2+>'1(X1 +X2+X3-15)+>'2(2x1-X2+2x3-20). 

The necessary conditions for the stationary points are 

8L 
-8 = 8X1 - 4X2 + >'1 + 2>'2 = 0 

xl 
8L 
-8 = 4X2 - 4X1 + >'1 - >'2 = 0 

X2 
8L 
-8 = 2X3 + >'1 + 2>'2 = 0 

X3 
8L 
8>'1 = Xl + X2 + x3 - 15 = 0 

8L 
8>'2 = 2X1 - X2 + 2X3 - 20 = 0 

The solution of these simultaneous linear equations (use row reduced 
echelon form) yields 

Next, to check the nature of stationary points we construct the bor­
dered Hessian matrix 

o 0 

o 0 

HB = 1 2 

1 1 1 

2 -1 2 

8 -2 0 

1 -1 -2 4 0 

1 2 o o 2 
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Here n = 3, m = 2 and 2m + 1 = 5. Starting from the principal 
minor determinant of order 5, we check the sign for only one principal 
minor determinant (3 - 2 = 1) to be (_1)2 = 1 > O. Here this is 
IHEI = 72 > O. Thus, X* = (11/3,10/3,8) is a minimum point, and 
the minimum value is 

f . =4(~)2 +2(10)2 +82_4~.10 = 820. 
mill 3 3 3 3 9 

Note. There is another condition which is necessary and sufficient both 
for classifying the extreme points. The only difficulty is of computation 
of the roots of polynomial arising in the analysis. Define a matrix 

D. = [:T Q ~ ILl] 
(m+n) x (m+n) 

where I is an identity matrix of order n x n and matrices P and Q 
have already been defined in the starting of this section. 

The stationary point (X*, >'*) of the Lagrange function L(X, >.) is 
a point of minimum (or maximum) of the constrained function f(X), 
if the polynomial in IL given by ID.I = 0 has all its roots positive (or 
negative). If some roots are positive and some are negative, then X* 
is not an extreme point. 

Remark. It is worthwhile to mention that for the sufficient condition 
we are assuming that f(X), gi(X) E C 2 , space of all functions whose 
second order partial derivatives are continuous. 

13.3 Convex Nonlinear Programming Problem 

First, we define the convexity of a function which facilitates the fur­
ther studies on nonlinear programming problems with equality and 
inequality constraints. 

Definition 2. Let S be a convex set in ]Rn. A function f(X) 
defined on S is said be convex if for any pair of points Xl, X 2 in Sand 
Va: 0 ~ a ~ 1, 

Geometrically speaking in two dimensional plane, Definition 2 means 
that f(x) is convex if for any two points Xl and X2 in S, the chord 
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joining the points (Xl, f(XI)) and (X2' f(X2)) is above f(x), i.e., for any 
point X E [Xl, X2], f(x) :S PQ, where Q is on the chord, see Fig. 13.1. 

A 

I I 

I f(x) 
I I 

pil 
IV 

X 

Figure 13.1 

Remarks. 1. A function f(X) is strictly convex if we have strict 
inequalities in Definition 2. 

2. A function f(X) is concave (or strictly concave) if - f(X) is 
convex (or strictly convex). 

3. A linear function is convex as well as concave. 

Proposition 1. The sum of two convex functions is convex. 

Proof. Let hand 12 be two convex functions defined on a convex 
set S ~ ]Rn. Then, for any two points Xl and X2 in S, we have for all 
a,O:S a:S 1, 

h((1 - a)XI + aX2) :S (1 - a)h(XI) + ah(X2) (13.3) 

12((1 - a)XI + aX2) :S (1 - a)h(XI) + ah(X2). (13.4) 
Using (13.3) and (13.4), we have 

(h + 12)((1- a)XI + aX2) = h((1- a)XI + aX2) 
+ 12((1 - a)XI + aX2) 

:S (1 - a)h(XI) + ah(X2) 
+ (1 - a)h(XI) + ah(X2) 

= (1 - a)(h + h)(Xd + a(h + h)(X2). 

Proposition 2. Let f(X) = XT AX. Then f(X) is convex in ]Rn if 
XT AX is positive semi-definite. 
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Proof. Given that XT AX ::::: 0 V X E ]Rn, and there exists at least 
one nonzero X such that XT AX = O. Let Xl, X2 E ]Rn such that 
X = (1 - a)XI + aX2 , 0 ::; a ::; 1, since ]Rn is convex. Thus, to prove 
the theorem we have to show that 

Since xi AX2 = X! AXI , being scalar, the left hand side of the above 
inequality turns up 

(1 - a)Xi AXI + aX! AX2 - ((1 - a)XI + aX2f A((l - a)XI + aX2 ) 

= (1 - a)Xi AXI + aX! AX2 - (1 - (0)2 xi AXI - 00(1 - a)X! AXI 

- 00(1 - a)X'[ AX2 - 002 xi AX2 

= 00(1 - a)[X'[ AXI + xi AX2 - 2X'[ AX2], using X'[ AX2 = xi AXI 

= 00(1 - a)(XI - x 2f A(XI - X 2) 

Now, as Xl - X 2 E ]Rn where ]Rn is a linear space, it follows that 

This proves the proposition. 

Corollary 1. Under the conditions of Proposition 2, if f(X) 
XT AX is positive definite, then f(X) is strictly convex. 

Corollary 2. Under the conditions of Proposition 2, we have 

1. f(X) E C 2 is convex ¢=:::} its Hessian matrix is positive semi­
definite. 

2. f(X) E C 2 is strictly convex ¢=:::} its Hessian matrix is positive 
definite. 

The proof of Corollary 2 is a direct consequence of the fact that 
H = 2A in a quadratic form. Note that quadratic forms and quadratic 
functions have different meaning. 

Corollary 2 is very useful to decide convexity of any quadratic 
function. 

Theorem 1. Let j(X) be a convex function defined over a convex set 
Sin ]Rn. Then the local minimum is global minimum of j(X) over S. 

Proof. Let X* be a point of local minimum. Hence, 

j(X*) ::; j(X* + 6), where {X : IX - X*I < 6, 6> O} = No(X*). 
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Take any point Xl E N,s(X*). There exists a : ° ::; a ::; 1 such that 
Xl = aX* + (1 - a)X for any X in S. Now, in view of convexity of J 
on S, we have 

J(Xd = J(aX* + (1 - a)X) 
::; aJ(X*) + (1- a)J(X) 
::; aJ(Xd + (1 - a)J(X) 

This implies J(X*) ::; J(X) or J(X*) ::; J(Xd ::; J(X). Since X is 
arbitrary point, and hence J(X*) ::; J(X) for all X in S. So, X* is a 
point of the global minimum. 

For developing the theory, write the problem in the format 

min J(X) 
s.t. gi(X)::; 0, i = 1,2, ... , m 

X ~o, 

J(X) and gi(X) are convex functions. 

(13.5) 

(13.6) 

(13.7) 

(13.8) 

The nonlinear problem in the format (13.5)-(13.8) is called convex 
nonlinear programming problem (CNLPP). Note that J(X) and gi(X) 
are convex functions over some common convex set. 

Remark. Theorem 1 ensures that in a CNLPP the relative minimum 
or relative maximum is global minimum or global maximum. 

Theorem 2. A set S = {X : gi(X) ::; 0, X ~ o} of feasible solutions 
of CNLPP is a convex set. 

Proof. In a CNLPP, gi(X) means convex functions over some con­
vex set S. Let Xl and X2 be arbitrary points in S. Consider 

gi(Y) = gi((l - a)XI + aX2 ) 

::; (1 - a)gi(Xd + agi(X2 ) ::; 0. 

YES, being dc of points in S, and hence S is convex. 
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13.4 Kuhn Tucker Theory 

If an NLPP is a CNLPP and at least one of the gi(X) is an inequality 
constraint, then the Lagrange multiplier method has been extended 
for utility by Kuhn Tucker Theory as follows: 

Kuhn Tucker conditions (K-T conditions). Consider the 
CNLPP 

min f(X) 

s.t. gi(X) '5. 0, i=1,2, ... ,m 

X 2': 0, 

f(X) and gi(X) are convex functions, 

where f(X), gi(X) E Clover some convex set S. 

Then the necessary and sufficient conditions for X* to be the so­
lution of the above system are 

oL(X*, ),*) 
--'-::-----'-- 2': 0; 

OXj 

oL(X*, ),*) = .(X*) < . 
O),i g2 - 0, 

X* > ° ),* > ° J - , 2-

oL(X*,),*) 
Xj 0 = 0, j = 1,2, ... ,n 

Xj 

(13.9) 

,*oL(X*,)'*) _ 
/Ii O),i - 0, i = 1,2, ... , m 

(13.10) 

(13.11) 

where L == L(X,),) is the Lagrange function already defined in (13.1). 

The conditions (13.9)-(13.11) are known as Kuhn Tucker (K-T) 
conditions. Note that X* is a solution (satisfying K-T conditions) 
means we have minimized the function, and this is the optimal solution 
of CNLPP. 

Remarks. 1. If the variable Xk is unrestricted in sign, then oL(X*, ),*) 
/OXk =0. 

2. If the pth constraint is equality constraint, i.e., gp(X) = 0, then 
the pth Lagrange Multiplier ),p will be unrestricted. 
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Let us give an example of a NLPP which in not a CNLPP. Consider 

max f(X) = 2xI + 2x~ + 2XlX2 - 4Xl - 6X2 - 49 
s.t. XlX2 - 2 :S 0 

xl,X22:0 

This is not a CNLPP as gl(X) = XlX2-2 :S 0 is not a convex function. 

Example 5. Solve the following NLPP using K-T conditions: 

max f(X) = 4Xl + 6X2 - 2xI - 2XlX2 - 2x~ + 49 

s.t. Xl +X2:S 2 

Xl, X2 2: 0 

Writing the problem in appropriate format 

min f(X) = 2xI + 2x~ + 2XlX2 - 4Xl - 6X2 - 49 

s.t. Xl + X2 - 2 :S 0 

Xl, X2 2: 0 

The above system is a CNLPP in appropriate format, and hence K-T 
conditions can be applied as 

/1~ = -4 + 4Xl + 2X2 + )'1 2: 0, 

/1;; = -6 + 4X2 + 2Xl + ).1 2: 0, 

gt = Xl + X2 - 2 :S 0, 

Xl, X2,).1 2: 0 

Xl ( -4 + 4Xl + 2X2 + ).d = 0 

X2 ( -6 + 4X2 + 2Xl + ).d = 0 

).l(Xl + X2 - 2) = 0 

If there is only one constraint, then the solution of the above system 
can be found by inspection. We solve right side of the above system 
with nonnegative restrictions and check whether the solution satisfies 
the left side inequalities. In this procedure we try first for ).1 = 0, and 
then for Xl and X2 if needed. For ).1 = 0, 

2Xl + X2 = 2 

Xl + 2X2 = 3 

Solving these equations, we have Xl = 1/3, X2 = 4/3. Now, (1/3,4/3,0) 
is the solution of the system (given by K-T conditions). Hence, the 
optimum solution is 

Xl = 1/3, X2 = 4/3, !min = -483/9, or !max = 483/9. 
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Example 6. Consider the problem 

mm z = - 2X1 - X2 

s.t. Xl - X2 :s; 0 

x2 + x2 < 4 1 2 -

Xl, X2 2:: 0 

The firs step is to check whether the problem is in appropriate 
format (13.5)-(13.8) or not, as K-T conditions are applicable to this 
format only. The Lagrange function is 

The K-T conditions are 

aL 
- = X1-X2 < 0 
aA1 - , 

oL 2 2 
OA2 = Xl + X2 - 4 :s; 0, 

We solve right side of these equations with the nonnegative restrictions. 
Some solutions are 

(0,0,0,0), (V2, V2, 1/2, 3/4V2), (0,2,0,1/4). 

Out of these only the solution (Xl, X2, A1, A2) = (V2, V2, 1/2, 3/4V2) 
satisfies the left side inequalities of the above system. Hence, this is 
the only solution. Thus, the optimal solution is the point (V2, V2), 
since K-T conditions are necessary and sufficient. Moreover, this gives 
global minimum. 

Optimal solution: Xl = V2, X2 = V2, Z = -3V2. 

Remarks. 1. In general, the right hand side of (13.9)-(13.11) with 
nonnegative restrictions are solved, and then we check which solution 
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satisfies left side of these relations. We have observed that even for 
two variables the computations are cumbersome. This does not lower 
down the utility of K-T conditions. Nevertheless, these conditions 
still provide valuable clues as to the identity of an optimal solution. 
In specialized type of problems, K-T conditions result in giving very 
simple expressions which can be solved by known methods. Problems 
of this type will be discussed in next section. 

2. In format (13.9)-(13.11), we may also include constraints of the 
type 

9i(X) 2:: 0, i = m + 1 to p, 

where 9i(X), i = m + 1, m + 2, ... ,p are convex functions. Then the 
corresponding term to be added in L(X,.A) is 

The additional K-T conditions are 

aL(X*,)..') - > 0 
a)..=+l - 9m+l - , 

.A aL(X',)..') -0· 
m+l a)..=+l - , 

aL(X*,)..') - (X) > 0 
a)..p - 9p -, 

.A aLex' ,)..*) - o· 
p a)..p -, 

Note there is only change in the last requirement. This enlarges the 
domain of application of K-T conditions to include concave functions. 
Still K-T conditions remain necessary and sufficient. 

Remark. A NLPP in which the conditions that f(X) and 9i(X) are 
convex is not met, the K-T conditions are necessary, but not sufficient. 

13.5 Quadratic Programming 

Here, we shall be concerned with convex quadratic programming prob­
lems (CQPP) defined as 

mm f(X) = XTCX + pTX 
s.t. AX:::; b 

X 2:: 0, 
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where X (Xl, X2, . .. , Xn)T, C is a n x n symmetric positive def­
inite or positive semi-definite matrix, A = (aij )mxn matrix, P = 
(Pl,P2, ... ,Pnf, and b = (bl , b2, ... , bmf· 

The constraints AX :::; b can be written as AX - b :::; O. Since f(X) 
and all the constraints (being linear) are convex functions, it follows 
that CQPP is a particular case of CNLPP. Thus, K-T conditions are 
applicable for a CQPP. The solution of above problem was suggested 
by Wolfe. This is nothing but simplex method with the control on 
entering variable by K-T conditions. This means that while entering 
variable is decided the K-T conditions should not be violated. 

Also, CNLPP in Example 6 can be solved by Wolfe's method dis­
cussed below provided all 9i(X) are linear. 

Example 7. Use Wolfe's method to solve the following nonlinear 
programming problem 

max f(X) = -2xi - 3x~ - 4XlX2 + 6Xl + 3X2 

s.t. Xl +X2:::; 1 

2Xl + 3X2 :::; 4 

Xl, X2 2': 0 

Writing the problem in appropriate format: 

mm f(X) = 2xi + 3x~ + 4XlX2 - 6Xl - 3X2 
s.t. Xl + X2 - 1 :::; 0 

2Xl + 3X2 - 4 :::; 0 

xl,x22':O 

The objective function is of the form XTCX + pTX, where XTCX 
is positive definite. Any way, the objective function (being sum of 
convex functions) and constraints (as these are linear) are convex and 
hence this is a CQPP. We use Wolfe's method. The Lagrange function 
IS 
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The K-T conditions are 

4X1 + 4X2 - 6 + Al + 2A2 ~ 0, 

4X1 + 6X2 - 3 + Al + 3A2 ~ 0, 

Xl + X2 - 1 ::; 0, 

X1(4x1 + 4X2 - 6 + Al + 2A2) = 0 

X2(4x1 + 6X2 - 3 + Al + 3A2) = 0 

A1(X1+ X2- 1)=0 

A2(2x1 + 3X2 - 4) = 0 

Xl, X2, AI, A2 ~ O. 

Since K-T conditions are necessary and sufficient, the BFS of the above 
system will be the optimal solution of the problem. We find BFS by 
using Phase-I of two phase method. 

The auxiliary LPP with left side restrictions is 

min ro = R1 + R2 

s.t. 4X1 + 4X2 + Al + 2A2 - 81 + R1 = 6, 

4X1 + 6X2 + Al + 3A2 - 82 + R2 = 3, 

Xl + X2 + 83 = 1, 

2X1 + 3X2 + 84 = 4, 

all var ~ 0 

Xl81 = 0 

X282 = 0 

A183 = 0 

A284 = 0 

Now, simply apply the simplex algorithm with the conditions that the 
right side conditions in the above system, i.e., X181 = 0, X282 = 0, 
A183 = 0 and A284 = 0 should not be violated at any iteration. 

Table 1 

BV Xl x2 Al A2 81 82 R1 R2 83 84 Soln 

ro 0 0 0 0 0 0 -1 -1 0 0 0 

R1 4 4 1 2 -1 0 1 0 0 0 6 

R2 4 6 1 3 0 -1 0 1 0 0 3 

83 1 1 0 0 0 0 0 0 1 0 1 

84 2 3 0 0 0 0 0 0 0 1 4 

Table 1 is not in simplex format as there must be relative cost 0 below 
the basic variables R1 and R 2 . The simplex format is achieved by 
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adding the sum of the first and second row to ro-row resulting in 
Table 2. 

Table 2 

BV Xl 1 X2 Al A2 81 82 Rl R2 83 84 Soln 

ro 8 10 2 5 -1 -1 0 0 0 0 9 

Rl 4 4 1 2 -1 0 1 0 0 0 6 

+---- R2 [i] 6 1 3 0 -1 0 1 0 0 3 

83 1 1 0 0 0 0 0 0 1 0 1 

84 2 3 0 0 0 0 0 0 0 1 4 

As usual, X2 having the most positive relative cost is a candidate for 
entering the basis. But here we to select the exact variable to be 
considered for entering into the basis by taking most positive value of 
(}j(Zj - Cj) for all nonbasic variables, see rules of entering variable in 
Section 3.1. Compute ej(Zj - Cj) as 

Xl : (h (Zl - cd = ~ x 8 = 6 

X2 : e 2 (Z2 - C2) = ~ x 10 = 5 

Al : e3 (Z3 - C3) = 3 x 2 = 6 

A2 : (}4(Z4 - C4) = 1 x 5 = 5 

The most positive (}j(Zj - Cj) is for Xl and AI, i.e., there is a tie for 
the entering variable. Obviously, we would like to enter the decision 
variable Xl first. Note that with the entry of Xl, the left-hand side 
conditions are not violated. The variable R2leaves the basis. Complete 
the remaining entries of the table just by row transformations. After 
the first iteration, we get Table 3. The next table is 
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Table 3 

BV Xl x2 Al A2 81 82 1 Rl R2 83 84 Soln 

TO 0 -2 0 -1 -1 1 0 -2 0 0 3 

Rl 0 -2 0 -1 -1 1 1 -1 0 0 3 

Xl 1 3/2 1/4 3/4 0 -1/4 0 1/4 0 0 3/4 

f- 83 0 -1/2 -1/4 -3/4 0 11/41 0 -1/4 1 0 1/4 

84 0 0 -1/2 -3/2 0 1/2 0 -1/2 0 1 5/2 

Perform next simplex iteration in Table 3, 82 enters and 83 leaves 
without violating any of the condition in the left side of K-T conditions. 
After the second iteration, we get Table 4. 

Table 4 

BV Xl x2 Al 1 A2 81 82 Rl R2 83 84 Soln 

TO 0 0 1 2 -1 0 0 -1 -4 0 2 

f- Rl 0 0 IT] 2 -1 0 1 0 -4 0 2 

Xl 1 1 0 0 0 0 0 0 1 0 1 

82 0 -2 -1 -3 0 1 0 -1 4 0 1 

84 0 1 0 0 0 0 0 0 -2 1 2 

Table 4 indicates that A2 must enter, whereas Rl must leave the basis. 
But this violate the K-T conditions as A2 and 84 together will be in 
the basis. Hence, we take the next most positive variable to enter the 
basis and this variable is AI. Obviously, Rl leaves the basis. The next 
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table is 

Table 5 

BV Xl X2 Al A2 81 82 Rl R2 83 84 Soln 

ro 0 0 0 0 0 0 -1 -1 0 0 0 

Al 0 0 1 2 -1 0 1 0 -1/4 0 2 

Xl 1 1 0 0 0 1 0 0 1 0 1 

82 0 -2 0 -1 -1 0 1 -1 0 0 3 

84 0 1 0 0 0 0 0 0 -2 1 2 

Table 5 is the optimal table, and 

optimal solution: Xl = 1, X2 = 0, maximum value = 4. 

Note that the maximum value is not available from the table, and 
hence it is to be computed by direct substitution in the objective 
function of the problem. 

Remark. If, during simplex iterations, the right-hand side K-T condi­
tions are ignored, then one of the BFS of the system involving left-hand 
side conditions is 

Xl = 0, X2 = 1, Al = 0, A2 = 1, 82 = 6, 84 = 1 maximum value = O. 

This is not the optimal solution of the problem as it does not satisfy 
X282 = 0 and A284 = O. 

13.6 Separable Programming 

Definition 3. A function f(Xl, X2, . .. , xn) is said to be separable if 
it can be expressed as 

Definition 4. A mathematical programming problem in which the 
objective function and constraints are separable functions is called 
separable programming problem. 

Remark. Every LPP is a separable programming problem. However, 
we are interested here in NLPP which is separable. 
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Formulation. Let us formulate separable programming problems. 

opt f(X) = h(XI) + !2(X2) + ... + fn(xn) 

s.t. gl (Xl) + g~(X2) + ... + g~(Xn) ::;=~ bi, i = 1,2 ... ,m 

XI,X2, ... ,Xn ~ 0 

For the separable LPP, the simplex method is used. While in applying 
the simplex method to the separable NLPP, we shall approximate the 
nonlinear functions by linear functions which are very close to them. 

Consider the case when f(x) is a single real variable function, see 
Fig. 13.2. 

L-~ ____ ~ ________ L-____ ~_____ Xl 

Figure 13.2 

Then 

f(5;) ~ f(x) = G:I!(al) +G:2!(a2); 

with G:I + G:2 = 1, G:I, G:2 ~ 0, 'i/x E [aI, a2] 

f(5;) ~ f(x) = G:3f(a3) +G:4f(a4); 

with G:3 + G:4 = 1, G:3, G:3 ~ 0, 'i/x E [a3, a4] 

Hence, 

f(5;) = G:I!(al) +G:2f(a2) +G:3f(a3)+G:4f(a4); G:I +G:2+G:3+G:4 = 1, 
G:j ~ 0 subject to 

(i) at most two G:j can be positive and the remaining are set at zero. 
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(ii) these two positive a's should be adjacent. 

These are called the basis restrictions. 

Remark. For available Xi, the breaking points are at, a~, ... ,a~ and 
the weight associated with these points are taken at, a~, ... , a~. 

Example 8. Formulate the approximate LPP for the following 
separable programming problem and find its solution: 

max f(X) = sin(7rxd4) + X2 

s.t. xi+3x2:S4 

Xl, X2 2:: o. 

Here, we have 

h(Xl) = sin(Jrxd4); 

gi(xI) = xi; 
!2(X2) = X2 

g~(X2) = 3X2 

For X2 = 0 in the constraint, the range of xI :S 4 is given by at 
0, a~ = 1, a§ = 2 (breaking points). Now, calculate 

Hence, 

k 

1 

2 

3 

o 
1 

2 

h (aD 
o 

1/V2 
1 

. JrXl () 1 1/ ~ 1 1 1 1 1 1 sm 4 = h Xl ~ al . 0 + a2 V 2 + a3; al + a2 + a3 = ,aj 2:: 0 

xi = gi(xI) ~ at ·0 + a~ . 1 + a§ ·4 

The approximate LPP is written as 

max Xo = a~/v'2 + a§ + X2 

s.t. a~ + 4a§ + 3X2 :S 4 

ai + a~ + a§ = 1 
all var > 0 
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Let us solve the above LPP by the simplex method. First, write 
this LPP in its standard form 

max Xo = a~/J2 + a§ + X2 

s.t. a~ + 4a§ + 3X2 + 81 = 4 

at + a~ + a§ = 1 

all var 2: 0 

Keeping in view the basis restrictions, all the computations are 
shown in the following table: 

BV a 1 
2 a 1 

3 x21 81 a 1 
1 Soln 

Xo -1/V2 -1 -1 0 0 0 

f-- 81 1 4 W 1 0 4 

a 1 
1 1 1 0 0 1 1 

Xo 1_ Y2 1 
3 \/2 1/3 0 1/3 0 4/3 

X2 1/3 4/3 1 1/3 0 4/3 

f-- a 1 
1 IT] 1 0 0 1 1 

Xo 0 1/V2 0 1/3 1 1 1 + 1/J2 J2 -:3 

X2 0 1 1 1/3 -1/3 1 

a 1 
2 1 1 0 0 1 1 

From the table, the optimal value is 1 + 1/ J2. The problem has been 
approximated well and we use the linear expression to find 

xi ':::::' a~ + 4a§ = 1 ===} Xl = l. 

The approximate optimal solution is 

1 
Xl = 0, X2 = 1, optimal value = 1 + J2. 

Example 9. Solve the following problem as separable programming 
problem 

max f(X) = 5X1 + 2x~ 
s.t. 2X1 + x~ :s; 9 

Xl, X2 2: 0 
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The separable functions are: 

h(Xd = 5X1, 

gi(xd = 2X1, 

12(x2) = 2x§ 

g§(X2) = X§ 

For Xl = 0 in the constraint, we have x§ ::; 9. This gives the range of 
X2 as 0,1,2,3 (the braking points). 

k 

1 

2 

3 

4 

o 
1 

2 

3 

The approximate LPP is 

12 (aD 

o 
2 

8 

18 

o 
1 

4 

9 

max f(X) = 5X1 + 20:~ + 80:~ + 180:1 

2 "4" 9"<9 s.t. Xl + 0:2 + 0:3 + 0:4_ 

" " " " 1 0:1 + 0:2 + 0:3 + 0:4 = 
all var ;::: 0 

The standard form of the above LPP is 

max f(X) = 5X1 + 20:~ + 80:~ + 180:1 

2 "4" 9" 9 s.t. Xl + 0:2 + 0:3 + 0:4 + 81 = 
" " " " 1 0:1 + 0:2 + 0:3 + 0:4 = 

all var ;::: 0 

Now, we solve the problem by the simplex method keeping in view 
the basis restrictions at each iteration. The optimal solution is 

Xl = 9/2, X2 = 0, optimal value = 45/2. 
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To compute X2, we have used 

x§ ~ a~ + 4a~ + 9a~ = 0 ====? X2 = o. 

Remarks. Whenever a nonlinear function is to be evaluated after the 
optimal table, we use the linear expression representing it. In the 
above case, the value of X2 has not been taken from the optimal table, 
but is computed by the linear approximating expression. 

2. In case a constraint is of the type 

2Xl + x§ :s; 11 

the breaking points are given by x§ :s; 11, and since VII > 3, we 
should take breaking points as X2 = 0,1,2,3,4. 

Example 10. Solve the following NLPP using separable program­
ming. 

max f = Xl +xi 

s.t. 3Xl + 2x§ :s; 9 

Xl, X2 2': 0 

The separable functions are: 

h(xd = Xl; 

gi(xd = 3Xl; 

h(X2) = xi; 

g~(X2) = 2x~. 

The function h(x) and gi(x) are linear and hence are left in their 
existing form. Consider h (X2) and g~ (X2). 

As usual, for Xl = 0 in the constraint, 2x§ :s; 9 :::} x§ :s; 4.5 :::} X2 
can not exceed 3 and hence there are four breaking points. 

k a2 
k h (a~) g~(a~) 

1 0 0 0 

2 1 1 2 

3 2 16 8 

4 3 81 18 

This ensures 

xi ~ at . 0 + a§ . 1 + a~ . 16 + a~ . 16 = a~ + 16a~ + 81a~ 
2x~ ~ at . 0 + a~ . 2 + a~ . 8 + a~ . 18 = 2a~ + 8a~ + 18a~ 
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Then the approximation LPP turns out to be 

B.V. 

f(X) 
81 

+- a 2 
1 

f(X) 
+- 81 

a 2 
3 

f(X) 
a 2 

4 

a 2 
3 

Xl 

-1 

3 

0 

-1 

3 

0 

max f = Xl + a~ + 16a~ + 81a~ 
s.t. 3Xl + 2a~ + 8a~ + 18a~ ::; 9 

a~ + a~ + a~ + a~ = 1 
all variables 2: 0 

a 2 
2 a~ 1 a 2 

4 81 

-1 -16 -81 0 

2 8 18 1 

1 IT] 1 0 

15 0 -651 0 

-6 0 ITQ] 1 

1 1 0 0 

37/2 -24 0 0 13/2 

a 2 
1 

0 

0 

1 

16 

-8 

1 

-36 

3/10 -3/5 0 1 1/10 -4/15 

-3/10 8/5 1 0 -1/10 9/5 

Soln 

0 

9 

1 

16 

1 

1 

45/2 

1/10 

9/10 

We have followed basis restrictions in simplex iterations as follows: 

(i) a~ being most negative should enter and 81 should leave the 
basis, but this is not permitted by basis restriction (b). The 
next choice goes to a~ to enter and 81 to leave the basis. This is 
permitted and the first iteration is made complete. 

(ii) In the second iteration, a~ should enter and 81 should leave. 
This is permitted as both a~ and a~ come together in the basis. 
Complete the second simplex iteration. 

(iii) Now, only a~ can enter and a~ can leave the basis. But this is 
not permitted by basis restriction (b). The process ends at this 
stage, even though the table is not optimal. How much we could 
do to improve the value of objective function, we have done. 
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To find solution of the problem, note that Xl = 0, ar = 0, a~ = 
0, a~ = 9/10, a~ = 1/10. Using 

2 9 1 
2x2 ~ 0 . 0 + 0 . 2 + 10 . 8 + 10 . 18 = 9 ~ X2 ~ 2.1. 

Hence, the approximate optimal solution: Xl = 0, X2 = 2.123 with 
optimal value: 20.25. 

13.7 Duality in Nonlinear Programming 

The duality for LPP has already been discussed at length in Chapter 4. 
The concept of duality in nonlinear programming plays an important 
role for advanced studies. The aim of this section is to introduce the 
concept of duality for nonlinear programming problems. 

The primal nonlinear programming is taken in the form 

min Xo = f(X) 
s.t. 9i(X):S 0, i = 1,2 ... ,m, 

where f(X) and 9i(X) have the first order partial derivatives. 

The dual of the above NLPP is written as 

max </J(X, A) = f(X) + ATG(X) 

s.t. \7 fT (X) + AT\7G(X) ~ 0 

(13.12) 

(13.13) 

(13.14) 
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where 

( 8f 8f 8 f )T . 
'V f(X) = -8 ' -8 ' ... , -8 : gradIent vector 

xl X2 Xn 

'VG(X) = Jacobian matrix defined as 

!!Jll. og! og! 'Vgf(X) ox! OX2 OXn 

!!.m. Og2 §J& 'VgI(X) ox! OX2 OXn 

ogm ogm ogm 'Vg~(X) ox! OX2 OXn 

Remark. If the nonnegative restriction X 2 0 is added in the format 
of NLPP (amenable to have dual), the dual is written as 

max ¢(X,),) = f(X) + ),T G(X) - XT'V f(X) - XT'VGT (X)' 

s.t. 'VfT(X) + ),T'VG(X) 20 

X 2 0,)' 2 0 

Example 11. Write the dual of the problem 

min f(X) = -4XI - 2X2 + xi + x~ 
s.t. 2XI - X2 :::; 7 

-Xl +x2:::;-2 

Xl, X2 20 

First, we write the problem in appropriate format 

mm f(X) = -4XI - 2X2 + xi + x~ 
s.t. 2XI - X2 - 7 :::; 0 

- Xl + X2 + 2:::; 0 

Xl, X2 20 



13.7. DUALITY IN NONLINEAR PROGRAMMING 407 

Since the nonnegative restrictions are given, we use the above re­
mark to write the dual. Now, X = (Xl, X2)T, A = (AI, A2)T, 

G(X) = , [ 
2Xl - X2 - 7] 

\i'f(X) = , [ 
-4 + 2Xl ] 

-Xl + X2 + 2 

\i'G(X) = [ 2 
-1 

-2 + 2X2 

~l ] 

Substituting these values in the expression for dual in the above 
remark, we have 

After simplification, we get 

max Yo = -xi - x~ - 7Al + 2A2 
s. t. 2Xl + 2Al - A2 2': 4 

2X2 - Al + A2 2': 2 

all var 2': 0 

Note. The significant difference between the dual of a LPP and NLPP 
is that the dual of LPP is a function of dual variable, while the dual of 
NLPP is a function of primal variable and dual variable both. It can 
be seen obviously in (13.12), (13.13) and (13.14). 

For theoretical exposition of the duality theory, we define PF and 
SD as the set of feasible solutions of primal and dual, respectively. 

PF = {X E]Rn: gi(X)::; 0, i = 1,2, ... ,m}; 

SD = {(X, A): X E ]Rn,A E ]Rm, \i'fT(X) + AT\i'G(X) 2': o}. 
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Theorem 3. Let f(X) and G(X) be convex differentiable functions, 
and let Xl E PF and (X2' A) E SD. Then 

Theorem 4. Let f(X) and G(X) be convex differentiable functions, 
and let X* be an optimal solution of primal. Then there exists a A * 
such that (X*, A*) is an optimal solution of the dual (Le., satisfies K-T 
conditions) and 

f(X*) = ¢(X*, A*) 

Theorem 5. Let f(X) and G(X) be convex differentiable functions. 
Let Xo be an optimal solution of primal. If (X*, A*) is an optimal 
solution of dual and ¢(X, A*) is strictly convex function of X. Then 
Xo = X*, i.e., X* is an optimal solution of primal, and 

f(X*) = ¢(X*, A*) 

Problem Set 13 

1. Test the definiteness of the following functions 

(a) xi+4x~+4x~+4xIX3+16x2X3; (b) xI+x~+x~-2xIX2. 

2. Find the range of Xl, X2, X3 for which 

are a convex functions. 

3. Using Hessian matrix, decide the convexity of the following func­
tion 

4. Consider the problem 

. 2 2 2 
mm z = Xl + X2 + X3 

s.t. 4Xl + X~ + 2X3 = 14. 

Solve this problem by the Lagrange multiplier method. 

5. Prove that f(X) = CT X is a convex function. 
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6. Let 11,12, ... , fn be convex functions defined on a convex set 
S. Then show that the linear combination adl + a2!2 + ... + 
anfn, ai ~ 0, i = 1,2 ... ,n is convex over S. 

7. In a convex nonlinear programming problem (CNLPP), if the kth 
variable is unrestricted in sign, show that 8L(X, >')/8Xk = o. 
Suggestion. Write Xk = xt - xl:. 

8. If in a CNLPP the pth constraint is an equality constraint, show 
that pth Lagrange multiplier will be unrestricted in sign. 

Suggestion. Write gp(X) = 0 as gp(X) ~ 0 and -gp(X) ~ o. 
9. Use the Kuhn-Tucker conditions to solve the following nonlinear 

problem 

max z = 2XI - x~ + X2 

s.t. 2XI + 3X2 ~ 6 

2XI + X2 ~ 4 

Xl, X2 ~ 0 

10. Solve the following NLPP using Wolfe's method 

max f(X) = X2 - x~ 
s.t. Xl + X2 ~ 1 

Xl, X2 ~ 0 

11. Solve the following NLPP using Wolfe's method 

min f(X) = x~ + x~ + x~ 
s.t. 2XI + X2 - X3 ~ 0 

1- Xl ~ 0 

Xl, X2 ~ 0, X3 ~ 0 

12. Solve the following quadratic programming problem using Wolfe's 
method 

max f(X) = 2XI + X2 - X~ 
s.t. 2XI + 3X2 ~ 6 

2XI + X2 ~ 4 

Xl, X2 ~ 0 
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13. A company manufactures two products A and B. It takes 40 
minutes to process one unit of product A and 20 minutes for each 
unit of B. The maximum machine time available is 35 hours per 
week. Products A and B require 3 kg and 4 kg of raw material 
per unit, respectively. The available quantity of raw material 
is envisaged to be 170 kg per week. The products A and B 
which have unlimited market potential sell for $220 and $600, 
respectively. The manufacturing costs for products A and Bare 
equal to two and three times of square of the quantity produced, 
respectively. Find the optimum quantity of each product to be 
produced so as to maximize the profit. 

14 A company sells two types of items A and B. Item A sells for 
$30 per unit. No quantity discount is given. The sales revenue 
for item B decreases as the number of its units sold increases 
and is given by (40 - 0.4x2)x2, where X2 is the number of units 
sold of item B. The marketing department has only 1200 hours 
available for distributing these items in the next year. Further, 
the company estimates the sales time function is given by 

Sales time = Xl + O.4xi + 4X2 + 0.45x~ 

The company can only procure 6000 units of items A and B for 
sales in the next year. Find the number of items A and B be 
produced by the company so as to maximize its total revenue. 

15. A factory is faced with a decision regarding the number of units 
of a product it should produce during months of January and 
February respectively. At the end of January sufficient units 
must be on hand so as to supply regular customers with a total 
of 200 units. Furthermore, at the end of February, the required 
quantity will be 300 units. Assume that factory ceases produc­
tion at the end of February. The production cost C is a simple 
function of output X and is given by C = 3x2 . In addition to 
production cost, units produced in January which are not sold 
until February incur an inventory cost of $8 per unit. Assume 
the initial inventory to be zero. Formulate the problem and find 
the minimum cost solution. The number of units produced must 
be equal to the number demanded and distributed. 

16. A manufacturing company produces two products: Radios and 
TV sets. The sales-price relationship for these two products are 
given below 
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Products Quantity Demanded Unit Price 

Radios 2000-7 p P 

TV Sets 4000-15q q 

The total cost function for these two products are given by 
250x+0.2x2 and 400y+0.2y2, respectively. The production takes 
place on two assembly lines. Radio sets are assembled on Assem­
bly line I and TV sets are assembled on Assembly line II. Because 
of the limitations of the assembly line capacities, the daily pro­
duction is limited to no more than 90 radio sets and 70 TV sets. 
The production of both types of products require electronic com­
ponents. The production of each of these sets require five units 
and seven units of electronic equipment respectively. The elec­
tronic components are supplied by another manufacturer, and 
the supply is limited to 700 units per day. The company has 170 
employees, i.e., the labour supply amount to 480 man-days. The 
production of one unit of radio set requires 1 man-day of labour, 
whereas 2 man-days of labour are required for a TV set. How 
many units of radio and TV sets should the company produce in 
order to maximize the total profit? Formulate the problem and 
find the optimal solution. 

17. Solve the following problem 

mm f = (Xl - 2)2 + 4(X2 - 6)2 

s.t. 2XI + X2 ::; 14 

XI,X2 ~ 0 

Suggestion. Replace Xl by Xl + 2 and X2 by X2 + 6. 

18. Consider the problem 

max f = 6XI + 3X2 - 4XIX2 - 2xr - 3x~ 
s.t. Xl + X2 ::; 1 

2XI + 3X2 ::; 4 

Xl, X2 ~ 0 

Show that f is strictly concave and then find the solution. 
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19. Solve the following problem using separable programming tech­
mque 

min 

s.t. 

f = xi + 2x§ 

2x2 + x2 < 8 I 2 -

XI,X2 ~ 0 

20. Solve the following NLPP using separable programming. 

max f = Xl + x~ 
s.t. 3XI + 2x§ ::s: 5 

- Xl + 2X2 + 3X3 ~ -4 

2XI + 3X2 - 4X3 ~ 3 

Xl + X2 + X3 = 2 
Xl, X2 ~ 0 



Chapter 14 

Search Techniques 

This chapter is devoted to unconstrained optimization of nonlinear 
problems. Here we discuss some search techniques which are in com­
mon practice and are applicable to optimize a function of one or several 
variables. In previous chapter for optimizing nonlinear functions the 
condition of convexity have been assumed, whenever necessary. How­
ever, in search techniques we avoid such type of strong conditions on 
the function to be optimized. 

14.1 Unimodal function 

A unimodal function is one that has only one peak in a given interval. 
Thus, a function of one variable is said to be unimodal on a given 
interval [a, bj if it has either unique minimum or maximum on [a, bj. 

For two values of the variable on the same side or enclosing the 
optimum point, the one nearer to this optimum gives the better ap­
proximation to the functional value. Mathematically, we can write it 
as follows. 

Let x* be a minimum point of the function f (x) which is unimodal 
on [a, b], if for Xl < X2, see Fig. 14.1. 

(i) Xl < x* =} f(xI) > f(x*), 

(ii) X2 > x* =} f(x2) > f(x*). 

Note that in unimodal case we do not need f(xI) > !(X2), instead 
strict inequality. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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a X* b 

Figure 14.1 

The initial interval being considered is called the interval of uncer­
tainty. Here, [a, b] is the interval of uncertainty. We term the evalua­
tion of one functional value in search techniques as one experiment. 

Let ! (x) be the unimodal function on the interval of uncertainty 
[a, b] having a point of minimum. Take two arbitrary points (experi­
ments) Xl and X2 such that Xl < X2 in this interval, then the interval 
of uncertainty is reduced as, see Fig. 14.2. 

/~ 
I I I I 

a 

I I 

b 

!(XI) > !(X2) 

min E [Xl, b] 

Figure 14.2 

V 
I I 

I I 

From the above figure, it is obvious that after two experiments the 
interval of uncertainty becomes [a, X2] or [Xl, b] or [Xl, X2]. It seems 
in the first graph of Fig. 14.2 that interval of uncertainty should be 
taken [a, Xl]. But this is not correct as the point Xl may be on the 
left of the minimum point and in that case [a, Xl] fails to contain the 
minimum point. Similar reasoning is applicable for the second graph 
of Fig. 14.2. 

Measure of effectiveness. Suppose Lo is the width of the inter­
val of uncertainty. Further, suppose that Ln be the width of interval 
of uncertainty after n experiments. Then measure of effectiveness of 
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any search technique is defined as 

Ln 
0=-<1 Lo -

415 

Note that measure of effectiveness is used to compare the efficiency of 
different search methods. 

14.2 Dichotomous Search Method 

In this method two experiments are placed as close as possible to the 
centre of the interval of uncertainty. Now, based on the relative values 
of the objective function at the two points, almost half of the interval 
of uncertainty is eliminated. Let (XL, XR) be the initial interval of 
uncertainty. The two experiments will now be performed at Xl and X2 

given by 
Lo -8 

Xl = XL + 2 ' 

Lo +8 
X2 = XL + 2 ' 

where Lo = X R - XL, and 8 is the small number chosen so that the two 
experiments give significantly different results. Fig. 14.3 illustrates 
these calculations . 

.... EE--------- Lor---------...;~~ 

I 
XL Xl .... EO------ 8 ---;;~~ X2 

Figure 14.3 

Now, based on the function values at Xl and X2, the new interval 
of uncertainty is given by (Lo + 8)/2. The next two experiments are 
now performed in this reduced interval of uncertainty. This procedure 
can be repeated until a desired accuracy is achieved. 

The interval of uncertainty at the end of the different pairs of 
experiments can be given as 

Number of experiments 2 

Width of interval of uncertainty L02H 

4 

1 Lo+8 + §. 
2 2 2 

6 

1 (LoH + §.) + §. 
2 4 2 2 
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In general, the final interval of uncertainty after conducting n experi­
ments (n, being even) is given by 

L =-+0 1--Lo ( 1) 
n 2n/2 2n/2 (14.1) 

Thus, 

0:---+- 1---1 0 ( 1) 
- 2n/2 Lo 2n/2 · (14.2) 

The procedure is well explained in the following example. 

Example 1. Find the maximum of f(x) = x(1.5 - x) in the interval 
[0, 1] to within 10% of the exact value. Take 0 = 0.001. 

If the middle point of the final interval of uncertainty is taken as 
the optimum point, then 

1 Ln 
-- <01 2 Lo - .. 

In view of (14.2), 

-+- 1-- <-1 0 ( 1) 1 
2n/2 Lo 2n/2 - 5· 

For 0 = 0.00l and Lo = 1, we have 

1 1 ( 1) 1 
2n/2 + 1000 1 - 2n/2 ::; 5' 

i.e., 
999 _1_ < 995 or n > 999 c::: 5. 
10002n / 2 - 5000 - 199 

Since n is even, the minimum admissible value is 6. 

Perform starting two experiments as 

Lo 0 
Xl = 2 - "2 = 0.5 - .0005 = 0.4995, 

Lo 0 
X2 = 2 + "2 = 0.5 + .0005 = 0.5005. 

with the function values 

f(xd = 0.4995(1.0005) = 0.49975, 
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f(X2) = 0.5005(0.9995) = 0.50025. 

Since f(xI) < f(X2), the next interval of uncertainty is [0.4995,1]. 
Perform the second pair of experiments as 

1 - 0.4995 
X3 = 0.4995 + 2 - 0.0005 = 0.74925, 

1 - 0.4995 
X4 = 0.4995 + 2 + 0.0005 = 0.75025. 

The corresponding function values are 

f(X3) = 0.74925 x 0.75075 = 0.5624994, 

f(X4) = 0.75025 x 0.74975 = 0.5624999. 

Since f(X3) < f(X4), the next interval of uncertainty is [0.75037,1]. 
Now, perform the final pair of experiments as 

1 - 0.5624994 
X5 = 0.5624994 + 2 - 0.0005 = 0.7807497, 

1 - 0.5624999 
X6 = 0.562499 + 2 + 0.0005 = 0.78174995. 

The function values at these points are 

f(X5) = 0.7807497 x 0.625875 = 0.5615545, 

f(X6) = 0.78174995 x 0.624875 = 0.56149194. 

Since f(X5) > f(X6), the new interval of uncertainty is given by 

[X4' X6] = [0.75025,0.78174995]. 

The center of this interval can be taken as the optimum point, and 
we have 

Xmax ~ 0.7649997, fmax ~ 0.562275. 

14.3 Fibonacci Search Method 

As the name of the method suggests, this method uses the Fibonacci 
numbers generated by the recursive relation: 

Fn = Fn- 1 + Fn-2, n > 1, 
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where Fa = FI = l. 

The Fibonacci search method gives an infinite sequence 

2 3 5 8 13 21 34 55 89 144 

Obviously, any number is the sum of two previous numbers. 

Let La = b - a be the length of the initial interval of uncertainty, 
and let n be the total number of experiments to be conducted. 

Place the first two points Xl and X2 according to the formulas 

Fn - 2 
Xl = a+ Fn La, (14.3) 

Fn- 2 Fn-l 
X2 = b- --La = a+ --La. 

Fn Fn 
(14.4) 

The equivalent expression for X2 is due to the property of the Fibonacci 
sequence. The simple consequence of (14.3) and (14.4) is that b-X2 = 
XI- a. 

This shows that the points Xl and X2 are symmetrically placed in 
reference to the end points, see Fig. 14.4. 

~E~---------------------La 

a 
I 

Xl 

Figure 14.4 

b 

Since we are considering unimodal functions, the interval of un­
certainty after two experiments Xl and X2 is reduced and its position 
depends whether f(XI) is < or > f(X2). Hence, 

L2 = Length of [a, X2] or length of [Xl, b] 

= X2 - a or b - Xl 

- Fn - l L using (14.4). - Fn a, 

Suppose interval of uncertainty is [a, X2] (the studies for [Xl, b] are 
similar). The next iteration is on L2. Take two observations at x~ and 
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X~ defined by 

, Fn - 3 
Xl =a+-F L2 

n-l 

, Fn - 3 Fn -2 
X2 = b- --L2 = a+ --L2. 

Fn - l Fn - l 

Figure 14.5 depicts the next placements 

~E~---------------L2------------------~~ 

I 

a xi 

Figure 14.5 

I 

X* 2 

Using (14.5) and (14.6), we have 

- L Fn - 2L - 2--- 2 
Fn - l 

Fn - l - Fn -2 L2 

Fn - l 

Fn - 3 , = --L2 = Xl - a. 
Fn - l 

419 

(14.5) 

(14.6) 

This ensures that x~ and x~ are symmetrically placed with respect to 
a and X2, respectively. Next, consider 

, Fn -3 
X2 -X2 = --L2 

Fn - l 

= F;:3 Lo = X2 - Xl, using (14.3) and (14.4). 

The last equation implies that x~ and Xl coincide. At Xl, we already 
know f (Xl) in the first iteration. Thus, we have added only one new 
observation in the second iteration. This is the reason for the best 
performance of the Fibonacci method. Suppose f(x~) < f(XI). Then 
the length of interval of uncertainty after three iterations is 

Fn - 2 () L3 = Xl - a = Fn Lo, using 14.3. 
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Continuing in this manner, we get after n iterations 

Note that in our analysis we have avoided the case f(xI) = f(X2), 
since we are considering the interval of uncertainty at worst. 

Limitations. (1) The interval of uncertainty should be known to 
us. 

(2) The number of experiments n to be performed in the search 
has to be specified before hand. In case n is not given, then measure of 
effectiveness will be given to compute n as a :S ao ====;. (1/ Fn) :S ao. 
This determines n. 

Example 2. Minimize the function x 2 - 2x, 0 :S x :S 1.5 within 
the interval of uncertainty 0.25Lo, where Lo is the initial interval of 
uncertainty. 

Here 
1 

a = Ii: :S 0.25 ====;. Fn ~ 4 ====;. n = 4. 
n 

Thus, we have to take 4 observations. The first experiment is at 

Fn - 2 F2 2 
Xl = a + --Lo = 0 + -Lo = - x 1.5 = 0.6. 

Fn F4 5 

Since initial two starting observations are symmetrically placed, X2 
will be at distance 0.6 from the right end point, i.e., at 0.9. The next 
figure depicts this. 

o .6 .9 1.5 

f(xI) = f(0.6) = -0.84 } 

f(X2) = f(0.9) = -0.99 
====;. f(0.6) > f(0.9) ====;. reject [0,0.6] 

So, the next interval of uncertainty is [0.6,1.5] and L2 = 1.5-0.6 = 
0.9. The next iteration, by theory one point will be same as 0.9. Since 
0.9 is at a distance of 0.3 from 0.6, the new point will at a distance of 
0.3 from 1.5. This new point is 1.2 as shown in the next figure. 
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.6 .9 1.2 1.5 

Since f(X3) = f(1.2) = -0.96 > f(0.9). So, the next interval of 
uncertainty is [0.6, 1.2J and L3 = 1.2 - 0.6 = 0.6 

.6 .9 1.2 

Now, we can not add a new point as 0.9 is equally spaced from 
0.6 and 1.2. This will always happen at last iteration for all n, since 
Fo/ F2 = 1/2, i.e., last interval of uncertainty is halved. 

At this juncture we find the last point X4 very nearer to 0.9 on either 
side, say 0.95 and compute f(0.95) = -0.9975. Since f(0.9) < f(0.95) 
thus the final interval of uncertainty is [.9,1.2J and L4 = 0.3. The 
condition L4/ Lo ::; 0.3/1.5 = 0.2 ::; 0.25 is satisfied. We take x* as the 
mid point of the last interval of uncertainty, i.e., f(1.05) = -0.9975. 

.9 

x* 
I 

1.05 1.2 

The correct value is x* 
approximation. 

1 and f(x*) = -1. This is a good 

14.4 Golden Section Method 

This method can be thought of an extension of the Fibonacci method. 
The only difference is that the number of experiments to be conducted 
is not needed to be specified in advance. In this method, we start 
with the assumption that we are going to conduct a large number of 
experiments. 

As a consequence of the Fibonacci method for n experiments, we 
have 

(14.7) 

Suppose the intervals of uncertainty is reduced at a fixed rate 'Y, and 
let n ---t 00. Then 

Fn - k \..I k ---='Y v >1. 
Fn -k+1 -

(14.8) 
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Since 0 ::; Fn-k/ Fn- k+1 ::; 1 and monotonic decreasing, the conver­
gence is ensured for some positive number,. 

Note that the relation Lk = Lk+1 + L k+2, k ~ 1 requires that the 
points at which experiments are to be made must be symmetrically 
placed with respect to the end points of the interval of uncertainty. 
The distance of these points are determined as follows. Using (14.7) 
and (14.8), we get 

Lk = ,Lk + ,2 Lk, since Lk+2 = ,Lk+1 = ,2 Lk. 

This gives, = (-1 + J5) /2 = 0.618. 

Thus, the first two experiments are conducted at a distance of ,Lo 
from the end points of Lo. The next experiment is conducted at a 
distance of ,L2 from one end point of L2 and so on. 

Remark. In the Fibonacci search technique, , is not fixed. However, 
Fibonacci method is slightly superior to Golden section method. This 
can be verified that in four experiments the interval of uncertainty is 
reduced to 

PI 1 
L4 = -Lo = -Lo = 0. 2Lo F4 5 

for the Fibonacci method, while 

L4 = 0.618L3 = 0.618 X 0.618L2 

= (0.618)3 Lo = 0.236Lo 

for the Golden section method. Here n = 4 is predicted in advance. 

The search techniques discussed in Sections 14.2-14.4 were limited 
to optimize functions of a single variable and that too unimodal func­
tions. Our next studies are to optimize nonlinear functions of several 
variables. 

14.5 Steepest Descent Method 

This is also known as the gradient method. The steepest descent 
method can be used to find the minimum of a function of several 
variables. Let f(X) be the given function of X, representing a n­
dimensional vector. Cauchy (1847) used the negative of the gradient 
vector to choose the direction of the minimization. 
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Here, the theory and examples are discussed for the minimization 
problem. The method depends upon the fact that negative of grad 
f(X) = V' f(X) points in the maximum decrease of the function f(X). 

Let us choose an initial starting point Xl, and iteratively move 
toward the minimum according to the following rule, 

X i+1 = Xi + Ai 8 i 

Here Ai is the optimal step length along the search direction of 8i = 
- V' f(Xi). One of the following criteria can be used to terminate the 
iterative process 

(a) 

(b) 

If(Xi+l) - f(Xi)1 ::::: Cl 

I f(Xi+l) - f(Xi ) I < . 
f(Xi ) - C2, 

(c) 1::J:::::C3, i=1,2 ... ,n; 

Let us work out an example to give the clear exposition of the above 
ideas. 

Example 3. Minimize the function 

f(Xl, X2) = xi - XlX2 + x~ 
so that the error does not exceed by 0.05. The initial approximation 
is to be taken as (1,1/2). 

Note that 
V' f(X) = (2Xl - X2, -Xl + 2x2f 

and the initial approximation is Xl = (1, 1/2)T. 

Step 1. The first step is f(Xt) = f(l, 1/2) = 3/4, and 

V' f(Xl ) = (2Xl - X2, -Xl + 2X2)T at (1,1/2) 

= (3/2, of = -81· 

Find the first step size Al along 81 by minimizing 
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Hence 

This is a function of single variable, and the minimum occurs at 
df/d)'l = 0, i.e., 

Thus, the new point and function value at this point are 

Terminate the calculations if F(Xl ) - f(X2 ) < 0.05. Obviously, the 
tolerance criteria is not satisfied. 

Step 2. Again, start calculation replacing Xl by X 2 . So, proceed 
with X 2 = (1/4, 1/2)T, and compute 

The second step size ..\2 along 82 is obtained by minimizing 

Hence 

f(X3 ) = f(X2 - ..\2 \l f(X2 )) = f( (1/4,1/2) - ..\2(0,3/4)) 

= f(1/4, (2 - 3..\2)/4). 

f( X ) = ~ _ 2 - 3..\2 (2 - 3..\2)2. 
3 16 16 + 16 

Again, f is a function of single variable, and the minimum occurs at 
df /d..\2 = 0, i.e., 

3 6 
16 - 16(2 - 3"\2) = ° =? ..\2 = 1/2. 

Thus, the next point and function value are 

X3 = (1/4, 1/8f, 

Since 

the tolerance limit is satisfied, and we stop further computations. 
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14.6 Conjugate Gradient Method 

This is considered to be the best as its rate of convergence is faster 
than the steepest descent method. Expand f in Taylor series about 
Xo as 

TIT f(X) = f(Xo)+(X -Xo) Vf(Xo)+2(X -Xo) H(Xo)(X -Xo)+'" , 

where H(Xo) is the positive definite Hessian matrix computed at Xo. If 
Xo is a point of minimum, then V f(Xo) = 0, and the above expression 
reduces to 

1 T f(X) = f(Xo) + 2(X - Xo) H(Xo)(X - Xo). 

The second term on the right is positive, since Xo is a minimum point. 
This suggests that a function can be approximated by a positive defi­
nite quadratic form in the neighbourhood of a minimum point. 

Definition. Let H be n x n symmetric matrix. Two vectors 81 and 
82 in lRn are said to be conjugate (orthogonal) with respect to H if 

8fH82 = O. 

For example, (-1, l)T and (0,2)T are conjugate vectors with respect 
to the matrix 

Moreover, a finite set of vectors 81,82, ... , 8 n is said to be conjugate 
with respect to H, if 

8f H 8j = 0 V i =J j, i, j E {I, 2, ... ,n}. 

Note that, if H = I, the conjugate vectors become orthogonal in the 
usual sense. 

Theorem 1. Every finite set 81,82, ... ,8n of conjugate vectors with 
respect to a symmetric and positive definite matrix is linearly inde­
pendent. 

The proof, being straightforward is left to the reader. 

Remark. For a positive definite quadratic XT AX, A is symmetric 
positive definite matrix and H = 2A. 



426 CHAPTER 14. SEARCH TECHNIQUES 

Next, we generalize XT AX. Consider 

f(X) = XT AX + pTXa: 

be quadratic function of n variables Xl, X2, . .. , Xn with its Hessian 
matrix H as positive definite. Here P is a column vector and a: is a 
scalar. 

Theorem 2. Let F(X) be a quadratic function of n variables with 
positive definite Hessian matrix. If the successive optimal steps are 
taken along Sl, S2, .. . Sn, then the point of minimum is reached in 
exactly n iterations. 

Proof. Let Xl be starting point. Then 

(14.9) 

where step size Ak along Sk is determined by minimizing the function 

By Taylor series, we have 

The above series terminates at the third term, because f(X) is a 
quadratic (H is a constant matrix, so that the third order determi­
nant vanishes. Also, 

This gives 

Ak = - sf\! f(Xk ) (14.10) 
sfHsk 

Let X* be the point of minimum for F(X). The conjugate directions 
Sl, S2, ... , Sn are linearly dependent because F( X) is positive definite, 
see Theorem 1. Hence they form a basis in IRn. Thus, 

Pre-multiplying by sf H, we get 

sfH(X* - XI) 
a:k = k = 1,2, ... ,n. 

sfHsk ' 
(14.11) 
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On the other hand, in view of (14.9), we can write 

(14.12) 

For k = n + 1, this reduces to 

(14.13) 

After the first iteration, we get X2 (Xl is the initial approximation). 
So, after n iterations we determine Xn+1, and our objective becomes 
to establish that X n+1 = X*. Thus, if we show that a1 = AI, a2 = 
A2, .. . ,an = An, we are done. From (14.12), 

and pre-multiplying by 8f H and noticing that 81,82, ... , ak are con­
jugate vectors, we obtain 

8fH(Xk - Xd = 0, k = 2,3, ... ,no 

For k = 1, the above result is trivially true. 

Using (14.12) and the above condition, one gets 

Applying Taylor series expansions to the function 8j /8X1,8j /8X2, ... , 
8j /8xn, we get 

At X = X*, 

since X* is the point of minimum. Using this and (14.9), we have 

k = 1,2, ... , n. 

This proves the result. 

To apply the above procedure we must have conjugate vectors 
81,82, ... ,8n with respect to the H. This theorem says that if the 
step size is taken according to (14.9), then the minimum point X* is 
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obtained exactly in n-steps. For this we need nand H-conjugate direc­
tions at our choice. Thus, prominent work is to generate Sl, S2, ... ,Sn. 

If we have n linearly independent vectors in ]Rn, then in the same 
manner as in Gram-Schmidt orthogonalization process, we can gener­
ate n conjugate vectors with respect to the positive definite symmetric 
matrix H. Take 

where 

Sl = - \1 f (X d, Xl is the initial approximation 

(3k = \1fT(Xk+l)Hsk 
sfHsk 

Algorithm. Suppose f(X) is quadratic function of n variable with 
positive symmetric definite matrix. The algorithm proceeds as 

Let \1 f(Xk) be the gradient at Xl, where Xl is the initial ap­
proximation for the minimum point. Then, compute recursively for 
k = 1,2, ... , 

sl=-\1f(Xd 

Ak = -sf\1 f(Xk ) 

sfHsk 

(3k = \1 fT (Xk+dH Sk 
sfHsk 

At last X n +l is the exact point of minimum. 

Remarks. l. If the function is not quadratic in n variables, the Hessian 
matrix H is not constant. Even then the above algorithm works nicely, 
provided we replace H by H(Xk). But, now n iterations may not give 
the exact minimum, and in this case perform iterations till 

where E > 0 is the tolerance limit. 

2. There are other ways of considering the tolerance limits, men­
tioned in the introduction part of the steepest descent method. 
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3. The successive points Xk+l are computed as in gradient. The 
direction Sl is same for both methods. The only difference is that 
S2, S3,· .. ,S3 are determined in a different way so that Sl, S2, ... ,Sn 

are conjugate with respect to H. 

Example 4. Use conjugate gradient method to optimize the nonlinear 
function 

initial approximation Xl = (1, 2f. 

Here n = 2, so X3 = X* will give the exact minimum point. 

Iteration 1. Compute Sl, )'1, X 2 , and (31 using relations given in the algorithm 
as 

[ 2X1 - X2] [ 0 ] Sl=-"V!(X1)=- = 
-Xl + 6X2 -11 

(1,2) 

H = [2 -1] 
-1 6 

(0, -11) [ 0 ] 
)'1 = -si"V!(X1 ) = -11 

siHs1 (0, -11) [2 -1] [ 0 ] 
-1 6 -11 

121 1 
11 x 66 6 

[ 
2X1 - X2] 
-x +6x 

1 2 (1,1/6) 

1 
36 
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Iteration 2. Proceed to compute (31, S2, '\2, X 3 , using relations given in the 
algorithm 

S2 = -'\1 f(X2 ) + (31 s1 = - [11/6] + ~ [ ° ] = [-11/6] ° 36 -11 -11/36 

-(-11/6, -11/36) [11;6] 
'\2 = -s§'\1 f (X 2) = _____ -----;::-__ ---"=;--;:::-"'----_::;-

s§ H S2 [] [ /] 

6 
11 

(-11/6,-11/36) 2 -1 -11 6 
-1 6 -11/36 

[ 1] 6 [-11/6] [0] 
1/6 + 11 -11/36 = ° 

Thus, the minimum point is X* = (0, of. The process converges 
in two iterations because f(X) is positive definite quadratic. 

Problem Set 14 

1. Show that a convex function is unimodal. 

2. Find the minimum of the function f(x) = x(x - 2.5), using 
Dichotomous search method in the interval (0,1) to within 5% 
of the intial interval of uncertaint. 

3. Let Lo = b - a be the length of the initial interval of uncertainty 
of f (x). Partition this interval into three equal parts and make 
two experiments such such that Xl - a = X2 - Xl = b - X2. 

Show that after n (even) iterations the interval of uncertainty is 
reduced to 

(2)n/2 
Ln ="3 Lo. 

Suggestion. This is known as Bolzano search technique. Consider 
the interval of uncertainty at worst. 
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4. Find the number of experiments to be conducted to reduce the 
interval of uncertainty to O.OOlLo (Lo: initial interval of uncer­
tainty) 

(a) Bolzano search; 

(b) Dichotomous search with <5 = .0001; 

(c) Fibonacci search; 

( d) Golden search. 

5. Find the minimum of the function 

-1 (1) 0.5 f(x)=0.8-0.7xtan - +--2' 
x l+x 

using the following methods: 

x E [0.2] 

(a) Dichotomous search method to achieve an accuracy of within 
5% of the interval of uncertainty and using a value of <5 = 
0.0001. 

(b) Fibonacci method with n = 6. 

(c) Golden section method with n = 6. 

6. Find the minimum of the function 

on the interval [0, 1], using the following search techniques: 

(a) Fibonacci method with n = 8. 

(b) Golden section method with n = 8. 

7. Prove the relation (14.7), when number of experiments for the 
Fibonacci are fixed at n. 

8. Prove the relation (14.8), when number of experiments for the 
Fibonacci are fixed at n. 

9. Prove Theorem 1. 

10. Minimize the function 

f(Xl, X2) = 2x~ + 2XlX2 + x~ + Xl - X2 

starting from the initial approximate minimum point Xl = (0, Of. 
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11. Using steepest method, find the minimum of the function 

f(X) = x3+x~-2xi+3x~-8, initial approximation Xo = (1, -If 
Is it local or global minimum? How many iterations are required 
to get the exact minimum point. 

12. An electric power of 5 x 104 kW generated at a hydro-electric 
plant is to be transmitted 400 km to a step-down transformer 
station for distribution at 11 kilovolts. The power dissipated 
due the resistance of the conductor is I 2C-1, where I is the line 
current in amperes and C is the conductance in ohms. Based 
on the cost of delivered power, the resistance loss can be ex­
pressed as $0.263I2C- 1. The power transmitted is related to 
the transmission line voltage at the power plant E by the rela­
tion K = V3EI, where E is in kilovolts. The cost of conductors 
is given by $3.9x 106 C and the investment in equipment is is 
needed to to accommodate the voltage E is given by $103 E. 
Find the value of E and C to minimize the cost of transmission 
system. Use conjugate gradient method or Newton's method to 
solve the problem. 



Chapter 15 

Geometric Programming 

Geometric programming is very efficient to determine the optimal so­
lutions of highly nonlinear programming problems. Moreover, this 
concept has a very wide range of applications for dealing with mechan­
ical and industrial engineering processes. Different types of geometric 
programming problems have been considered in this chapter. 

15.1 Introduction 

The subject of geometric programming was initiated by Duffin, Pe­
terson, Zener, and later on, it was enriched by various researchers. 
This technique is in frequent use for solving problems involving posyn­
omials and polynomials. The basic tool, we generally utilize, is the 
arithmetic mean-geometric mean inequality (AM-GM inequality), and 
that is why it is called geometric programming. 

Arithmetic-Geometric mean inequality .. Let us first derive 
the AM-GM inequality inequality: 

1 n 
-"'x·> n~ )-

)=1 

( 
n ) lin 

II Xj 

j=l 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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To derive the above inequality, we first solve the problem 

n 

min f(X) = LXj 

j=l 
n 

S.t. II Xj = c, a constant 
j=l 

Xj ~ 0 

Construct the Lagrange function 

The partial derivatives are given by the relations 

aL n 
ax' = 1 + >. II Xj, i = 1,2, ... , n. 

t j=l 
Hi 

(15.1) 

(15.2) 

The necessary conditions for minimization are the solutions of the 
above equations, i.e., 

>.=~ n . 

I1 Xj 
j=l 
Hi 

Since the above relation is true for any value of i E {I, 2, ... , n}, it 
follows that 

-1 
>'=-n--' k=1,2, ... ,n. 

I1 Xj 
j=l 
Hk 

Comparing both values of >., we have 

which implies that Xi = Xk for all i, k E {I, 2, ... , n}. 

Let these values be denoted by xi = xk = a (constant). From 
(15.1), 
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and hence 
n 

f(XO) = LCI/n = mcl/n. 
j=l 

Thus, we have proved that minf(X) = nc l / n . Note that 

Hence, 

n 

f(x) ~ nc l / n ::::} L Xj ~ nc l / n . 

j=l 

1 n 
- '""' x' > cl / n =::::} ~ J-n, 

J=l 

Remarks. 1. This inequality can be generalized as 

n n 

L)..jXj ~ II x)j, 
j=l j=l 

where )..1 +)..2 + ... +)..n = 1 and )..j ~ 0 for all i = 1,2, ... , n. 
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2. Equality holds in the AM-GM inequality <¢:::=} Xl = x2 = ... = 

3. The AM-GM inequality can also be derived by considering the 
problem 

n 

max g(X) = II Xj 

j=l 
n 

s.t. LXj = c 
j=l 

Xj ~ 0 

Determination of lower bound. From the theory developed 
above, if 

f(X) = h(X) + h(X) + ... + fm(X), Ji(X) ~ 0 

and, in addition 
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then the AM-GM inequality tells 

1 m m 

- L iJ 2: II film =} f(X) 2: mc. 
m 

i=1 i=1 

Here mc is the lower bound, and the minimum can not go below this 
value. 

Example 1. Find the lower bound for f(x) = x-4 + 4x3 + 4x, x> 0 

Let 

In addition, 

Hence, f(X) 2: 3 x 2 = 6 

Example 2. Find the lower bound for f(x) = x4 + 4x-3 , X > 0 

Suppose f = h + h· But f;/2 fi/2 = 2y'X, not a constant. Hence, 
an additional condition is to be satisfied, let 

and 
(15.3) 

For the additional condition, we assume 

(15.4) 

Then AIH + A2F2 = f(X). Now, by the AM-GM inequality, 

From (15.3) and (15.4), we have Al = 3/7, A2 = 4/7. This ensures 
that 

(3) -3/7 (4) -4/7 
f(x) 2:"7 "7 44/ 7 . 
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Example 3. Find the lower bound for f(X) given below 

(a) 5x5/ 2 + x-2/3 + x 1/2 + 2x-2; 

(b) x-2 +x-1 +1+x. 

For part (a), consider f(x) = 5x5/ 2 + x-2/3 + x 1/2 + 2x-2 

But 
f{/4 fi/4 fi/4 f~/4 = 51/421/4x-1/24 

is not a constant. Let AI, A2, A3, A4 be such that 
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(15.5) 

Fix A3 = A4 = 1/4 so that the equations involving AI, A2 will give 
unique value (just for convenience). Then 

To satisfy the condition, let 

Since AliI + A212 + A313 + A4f4 =1= f(x). Rewrite 

Then 

F - h p, _ 12 F - 13 F _ f4 
1 - AI' 2 - A2' 3 - A3' 4 - A4 

- A ->'1 A ->'2f>'lf>'2f>'3f>'44>'34>'4 
-121234 

> A ->'1 A ->'221/425>'1 
- 1 2 

From (15.5) and (15.6), 

(15.6) 

Al + A2 = 1/2, 60A1 - 16A2 = 19 ::::} Al = 27/16, A2 = 11/76. 
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Hence, 

(
27) -27/76 (11) -11/6 f(x) > - - 25/4527/76. 

- 76 76 

For part (b), g(X) = f;/4fi/4fi/4 = x-1/2- 1/4+1/4 = 1/yX,x > O. 
Hence, take 

Here, assume ).3 = 1/3 ~ ).1 +).2 = 2/3, -2).1 - ).2 = -1/3 (infeasi­
ble). Hence, we consider 

Thus, 

( 1) -1/9 (1) -1/3 
g(x) 2:: ).1'\1 ).;-'\2 ~ g(x) 2::"9 :3 

( 1)-1/9 (1)-1/3 
~ f(x) 2:: 1 +"9 :3 

15.2 Unconstrained Posynomial Optimization 

Here, we discuss geometric programming problem in reference to posyn­
omial functions. Let us first define these functions. 

Definition 1. A posynomial is defined as 

m 

f(X) = L fi(X), 
i=l 

where 
f (X) - c'xailxai2 x ain ,; - 1 2 d > 0 E lT1l • i - ~ 1 2 ... n ,. - , , ... , m an Ci ,aij .IN,., J = 
1,2, ... ,no 

For instance, f(X) = (1/2)x~/3x;-1/3 + (4/5)x~/2x!/3 is a posyno­
mial. 

Consider the unconstrained posynomial minimization problem 

m 

minf(X) = L fi(X), f(X) is a posynomial (15.7) 
i=l 
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From Section 13.1, we can show that if it + h + ... + fm = f then 
V Ai > 0 such that 

Applying the above condition to f(X), we get 

f 2 (~~r/Al (~~r/A2 ... Ctr/An 
X aUAl + a21 A2 + ... + amlAm 

Xl 

a12 Al + a22 A2 + ... + am2Am 
XX2 

where L~l Ai = 1, V Ai > o. 

(15.9) 

Select Ai > 0 such that the right side of (15.9) is constant, and 
for this we determine Ai from the solution of simultaneously linear 
equations: 

aUAl + a21A2 + ... + amlAm = 0 

a12Al + a22A2 + ... + am2Am = 0 
(15.10) 

For the time being, we digress, and assume that the system (15.10) 
has a solution, whether it is unique or not will be considered later in 
posynomial optimization. 

Definition 2. The dual of minf(x) = L~l fi(X) is defined as 

max¢(A) = ¢(Al,A2, ... ,Am) = (~:)Al (~:)A2 ... (~:)Am 
(15.11) 

subject to the conditions given in (15.10). 

Note that (15.11) is the right side of (15.9). In view of (15.10) Xi'S 

term do not exist. 
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Theorem 1. If Xo = (xl' X2, ... , x~)T is the global minimum of the 
unconstrained polynomial problem: min f (x) = L~1 Ii (X), then 

j = 1,2,'" ,m 

gives the optimal solution of the dual problem (15.11) and we have 

f(Xo) = ¢(AO), AO = (Af, Xz,· .. , A~f· 

Proof. We shall not prove this result here. Theorem 1 will be 
utilized to solve the problems. For its proof, the reader may consult 
advanced books on the subject, see Bazara et al. 

Example 4. Minimize the following function [m = k+ 1, m = 3, k = 2] 

Here, h = 4xIx23, 12 = 5x13x2, 13 = 7XIX2· Applying the result, 
if f = h + 12 + ... + f m then 3Ai > 0 such that 

We have 

f ~ (4xt23) Al (5xI:X2) A2 (7X;3X2 ) A3 

= (:J Al (:2) A2 (:3) A3 XiAI-3A2+A3X23AI+A2+A3 

= ¢(A), (say). 

The dual constraints are obtained using orthogonality and normality 
conditions as 

2Al - 3A2 + A3 = 0 

- 3Al + A2 + A3 = 0 

Al + A2 + A3 = 1 

Ai ~ 0 
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[i3 
1 1 

~] ~ [~ 
1 1 1] [1 1 1 2~5] ~ -3 1 -5 -1 -2 ~ 0 1 1/5 

1 1 4 4 3 0 1 1 3/4 

[~ 
0 o 1/4] [1 0 0 1/4] [1 0 0 1/4] 
1 1/5 2/5 ~ 0 1 1/5 2/5 ~ 0 1 1/5 2/5 ~ 

1 1 3/4 0 0 4/5 7/20 0 0 1 7/16 

[~ 
0 0 1/4] 
1 0 5/16 

0 1 7/16 

So, 
Al = 1/4, A2 = 5/16, A3 = 7/16; 

f(Xo) = ¢(Ao) = (16)1/4(16)5/I6(16f/16 = 16. 

Again, using the above theorem, we find that xl and x~ as 

!I(XO) = !2(Xo) = h(Xo) = f(X ) 
AD AD AD 0 

I 2 3 

4(XI)2(X~)-3 5(xl)-3(x~) 7(xl)(x~) 
1/4 = 5/16 = 7/16 = 16 

This implies (x1)2(x~)-3 = (xl)-3(x~) = (xI)(x~) = 1. Taking loga­
rithm, we get 

2ln xl - 3ln x~ = In 1 = 0 

- 3lnxi + lnx~ = 0 

In xl + Inx2 = 0 

Assuming that In xl = ZI and In x2 = Z2, we have 

2ZI - 3Z2 = 0 

- 3ZI + Z2 = 0 

ZI + Z2 = 0 
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The solution of the above system is Zl = 0, Z2 = 0, i.e., In xl = ° 
and In x2 = ° or xl = 1 and x2 = 1. Hence the optimal solution is 
Xl = 1,x2 = 1, and min = 16 

Example 5 (Oil Tank Design). Design an oil storage tank having 
volume V m 3 for the minimum cost. The materials for the bottom 
and side cost CI and C2 units per sq.m.,respectively. 

The problem is 

minJ(x) = CILW + 2C2LH + 2C3WH + C4VL- IW- IH- I 

Here m=4 and K,=3. The pre-dual is 

~(A) = (CI~W)Al (2C~~H)A2 (2C~~H)A3 (C4VL-~~-IH-I)A4 

The dual problem is 

max ¢(A) = (~~) Al (2~2 ) A2 (2~3 ) A3 (C;;) A4 

s.t. Al + A2 - A4 = ° 
Al + A3 - A4 = ° 
A2 + A3 - A4 = ° 
Al + A2 + A3 + +A4 = 1 
Ai ~ 0, i = 1,2,3,4 

The solution of this system is Al = 1/5, A2 = 1/5, A3 = 1/5, A4 = 2/5. 
The minimum total cost in transporting the gravel is given as 

J(X*) = ¢(A*) = (5Cd l / 5 (5C2 )1/5 (5C3 )1/5 (5c;V) 2/5 

= (3125CI C2C3ClV2 )1/5 

The corresponding optimum dimensions of the box are obtained using 
the relations 

CILW = ~¢(A*) 

C2LH = ~¢(A*) 

C3HW = ~¢(A*) 
C4 V =~¢(A*) 

LWH 5 
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Solving the above equations, we get 

Example 6. When m > k + 1. Solve the problem 

by geometric programming. 

The orthogonality and normality conditions are given by 

Since the number of dual variables> number of equations, we do not 
get the unique solution. By the row reduction method, we get 

Hence, the corresponding dual function is determined by 

This dual function becomes a problem of maximizing a function of a 
single variable. Usual calculus can be applied now. Taking logarithm, 
we get 

F = In¢(A) 

1- 3A4 1- A4 = 2 [In 10 -In(1 - 3A4)] + -2-[ln4 -In(1- A4)] 

+ A4[ln5 -lnA4] + A + 4(ln 1 -lnA4) 
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The value of A4 maximizing ¢(A) is as primal has a feasible solution 

8F = -31n 10 + 31n(1 - 3A4) + ~ _ ~ In 4 + ~ In(l _ A4) + ~ 
8A4 2 2 2 2 2 2 

+ In 5 - In A4 - 1 - In A4 - 1 
1 3 3 1 

= -2 1n5 - 2 ln2 - 2lnA4 + 2In(1- 3A4) + 2In(1- A4) = 0 

This implies 

This gives A4 = 0.16. Hence, A3 = 0.16, A2 = 0.42, and Al = 0.26. The 
optimal value is 

* (5 )0.26 ( 2 )0.42 ( 5 )0.16 ( 1 )0.16 ¢(A)= - - - - =9.506 
0.26 0.42 0.16 0.16 

Thus, 

h = 5X1 = 1.52, J4 = X21 = 1.52 

The solution here gives xi = 0.304 and x2 = 0.66. 

Example 7 (Gravel Box Design). It is required to transport V m 3 

of gravel from a mine to a manufacturing plant. A rectangular box 
(with open top) of length L, width Wand height H is to be built for 
this purpose. The bottom, sides and ends of the box cost G1 , G2 and 
G3 units per m 2 , respectively. The transportation of box per round 
trip cost G3 units. After all the gravel has been transported, the box is 
to be discarded. Find the minimum total cost involved in transporting 
the gravel and corresponding optimum dimensions of the box. 

The problem is 

Here m=4 and k=3. The pre-dual is 
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The dual problem is 

max ¢(>.) = (~:) Al (2~2) A2 (2~3 ) A3 (C;;) A4 

s.t. >'1 + >'2 - >'4 = 0 

>'1 + >'3 - >'4 = 0 

>'2 + >'3 - >'4 = 0 

>'1 + >'2 + >'3 + +>'4 = 1 
>'i ~ 0, i = 1,2,3,4 

The solution of the system is >'1 = 1/5, >'2 = 1/5, >'3 = 1/5, >'4 = 2/5. 
The minimum total cost in transporting the gravel is given as 

J(X*) = ¢(>'*) = (5C1)1/5 (5C2)1/5 (5C3)1/5 (5C;V) 2/5 

= (3125C1C2C3C1V2)1/5 

The corresponding optimum dimensions of the box are obtained using 
the relations 

C1LW = ~¢(>'*) 
5 

C2LH = ~¢(>'*) 
5 

C3HW = ~¢(>'*) 
5 

C4 V = ~¢(>'*) 
LWH 5 . 

Solving the above equations, we get 
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15.3 Constrained Posynomial Optimization 

Consider the problem 

m 

mm f(X) = L fi(X) (15.12) 
i=l 

p 

s.t. 9k(X) = L fk(X) :s; 1 (15.13) 
k=l 

(15.14) 

where f(X) and each 9k(X) are posynomials. 

The theory developed in earlier section depends upon using AM­
eM inequality so that left hand side becomes f(X) and right hand side 
becomes constant. To use AM-eM inequality for constraint problem 
we modify it. The modified form is such that it can be used even for 
weights whose sum is not unity. Let aI, a2,'" ,am be positive weights 
such that 

Define Ai = ada, i = 1,2, ... , m. Then, clearly Al +A2+" '+Am = 1. 

Let Pi = fi/ai, i = 1,2, ... , m. Then, from AM-eM inequality 

or 

or 

(h + 12 + ... + fmt 2: aa _1 _2 ... ~ = A , say (f) ("1 (f ) 0'2 (f) am 

a1 al2 am 
(15.15) 

From above 
[f(x)]a 2: A (15.16) 

Again, using (15.15) for 91 with positive weights {31,(h·· . ,{3n-m such 
that 

{31 + {32 + ... + {3n-m = {3, 
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we have 

1 ~ [gl(X)],8 ~ /3,8 (fm+1),8 (fm+2),8 ... (~),8 (15.17) 
/31 1 /32 2 /3n-m n-m 

Multiplying respective sides of (15.16) and (15.17), we get 

[f(x)]a ~ aa/3,8 (~:) al (~~) a2 ... (~:) am 

X (fm+1),81 (fm+2),82 ... (~),8n (15.18) 
/31 /32 /3n-m 

In above if we take a = 1, /3 = 1, then we can not apply AM-GM 
inequality, since 

al + a2 + ... + am + /31 + /32 + ... + /3n-m i= l. 
This was the reason to modify AM-GM inequality. But without loss 
of generality we may assume 

a = al + a2 + ... + am = l. 

In this case (15.18) is reduced to 

[f{x)]a ~ aa (~:) al (~:) a2 ... (~:) am 

X (fm+1),81 (fm+2),82 ... (~),8n 
/31 /32 /3n-m 

(15.19) 

where 

al + a2 + ... + am = 1, ai > 0, i = 1,2, ... ,m 
/31 + /32 + ... + /3n-m = /3, /3j > 0, j = 1,2, ... ,n - m. 

Now, we can use the method developed in unconstrained posynomial 
optimization to transform the right side of (15.19) to a constant term. 

Definition 3. The dual of the problem (15.12), (15.13) and (15.14) 
is defined to be the following problem: 

max 4>(A) = (~:) Al (~:) A2 .•. (~:) An (Am+1 + ... + An) 

s.t. aljAl + a2jA2 + ... + anjAn = 0, j = 1,2, ... , n (15.20) 
Al + A2 + ... + Am = 1 (15.21) 

AI, A2, .. . , An > ° (15.22) 
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where ¢(A) = ¢(A) = ¢(AI' A2, ... , An). 
The relations between the solutions of Primal and Dual are character­
ized by our next results: 

Theorem 2. If the primal (15.12), (15.13) and (15.14) has a feasible 
solution and there exists a A > 0 which is dual feasible, i.e., satisfies 
(15.20) to (15.22), then primal has an optimal solution. 

Theorem 3. If 

(i) primal has an optimal solution, and 

(ii) there exists a Xo such that 9i(XO) < 1, i = 1,2 ... ,p for all the 
constraint, 

then 

(a) the corresponding dual problem has an optimal solution; 

(b) the constraint maximum value of dual is same as the constraint 
minimum value of primal, i.e., if X* and A* are the optimal so­
lutions of primal and dual, respectively with 

j(X*) = ¢(A*); 

(c) if A * is the optimal dual solution, every optimal solution X* of 
primal problem satisfies 

C ·XailXai2 .. ·xain = \~-f,(\*) ,; -12m t I 2 n "t 'i"" , "- , , ... , 

and 

i = m + 1, m + 2, ... , n, 

where (3* = Am+! +Am+2+' '+An, Ai > 0, i = m+1, m+2, ... , n. 

Example 8. Solve the following problems 

(a) mm j 2 2 2 2 -3 -2 = xlx2+ Xl x2 (b) min j = X2 + x~ 
s.t. Xlx21 ~ 1/4 s.t. XIX2 ~ 1 

Xl, X2 ~ 0 XI,X2~0 
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For part (a), take 9i(X) :S 1 as 4xlx2"1 :s 1. Now, the dual of (a) 
is obtained from 

(2 2 2)A1 (2 -3 -2)A2 (4 -1)A3 
'Ij;(),) = X;lX2 X\2X2 X~:2 

The dual problem is 

_ (~) A1 (~) A2 (~) A3 A3 
max <p(),) -)'1 ),2 ),3 ),3 

s.t. 2),1 - 3),2 + ),3 = 0 

2),2 - 2),2 - ),3 = 0 

),1 +),2 = 1 

The solution of this system is ),1 = 5/9, ),2 = 4/9, ),3 = 2/9. Thus, the 
solution is unique. Now, by inspection it can be easily verified that 
primal has a feasible solution which satisfies 91(XO) :s 1. In the above 
case, let 

1 1 
Xl = 2' X2 = 4· 

By Theorem 2, the primal has an optimal solution and thus, the dual 
has a unique solution with), > O. 

Using Theorem 3(b), 

j(X*) = <p(),*) = (~8) 5/9 (~) 4/9 (18)2/9 (~) 2/9 = 9~~;~9 
Again, by Theorem 3 ( c), 

2x2x2 = ~ . 9.24/9 = 55/924/9 
1 2 9 55/9 

2X-3X- 2 = ~ . 9.24/9 = 222/955/9 ==? -3 -2 213/ 9 
1 2 9 55/ 9 Xl X 2 = 55/ 9 

-1 2/9 -1 1 
4X1X2 = 2/9 = 1 ==? Xl x2 = 4 

Taking logarithm on both the sides, we get 

4 5 
2lnxl + 2lnx2 = gln5 - gln2 

13 5 
-31n Xl - 2ln X2 = ""9 In 2 - gIn 5 

lnxl -lnx2 = -21n2 
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Solving the system, 

51/ 9 51/ 9 

Xl = 28/ 9 ' X2 = 2-10/ 9 ' 

For part (b), take x 11x21 ::; 1, and 

such that 

2).1 - ).3 = 0 

2).2 - ).3 = 0 

Al +).2 = 1 

This above system ensures that ).1 = ).2 = 1/2, ).3 = 1. Also, 

¢().*) = v2v2 = 2 = J(X*) 

Thus, 

2 1 h = Xl ="2. 2 = 1 

2 1 12 = x2 ="2. 2 = 1 

J -1 -1 1 
3 = Xl X2 = 

Example 9. A circular cylindrical log of radius R and length L is 
available. It is required to cut the stiffest rectangular beam from this 
log. The stiffness of a rectangular beam is proportional to the product 
of its width and the cube of its depth. Find the dimensions of the 
stiffest beam. 

Let Xl and X2 be the width and the depth of the rectangular beam 
that is being cut from a circular cylindrical log. Then, The problem is 

max J = KX1X~ 
s.t. x2 + x2 < 4R2 1 2 -

X1,X2 ::::: 0 
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where I = stiffness of the beam; K = proportionality constant. 

Putting it in the standard form, then the problem is 

min 

s.t. 

where h = 1/1· 
The pre-dual is 

The dual problem is 

max ¢(A) = (~) Al (4~A2) A2 (4R;A3) A3 

s.t. - Al + 2A2 = 0 
- 3AI + 2A3 = 0 

Al = 1 

Ai ~ O,i = 1,2,3 

The solution of this system is Al = 1, A2 = 1/2, A3 = 3/2. The 
minimum value of II is given as 

( 1 ) 1/2 ( 1 ) 3/2 K 
h(X*) = ¢(A*) = K 2R2 6R2 = 12V3R4 

The corresponding dimensions of the stiffest beam are obtained using 
the relations 

Kx1I x23 = 1 . ¢(A*) 

x~ = A2 = ~ 
4R2 A2 + A3 4 
x~ 3 = -4R2 4 

Solving the system, we get 

xi = R, x~ = V3R. 
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Example 10. Solve the following problem 

min 

s.t. 

The pre dual is 

The dual function is 

such that 

1 
-..\1 +..\2 +..\3 - 2..\4 - "2..\5 = 0 

1 
- "2Al + A3 - 2A4 + A5 = 0 

- Al + A2 + A3 = 0 

Al + A2 + A3 = 1 

By writing row reduced echelon, it can be verified that no unique 
solution exists. 

Remark. The degree of difficulty of a geometric programming problem 
is defined as 

Number of Ji in objective functions + number of constraints 

- number of variables - 1. 

If this difference is < 0, no solution, = 0, a unique solution, and 
2: 1, the solution becomes difficult. 
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Problem Set 15 

1. Minimize the following functions 

(a) f = Xl + 4X2 + 2x1 \ Xl,X2 > 0; 

(b) f = 4xIx23 + 5x13x2 + 6XlX2; Xl, X2 > O. 

2. Find the optimal solution of the following constrained posyno­
mial problems 

(a) mm f 4 2 3 -2 2 = XlX2 X 3 + Xl X3 

s.t. 6x- l x- l x- l + 4x-3x-9 < 15 
1 2 3 2 3 -

Xl, X2, X3 2: 0 

(b) min f 5 -1 -1 -1 5 = xl X 2 X3 + X2 X 3 

s.t. 2XlX3 + XlX2 = 4 

Xl, X2, X3 2: 0 

3. Find the dimensions of a rectangle of greatest area that can be 
inscribed in a semicircle of radius R. 

4. The torque T in newton-meters developed by a certain internal 
combustion engine is expressed as 

T = 50.8wo.6 - 4.8w, 

where w is the rotational speed in radians per second. Deter­
mine the maximum power which the engine can deliver and the 
corresponding rotational speed. 

5. The total cost of a rectangular building shell and the land it 
occupies is to be minimized for a building that must have a 
volume of V m 3 . The following costs per square meter apply: 
land, $Cl; roof, $C2; floor, $C3; and walls, $C4. Determine the 
minimum cost and the optimal dimensions of the building. 

6. The director of a aircraft company has to allocate a maximum 
sum for $2.5 x 106 between two development projects, one re­
lated to fighter aircraft and the other related to transport air­
craft. Since the results of either of the projects are helpful to the 
other, it is essential to allocate money to both the projects. The 
expected profit from these projects can be taken as x~/2x§, where 
Xi is the amount of money allocated to the first project more than 
three times the amount allocated to the second project. Find the 
allocation policy for maximizing the expected profit. 
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7. A two-bar truss is to be designed to carry a load of L = 3 X 105 

N. The truss is of equilateral triangular shape with two bars 
being the two sides of the triangle. The load is acting at the 
vertex joining the two bars and makes an angle of 30 deg with 
the horizontal. The bars have a tubular section with a mean 
diameter of d meter and a wall thickness of t meter. The material 
of the bars has a Young's modulus of 2.0 x lOll N /m2 and a yield 
stress of 109 N/m2 . Find the values of d and t for minimum truss 
weight with no yielding or buckling in any of the bars. Assume 
the density of the material as 104kg/m3 . 

8. An open cylindrical vessel is to be constructed to transport V 
cubic units of grain from a warehouse to a factory. The sheet 
metal used for the bottom and side cost $Cl and $C2 per sq units 
respectively. If it costs C3 for each round trip of the box, find 
the dimensions of the vessel for minimizing the transportation 
cost. Assume that the vessel has no salvage upon completion of 
the operation. Solve the problem if only N trips are allowed for 
transporting V cubic units of grain. 

9. In a certain reservoir-pump installation, the first cost of the pipe 
is given by (0.75D + 0.0025D2), where D is the diameter of the 
pipe in m. The cost of the reservoir decreases with an increase in 
the quantity of fluid handled and is given by (30/Q) where Q is 
the rate at which the fluid is handled (cubic meters per second). 
The pumping cost is given by (500Q2 / D5). Find the optimal 
size of the pipe and the amount of fluid handled for minimum 
overall cost. 

10. The total annual cost of an insulated facility is the sum of the 
annual cost of the insulation plus the annual cost of the energy. 
Specifically, cost Xo, $/m2 is given by 

where, x=insulation thickness in millimeters. 

If the unit energy cost increases by k%, what must be the percent 
decrease in unit insulation cost so that the total annual cost 
remains constant ? 

11. The treatment of a water is accomplished by chemical treatment 
and dilution to meet effluent code requirements. The total cost 
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is the sum of the treatment plant, pumping power requirements 
and piping cost. This cost is given by the following equation: 

Xo = ciD + C2Q2/D5 + C3/Q, 

where Xo is in rupees, D in meter and Q in meter3 / sec. Find 
the minimum cost and the corresponding values of D and Q. 

12. The work done by a three-stage compressor is given by the ex­
pression 

where PI is the inlet pressure to stage 1, P2 is the discharge 
pressure from stage 1 and inlet pressure to stage 2, P3 is the 
discharge pressure from stage 3 and r is equal to (k - 1)/k, 
where k is the ratio of specific heats, a constant. 

For specific inlet and exit pressures PI and P4 , find the interme­
diate pressures P2 and P3 that minimize the work done. 

13. Determine the optimal pipe diameter for the minimum installed 
plus operating costs for L meter of pipe conveying a given flow 
rate of water. The installed cost in rupees is ct x D, and the 
lifetime pumping cost in rupees is C2 x 105 / D5. The diameter D 
is in meters. 

14. The profit function for each of the three chemical reactors operat­
ing in parallel with the same feed is given by the three equations 
below. Each reactor is operating with a different catalyst and 
conditions of temperature and pressure. The profit function for 
each reactor has the feed rates Xl, X2 and X3 as the independent 
variable and the parameters in the equations are determined by 
the catalyst and operating conditions: 

PI = 0.2XI - 2(xI/100)2 

P2 = 0.2X2 - 2(X2/100)2 

P3 = 0.2X3 - 2(X3/100)2 

The total profit is given by 

P = PI + P2 + P3 . 

Determine the values of the three feed rates to the reactors so as 
to maximize the profit. Calculate the maximum profit. 



Chapter 16 

Goal Programming 

The goal programming is introduced as an extension of multiple ob­
jective systems with assigned priority levels. The two techniques to 
solve goal programming problems, viz., the partitioning algorithm and 
grouping algorithm are discussed. 

16.1 Introd uction 

The linearly programming problems discussed in preceding chapters 
are characterized by optimization of a single objective function under 
given set of conditions. However, situations arise when we optimize 
more than one objective function under the same set of conditions 
or, even we search for optimal solution of multiple objectives (may be 
conflicting). For example, institutes reduce faculty strength and lower 
down pay scales, simultaneously expect better performance in terms 
of grades. In such situations it may not be possible to find a unique 
solution that optimizes all objectives. Instead we search a compro­
mising solution based on the relative significance of every objective. 
This feature generated the idea of goal programming. Each objective 
function is assigned some priority which facilitates the determination 
of a compromising solution. Remark. There are nonlinear goal pro­
gramming problems also. However, this chapter will be devoted to the 
linear goal programming problems. 

To make the idea well conceivable, let us first formulate a linear 
goal programming problem. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Example 1. Suppose that a company is considering to produce three 
products Xl, X2, X3. The minimum profits for selling one unit of each 
these products are $12, $9 and $15, and the number of persons em­
ployed for producing one unit of each product are 5, 3 and 4, respec­
tively. The investment of the company for one unit of each product 
are $5, $7, $8, respectively. The manufacturing time required for one 
unit of each product are 2, 1 and 2 hours, respectively. The company 
can not afford more than 20 hours daily. 

The goals of the company are 

(i) Achieving a long-term profit of at least $125 million from these 
products; 

(ii) Maintaining the current employment level of 4 thousand employ­
ees; 

(iii) Holding the current investment at most $55 million. 

Probably, it will not be possible to attain all of these goals simul­
taneously; hence, the company assigns penalty weights of 5 for missing 
the profit goal, 2 for going over the employment, 4 for going under the 
same goal, and 3 for exceeding the capital investment. Formulate the 
problem as linear goal programming problem. 

The goal (resource) constraints are 

12xI + 9X2 + 15x3 2: 125 

5XI + 3X2 + 4X3 = 40 

5XI + 7X2 + 8X3 ::; 55 

The real (rigid) constraint is 

(profit goal) 

(employment goal) 

(investment goal) 

Now, we write the standard form of the above linear goal program-
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ming problem as 

mm s = Pl (5s 1 ) + P2(2st + 4s2) + P3(3si) 

s.t. 12xl + 9X2 + 15x3 + s1 - sf = 125 PI 

5Xl + 3X2 + 4X3 + S2 - st = 40 P2 

5Xl + 7X2 + 8X3 + s3 - st = 55 

2Xl + X2 + 2X3 :s: 20 

all var 2: 0, 

459 

where PI, P2 and P3 are the priorities assigned to profit, employment 
and investment goals, respectively such that 

16.2 Standard form of LGPP 

The linear goal programming problem (LGPP) formulation considered 
for n variables, m constraints and t pre-emptive priority levels is de­
fined as 

where 

t m 

mm S = min L Pk L (wiksi + wikst) 
k=l i=l 

n 

S.t. LeqjXj=!q, q=1,2, ... ,£ 
j=l 

n 

LaijXj+si-st=bi, i=1,2, ... ,m, 
j=l 

si = under achievement for goal i, si 2: 0 

(16.1) 

(16.2) 

(16.3) 
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st = over achievement for goal i, st 2': 0 

P k = kth ordinal factor; Pk > > PHI 

wi/" = weight assigned to di at priority Pk 

w"/k = weight assigned to dt at priority Pk 

eqj = coefficient of x j in qth real constraint 

fq = required level for the qth real constraint 

aij = coefficient of Xj in ith goal constraint 

bi = the target level for goal i 

Note that Pk'S are priority factors which offer the significance of any 
goal, i.e., preference of a goal over the others, and do not take numerical 
values in the formulation. Also, two or more goals may have the same 
priority. 

Definition. A goal is said to be satisfied if, in the optimal solution of 
the problem its deviational variables turn to be zero. 

Remark. From the above formulation, we infer that in a LGPP the 
objective function (16.1) attempts to minimize the weighted sum of 
the deviational variables at each priority. 

Elimination Theorem. In the standard LGPP (16.1) to (16.3), if 
the optimal table for subproblem Sk has been found then any non­
basic variable tk, where tk can be a decision variable or a deviational 
variable or slack/surplus variable, having negative relative cost can 
be eliminated, while dealing with subproblems Sk+I,' .. , Sk as it will 
never enter the basis after Skth problem. 

16.3 Partitioning Algorithm 

The algorithm is based on the principle that goals with higher pri­
orities are optimized before lower goals are even considered. With 
this procedure it becomes solving a sequence of linear programming 
problems each using the optimal solution of the previous problems. 

Step 1. Solve the system of real constraints, if any, for basic feasible so­
lution by phase-I method. Delete the objective function row and 
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eliminate columns of the variables which have negative relative 
costs, cf." elimination theorem. 

Step 2. Add the goal constraint with priority PI to the table obtained 
in Step 1, and restore the simplex format by performing row 
operations. While restoring simplex format, if the feasibility is 
disturbed then multiply this row by -1 and interchange the role 
of sl and st to have the identity matrix inside body matrix. 

Step 3. Induce objective function of the first subproblem 8 1 in xo-row, 
and make it amenable to carry out the simplex iterations. Obtain 
the optimal table and observe the optimal solution. 

Two possibilities arise: a unique optimal solution or an alterna­
tive optimal solution. 

If a unique solution is obtained, then algorithm stops and this 
solution is taken as the optimal solution for all goal constraints 
with lower goals also. Calculate si and Sf for these lower order 
goals and find sum of the weighted deviations. 

In case an alternative optimal solution exists for 81 subproblem 
then go to Step 4. 

Step 4. The columns corresponding to nonbasic variables which have -ve 
relative cost are deleted. Also, delete the objective function row, 
and add the goal constraints with priority P2 by sensitivity anal­
ysis as in Step 2. 

Step 5. Now, induce the objective function of the second subproblem 82, 
and make it amenable to simplex iterations. Carry out simplex 
iterations and find the optimal solution. 

If the unique solution exists, then the algorithm stops, and cal­
culate si, sf, i ~ 2 to find the optimal deviation. Otherwise, in 
case of alternative optimal solution, continue as in Steps 4 and 
5 until a unique solution is obtained or all goals are exhausted. 

Example 2. Consider the problem with weight functions at unity 
level for all the deviational variables and priorities mentioned against 
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each goal constraint. 

4Xl + 5X2 = 400 PI 

Xl + 5X2 = 334 P2 

4Xl + 3X2 ::; 250 P3 

2Xl - X2 2': 59 P4 

(a) Write the standard form of the Linear goal programming prob­
lem; 

(b) Find its solution by the partitioning algorithm. 

The standard form is 

min 8 = Pl (sl + st) + P2(s2 + st) + P3 st + P4 s:; 

s.t. 4Xl + 5X2 + sl - st = 400 

Xl + 5X2 + s2 - st = 334 

4Xl + 3X2 + s3 - sf = 250 

2Xl - X2 + s:; - st = 59 

all var 2': O. 

To deal with part (b), we solve the problem sequentially from high­
est priority level. Here Step 1 is not needed as the problem has no real 
constraint. 

Ist subproblem: 

min 8 1 = sl + st 

s.t. 4Xl + 5X2 + sl - st = 400 

xl,X2,st,sl2': 0 

BV Xl X2 1 s+ 
1 Sl Soln 

81 4 5 -2 0 400 

0 0 -1 -1 0 

+--- S 1 4 [IJ -1 1 400 

81 0 0 -1 -1 0 

X2 4/5 1 -1/5 1/5 80. 
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From the above table, it is obvious that the first subproblem has 
an alternative optimal solution, because the relative cost (Zl - cd of 
nonbasic variable Xl is zero, and hence we continue beyond Step 3. 
Note that, while constructing the next table we shall not consider the 
nonbasic variables s1' st as their relative costs are negative. 

lInd subproblem: 

min 82 = s2 + st 
s.t. Xl + 5X2 + s2 - st = 334 

Xl, X2, st, s2 2': o. 

BV Xl 1 X2 s+ 
2 S2 Soln 

82 3 0 0 -2 66 

0 0 -1 -1 0 

X2 4/5 1 0 0 80 

s2 1 5 -1 1 334 

-3 0 -1 1 -66 

+- s+ 2 rn 0 1 -1 66 

82 0 0 -1 -1 0 

X2 0 1 -4/15 4/15 312/5 

Xl 1 0 1/3 -1/3 22 

What we have done to solve the IInd subproblem is as follows. Insert 
the constraint from the optimal table of the 1st subproblem and then 
add the constraint of IInd subproblem. Bring the body matrix into 
simplex format by subtracting five times of the first row from the 
second row. This disturbs feasibility which is stored by interchanging 
the role of s2 and st (no need of dual simplex method). Next, insert 
the objective function into 8 2-row and again note that this row is 
not in simplex format. Bring into simplex format by making relative 
cost to be zero for basic variables by using elementary row operations 
between 8 2-row and appropriate rows of the body matrix. 

The optimal solution is unique. Thus, the algorithm stops, and we 
calculate the value of remaining deviational variables merely by sub­
stitution method in goal constraints with priorities P3 and P4 . Now, 
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P3 constraint gives 

312 
4x22+3x 5 +83 -8t = 250 => 83 -8t = -126/5 => 8t = 125/5, 

P4 constraint ensures 

312 _ + _ 342 
2 x 22 - 5 + 84 - 84 = 50 => 84 = 5' 

Hence, the optimal solution is Xl = 22, X2 = 312/5, and the optimal 
value is 468/5, i.e., total deviation. 

Example 3. Consider the linear goal programming problem 

4XI + 5X2 ~ 800 PI 

4XI + 3X3 ::; 500 P2 

2XI + 5X2 ::; 600 

for which weight factors for all deviational variables have been kept at 
unity level. 

The standard form of the LGPP is 

min S = PI(81 + 8i) + P28t 
subject 

2XI + 5X2 + 8 = 600 

4XI + 5X2 + 81 - st = 800 

4XI + 3X3 + 82 - st = 500 

all var ~ 0 

Since the standard form contains one real constraint, first we find the 
initial BFS of the problem 

mm ro = R 
s.t. 2XI + 5X2 + 8 + R = 600 

XI,X2,8,R~0. 
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BV Xl X2 1 s R Soln 

ro 2 5 1 0 600 

0 0 0 -1 0 

+----R 2 ~ 1 1 600 

1st subproblem 

BV 

81 

X2 

+---- S 1 

81 

X2 

Xl 

ro 0 0 0 -1 0 

X2 2/5 1 1/5 1/5 120 

min 81 = sl + st 

s.t. 4X1 + 5X2 + sl - st = 800 

x1,x2,sl,st::::: 0 

Xl 1 X2 s sl s+ 
1 

2 0 -1 0 -2 

0 0 0 -1 -1 

2/5 1 1/5 0 0 

4 5 0 1 -1 

rn 0 -1 1 -1 

0 0 0 -1 -1 

0 1 2/5 -1/5 1/5 

1 0 -1/2 1/2 -1/2 

IInd subproblem 

min 82 = st 
s.t. 4X1 + 3X2 + s:; - st = 500 

X1,X2,S:;,st::::: 0 

465 

Soln 

600 

0 

120 

800 

200 

0 

80 

100 
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BV Xl X2 8 82 8+ 
2 Soln 

82 0 0 -4/5 -2 0 140 

0 0 0 -1 - 0 

X2 0 1 2/5 0 0 80 

Xl 1 0 -1/2 0 0 100 

82 4 3 0 1 -1 500 

0 0 -4/5 1 -1 -140 

8+ 
2 0 0 4/5 -1 1 140 

Optimal solution Xl = 100, X2 = 80, total deviation = 140. 

In discussion so far on linear goal programming problem, our theme 
was to minimize the sum of weighted deviations. However, a better 
approach for problems having more than one goal at the same prior­
ity level is to minimize the maximum of the weighted deviations for 
such type of goal constraints. This is well explained in the following 
example. 

Example 4. Solve the following linear goal programming problem 

5Xl + 6X2 ~ 75 

Xl + 2X2 :S 20 

2Xl + X2 :S 10 

First, the problem is solved adopting the usual procedure as done 
in Examples 2 and 3. 

The 1st subproblem is 

mm 8t +81 
s.t. 5Xl + 6X2 + 81 - 8t = 75 

all var ~ 0 
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The optimal table of the 1st subproblem is the next Table, and alter­
native solution exists. 

sf Soln 

o 0 -1 -1 0 

X2 5/6 1 1/6 -1/6 25/2 

The second subproblem is 

min 

s.t. 

st + st 
Xl + 2X2 + s2" - st = 20 

2XI + X2 + s3 - st = 10 
all var ~ 0 

Add both the constraints with the same priority PI simultaneously. 
Restore simplex format. Note that the optimal solution is 

Xl = 0, X2 = 25/2; st + st = 25/2. 

Let us solve the same problem by different approach which gives 
better solution. The procedure is same up to the optimal table of 1st 
subproblem. The objective function of the second subproblem is to 
minimize the max{ st, st}. Thus, 

min 

s.t. 

a - max{s+ s+} - 2' 3 

Xl + 2X2 + s2" - st = 20 

2XI + X2 + s3 - st = 10 
all var ~ 0 

The above is a nonlinear programming problem (NLPP). Converting 
this into linear program, the resulting LPP is 

mm a 

s.t. Xl + 2X2 + s2" - st = 20 

2XI + X2 + s3 - st = 10 

st - a + S4 = 0 

st - a + S5 = 0 

all var > 0 
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The above LPP is now added to the optimal table of 1st sub­
problem, and the next table is obtained by adjusting the column 
for X2 to make the body matrix in simplex format. The variables 
X2, 8:;',83",84,85 contribute to give identity submatrix in next table. 

BV Xl X2 a 8 2 8+ 
2 8 3 8+ 

3 84 85 Soln 

0 0 -1 0 0 0 0 0 0 0 

X2 5/6 1 0 0 0 0 0 0 0 25/2 

8 2 -2/3 0 0 1 -1 0 0 0 0 -5 

8 3 7/6 0 0 0 0 1 -1 0 0 -5/2 

84 0 0 -1 0 1 0 0 1 0 0 

85 0 0 -1 0 0 0 1 0 1 0 

Apply dual simplex method to have the optimal solution. For the sake 
of space, we write the outcomes of various iterations. 

8:;' leaves and 8t enters, giving the solution 

(X2' st, 83",84,85) = (25/2,5, -5/2, -5,0) 

84 leaves and Xl enters, giving the solution 

(X2, st, 83", Xl, 85) = (25/4,0, -45/4, 15/2,0) 

83" leaves and 8t enters, giving the solution 

(X2,st,8t,xI,85) = (25/4,0,45/4,15/2,-45/4) 

85 leaves and a enters, giving the solution 

(X2' st, 8t, Xl, a) = (25/22,45/4,45/4,30/11,45/4) 

Thus, the optimal solution is Xl = 30/11, X2 = 25/22 with total 
deviation = 45/4. This is a remarkable achievement over the previous 
estimate 25/2. 

16.4 Grouping Algorithm 

The algorithm considers all goal and real constraints together as a one 
group with the objective function being the sum of all weighted devi­
ations and solves a sequence of linear programming subproblems each 
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using the optimal solution of the previous subproblems. The simplex 
method and sensitivity analysis are applied to obtain the solution of 
the subproblems. This algorithm we call grouping algorithm as all 
goal and real constraints are considered as a group. The grouping al­
gorithm solves the LGPP in two situations. In the first case, the goals 
are already assigned priorities by the decision maker and the algo­
rithm finds the optimal solution of the LGPP. In the second case, the 
goal constraints have not been assigned any priorities and the decision 
maker desires to know the priorities to be assigned to the goals so that 
the maximum number of goals is satisfied. We explain the algorithm 
for the two situations. 

Algorithm for Goal Constraints with Pre-emptive Priori­
ties 

In solving LGPP (16.1)-(16.3) having goal constraints with pre­
emptive priorities, the algorithm solves a sequence of linear program­
ming subproblems 1,2, ... ,p, where p is the last subproblem, each using 
the optimal solution of the previous subproblems. The details of the 
algorithm are: 

Step 1. All real constraints and goal constraints with the introduction of 
deviational variables are considered a group with the objective 
function being the sum of all weighted deviations in the subprob­
lem 1 expressed as the following LGPP: 

min 

s.t. 

m 

81 = ~)si +st) 
i=l 

n 

L eqjxj = jq, q = 1,2, ... ,.e 
j=l 

n 

L aijXj + si - st = bi , i = 1,2, ... , m 
j=l 

(16.4) 

(16.5) 

(16.6) 

xj,bi,si,st ~ O,j = 1,2, ... ,n;i = 1,2, ... ,m 

The subproblem 1 is now solved by the simplex method and its 
optimal solution is obtained. For convenience of representation, 
the optimal table of the subproblem 1 is denoted as Table l. 
Take h = O. 

Step 2. Examine the optimal simplex table. If either the value of objec­
tive function in the optimal solution is zero or the relative cost 
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of at least one nonbasic variable is zero, go to Step 5. 

Step 3. (a) Delete the goal constraints having the priority t-h and solve 
the resulting subproblem h+2 given as follows: 

min 

s.t. 

m 

8h+2 = 2)si + si) 
i=1 

n 

L eqjxj = jq, q = 1,2, ... , £ 
j=1 

n 

(16.7) 

(16.8) 

L aijXj + si - sf = bi , i = 1,2, ... , m - kt~h(16.9) 
j=1 

n 

L aijXj + si - sf + UiPi = bi , i = m - kt~h + 1, 
j=1 

m - kt~h + 2, ... , m (16.10) 

xj,bi,Si,sf,Pi 2: O,j = 1,2, ... ,n;i = 1,2, ... ,m 

Here we assume kt~h goal constraints have the lowest priority 
t - h. The Ui has a value of 1 or -1 depending upon the deviation 
variable is si or sf corresponding to the equation (16.10). 

Apply sensitivity analysis to find out the effects of deletion of the 
kt~h goal constraints on the optimal solution of the subproblem 
8M1 and thereby obtain the solution of the subproblem 8h+2' 

(b) The columns below nonbasic variables having the relative 
costs negative as well as the rows and columns corresponding to 
Pi, i = m - kt + 1, m - kt + 2, ... , m are deleted from the simplex 
tables constructed later as they will never enter into the basis 
afterwords. 

Step 4. If h = t - 1 go to Step 5, otherwise take h = h + 1 and go to 
Step 2. 

Step 5. This very solution is the optimal solution of the problem with 
respect to their given priorities. 

Step 6. Stop. 



16.4. GROUPING ALGORITHM 471 

Remarks. 

1. Here we would like to obtain the optimal solution of the LGPP 
(16.1)-(16.3). We first consider subproblem 1 and solve it using the 
simplex method with the assumption that all goal constraints have the 
same priorities. We get the optimal value of the objective function 81 
as given by 

(16.11) 

where '*1' denotes the optimal value of the variable in the subproblem 
1. 

We are in fact required to minimize the objective function 8 given 
by the LGPP (16.1) along with the conditions (16.2) and (16.3) as well 
as the conditions of priorities assigned to the goal constraints as 

Pk » Pk +1, k = 1,2, ... , t. (16.12) 

As we do not consider this condition (16.12) while we obtain the 
solution of the subproblem 81 . So, the 8r1 may not be the optimal 
solution of the given LGPP (16.1)-(16.3). Now we take into the con­
sideration of the conditions (16.12). The deletion of the constraints 
from the subproblem 1, in general, leads to the decrease of the objec­
tive function 8 1 . This fact might be more clear later in the text. As 
our goal is to minimize the objective function 8 1 , we undertake the 
exercise of deletion of constraints in the algorithm. Before deleting 
the goal constraints, we should decide which set of goal constraints 
to be removed first. As the goal constraints having the lowest prior­
ity t are the least important goals for the decision maker, we delete 
them first. Let the k goal constraints have the lowest priority t and we 
delete them first. The resulting subproblem 2 is given by the equations 
(16.7)-(16.10) considering h = o. 

We can solve the subproblem 2 using the simplex method. How­
ever, in this situation we have to solve the problem as a fresh. In fact, 
we already have the optimal table as obtained by solving the subprob­
lem 1. Therefore, we can directly apply sensitivity analysis with a 
view to find out the effects of deletion of the k goal constraints on the 
optimal solution of the subproblem 8 1 and thereby obtain the solution 
of the subproblem 8 2 . Now the optimal value of the objection function 
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52 we get 

(16.13) 

From the equations (16.11) and (16.13), we get 

(16.14) 

Next, we delete the goal constraints having the next higher priority 
(t - 1) and so on till we reach the highest priority 1 or till we get 
the lowest value of the objective function as zero. Let this condition 
reaches when we solve the subproblem p. We get the following relation 

(16.15) 

where p:S t. 

Thus, after solving the subproblem p we get the optimal solution 
of the LGPP (16.1)-(16.3) as follows: 

- -(*p). 1 2 
si = si ,~=" ... , m 
+ - +(*p) .-

Si - Si ,~ - 1,2, ... ,m 
rn 

5 = 5? = 'L)s;-(*p) + si(*p)) 
i=l 

(16.16) 

(16.17) 

(16.18) 

2. In solving the subproblem j, j=I,2, ... ,p, we may get the relative 
cost of a nonbasic variable, say, d, in an optimal table of subproblem, 
say, h equals to zero. It means that the nonbasic variable d can enter 
into the basis and we get an alternate optimal solution. In this situa­
tion, if we add the goal constraints that we have deleted, i.e., the goal 
constraints in the subproblem (h-l), we may get 

(16.19) 

If we get 5~~--/ = 5hh then the optimal solution of the subproblem (h­
I) is the optimal solution of the LGPP (16.1)-(16.3). In case we have 
S~~ll > Shh, still the solution of the subproblem (h-l) would be the 
solution of the LGPP (16.1)-(16.3) because the increase in the value 
of the objective function S~~ll compared to S~~ll is entirely due to 
the fact that some deviational variables corresponding to the the goal 
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constraints in the subproblem (h-1) have entered into the objective 
function S~~ll but they have not effected the deviational variables 
that were already present in subproblem h. Thus, the optimal table 
of the preceding subproblem h is the best suited optimal table with 
respect to their priorities and the solution we obtained is the optimal 
solution of the given LGPP. 

3. The deletion of a goal constraint, say, kth goal constraint given 
by 

n 

LakjXj + sk - st = bk 
j=l 

is accomplished using the following procedure outlined here: 

(16.20) 

(i) A new variable Pk is added or subtracted depending upon the 
deviation variable is sk or st to the equation (16.20) so that the 
variable Pk enters the basis and the resulting equation is given as 

n 

L akjXj + sk - st + UPk = bk 
j=l 

(16.21) 

where U has a value of 1 or -1 depending upon the deviation variable 
is sk or st corresponding to the equation (16.42). 

(ii) A new column below this new variable Pk is introduced in the 
optimal simplex table. 

Entry below the Pk in the So row: Zk - Ck = C~B-l Ak - Ck. 
Column corresponding to the Pk, a k = B-1 A k. 

where CB = Costs of basic variables, B = Basis matrix, Ak 
Basis vector for the variable Pk, Ck= Cost of the variable Pk, and 
ak=Column corresponding to the Pk. 

If the relative cost Zk - Ck is positive, the optimal criteria is dis­
turbed and the variable Pk enters into the basis. It is be observed that 
the deletion of a constraint amounts to the addition of a variable. 

4. If a deviational variable, say, SkI or st1 corresponding to a goal 
constraint, say kth goal constraint, to be deleted is in the basis of the 
optimal table of the subproblem, say, Sp then a new column below the 
new variable Pk in the simplex table is obtained as follows: 

The column below Pk, a k is given by 

(16.22) 
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where 

Here bik = 0, i = 1,2, ... ,k - 1, k + 1, ... ,l + m; bkk = 1 as skI or stl 
is in the basis. 

Here ai = 0, i = 1,2, ... ,k - 1, k + 1, ... ,l + m; ak = 1 as the variable 
Pk is only in the kthe goal constraint. 

Substituting these relations in the equation (16.22) and solving, we 
get 

Here 1 is at kth place. 

o 
o 

If-

o 

(16.23) 
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The entry below Pk in the So row is given by 

(16.24) 

where 

CB = (Cl' C2, ... , Ck, ... , c(l + m))T 

Here Ck = 1 as skI or stl is a deviational variable and Ck = ° 
Substituting the above relations in the expression (16.24) and solv­

ing it we get 

(16.25) 

5. In the case of deletion of a kth goal constraint if the value of 
corresponding deviational variable sk or st in the optimal table is the 
same as the value of the objective function Sh in a subproblem h, then 
the deletion of this kth goal constraint results in the objective function 
Sh to be equal to zero. In this situation, there is no need of deletion 
of the kth goal constraint and the solution already obtained is to be 
considered as the optimal solution of the given LGPP (16.1)-(16.3). 

6. In the case of deletion of a kth goal constraint if a k vector is such 
that B-1 remains unchanged, then the value of the basic vector XB (in 
this vector we do not consider Pk now as kth goal constraint has already 
been deleted) given by B-lb (where b = ([fq , q = 1,2, ... lJ, rbi, i = 
1,2, ... mlf) also remains unchanged. However, the value of objective 
function given by CI;XB will change as the CB is different now. 

7. The value of the objective function Sh in a subproblem h is 
equal to zero if all the elements of C B are zero or all the elements of 
XB are zero. In other words, if costs of all the deviational variables or 
the values of all basic variables are zero, the value of objective function 
is equal to zero. Thus, in the case when we delete kth goal constraint 
if CB = (0,0,0,0, O)T, then the objective function Sh will be equal to 
C~XB=O. In this condition, we should not perform deletion of the 
kth goal constraint and consider the solution found in the subproblem 
(h-1) as the optimal solution of the given LGPP (16.1)-(16.3). 

8. In the standard LGPP (16.1)-(16.3), if the optimal table for 
subproblem Sk has been found then any nonbasic variable tk, where 
tk can be a decision variable or a deviational variable or slack/surplus 
variable, if any having negative relative cost can be eliminated, while 
dealing with subproblems Sk+1, ... ,St as it will never enter the basis 
after Skth problem. 
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We solve the following problem using the grouping algorithm. 

Example 5. 

Xl - X2 - X3 ::;2 PI 

Xl + X2 + 2X3 ::;3 P2 

4Xl - X2 + 6X3 =9 P3 

3Xl - 2X2 - 2X3 2':6 P 4 

-2Xl - X2 + X3 2':2 P 5 

Xl, X2, X3 2':0 

There are five goal constraints with priorities from PI to P5 . Assuming 
weight functions of all deviational variables to be at unity level, we 
formulate the above problem as the following LGPP: 

min S = Plst + P2st + P3 (s3 + st) + P4 S4 + P5 S5 
s.t. 

- + 2 Xl - X2 - x3 + sl - sl = 

Xl + X2 + 2X3 + s;- - st = 3 

4Xl - X2 + 6X3 + s3 - st = 9 

3Xl - 2X2 - 2X3 + s4 - st = 6 

-2Xl - X2 + X3 + s5 - sci = 2 

Xj,Si,st 2': O,j = 1,2,3;i = 1,2, ... ,5. 

Step 1. All five goal constraints after introducing deviational variables 
are considered a group with the objective function being the sum 
of all weighted deviations in the subproblem 1 mathematically 
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represented as 

min Sl = st + st + s3 + st + s4 + sS­

s.t. 

Xl - X2 - X3 + s;- - 8t = 2 

Xl + X2 + 2X3 + s2 - 8t = 3 

4X1 - X2 + 6X3 + s3 - st = 9 

3X1 - 2X2 - 2X3 + 84 - 8t = 6 

-2X1 - X2 + X3 + sS- - st = 2 

Xj, si, st ~ 0, j = 1,2,3; i = 1,2, ... ,5. 

477 

Now, the subproblem 1 is solved by the simplex method. The 
simplex table is as follows: 

Table 1 

BV Xl X2 X3 sl s2 s3 s4 s5 s+ 
1 

s+ 2 s+ 3 s+ 4 s+ 5 Soln 

So 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 

81 1 -1 -1 1 0 0 0 0 -1 0 0 0 0 2 

s2 1 1 2 0 1 0 0 0 0 -1 0 0 0 3 

s3 4 -1 6 0 0 1 0 0 0 0 -1 0 0 9 

s4 3 -2 -2 0 0 0 1 0 0 0 0 -1 0 6 

s5 -2 -1 1 0 0 0 0 1 0 0 0 0 -1 2 

So 5 -4 51 0 0 0 0 0 -1 -1 -2 -1 -1 -17 

sl 1 -1 -1 1 0 0 0 0 -1 0 0 0 0 2 

f-- 82 1 1 2 0 1 0 0 0 0 -1 0 0 0 3 

83 4 -1 6 0 0 1 0 0 0 0 -1 0 0 9 

s4 3 -2 -2 0 0 0 1 0 0 0 0 -1 0 6 

s5 -2 -1 1 0 0 0 0 1 0 0 0 0 -1 2 
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Table 1 ( contd.) 

BV Xl X2 X3 81 82 83 84 85 8+ 
1 

8+ 2 8+ 
3 

8+ 
4 

8+ 
5 Soln 

80 5 ~ -13 0 0 -5 0 tl 0 -1 3 -2 -1 -1 19 
"2 --r 2 "2 2 

81 
3 -1 0 1 1 0 0 0 -1 -1 0 0 0 7 
"2 2 "2 2 "2 

X3 
1 1 1 0 1 0 0 0 0 -1 0 0 0 3 
"2 "2 "2 2 "2 

f- 83 1 -4 0 0 -3 1 0 0 0 3 -1 0 0 0 

84 4 -1 0 0 1 0 1 0 0 -1 0 -1 0 9 

85" 
-5 -3 0 0 -1 0 0 -1 0 1 0 0 -1 1 
2 2 2 "2 "2 

80 0 7 0 0 5~ 
-5 0 0 -1 -6 1 -1 -1 19 

"2 2 "2 2 
81 0 11 0 1 5 -3 0 0 -1 -5 3 0 0 7 

2 2 "2 "2 
X3 0 5 1 0 2 -1 0 0 0 -2 1 0 0 3 

"2 2 "2 "2 
Xl 1 -4 0 0 -3 1 0 0 0 3 -1 0 0 0 

f- 84 0 15 0 0 13 -4 1 0 0 -13 4 -1 0 9 

85" 0 -23 0 0 -8 5 0 1 0 8 -5 0 -1 1 --r "2 2 "2 
80 0 -59 0 0 0 -25 -5 0 -1 -1 -27 -8 -1 157 

T --zo IT --zo IT ""20 
81 0 -7 0 1 0 1 -5 0 -1 0 -1 5 0 1 

"20- 20 IT "20- I3 20 
X3 0 5 1 0 0 3 -2 0 0 0 -3 2 0 3 

20 20 IT "20- I3 20 
Xl 1 -7 0 0 0 1 3 0 0 0 -1 -3 0 27 

IT I3 I3 IT IT I3 
82 0 15 0 0 1 -4 1 0 0 -1 4 -1 0 9 

I3 IT I3 I3 IT I3 
85 0 -59 0 0 0 1 8 1 0 0 -1 -8 -1 157 

20- 20 I3 "20- IT ""20 

Step 2. The Table 1 is examined for the optimal solution. The value 
of the objective function 81 as well as the relative costs of all 
nonbasic variables are nonzero. 

Step 3. The last 5th goal constraint, which has the lowest priority P5, 

is deleted using the procedure outlined earlier, i.e., Since the 
nonzero deviation variable is 85", a new variable P5 is added to 
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this equation as given below. 

The resulting subproblem 2 is 

min 52 = sf + st + S3 + st + s4 + Ss 
s.t. 

Xl - X2 - X3 + sl - st = 2 

Xl + X2 + 2X3 + S2 - st = 3 

4Xl - X2 + 6X3 + s3 - st = 9 

3Xl - 2X2 - 2X3 + s4 - st = 6 

-2Xl - X2 + X3 + Ss - st + P5 = 2 

Xj,Si,st,P5 2 O,j = 1,2,3;i = 1,2, ... ,5. 
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In order to solve the subproblem 2, we apply the sensitivity anal­
ysis on the optimal table of the subproblem 1. A new column 
below this new variable P5 in the optimal table of subproblem 1 
is obtained as follows: 

Column below P5, a 5 = B-1 A5 as 

1 0 1/26 -5/13 0 0 0 

o 0 3/26 -2/13 0 0 0 

o 0 1/13 3/13 0 0 0 

o 1 -4/13 1/13 0 0 0 

o 0 1/26 8/13 1 1 1 

Entry below P5 in the 50 row: 

Z5 - C5 = c~B-l A5 - C5 = (0,0,0,0,1)(0,0,0,0, If - 0 = 1 

Insert variable P5, Z5 - C5 and a5 in Table 2. As the relative 
cost Z5 - C5 is positive, the optimal criteria is disturbed and the 
variable P5 will enter into the the basis as shown in Table 2. 
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Table 2 

BV Xl X2 X3 8 1 8 2 83 84 85 8+ 8+ 8+ 8+ + P5 1 Soln 1 2 3 4 85 

8 2 0 -59 0 0 0 -25 -5 0 -1 -1 -27 -8 -1 1 157 
~ ~ TI ~ TI 2D 

8 1 0 -7 0 1 0 1 -5 0 -1 0 -1 5 0 0 1 
"20 20 TI "20 I3 20 

X3 0 5 1 0 0 3 -2 0 0 0 -3 2 0 0 3 
20 20 TI "20 I3 20 

Xl 1 -7 0 0 0 1 3 0 0 0 -1 -3 0 0 27 
TI I3 I3 TI TI I3 

8 2 0 15 0 0 1 -4 1 0 0 -1 4 -1 0 0 9 
I3 TI I3 I3 TI I3 

<- 85 0 -59 0 0 0 1 8 1 0 0 -1 -8 -1 1 157 
~ 20 I3 "20 TI 2D 

82 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 

8 1 0 -7 0 1 0 1 -5 0 -1 0 -1 5 0 0 1 
"20 20 TI "20 I3 20 

x3 0 5 1 0 0 3 -2 0 0 0 -3 2 0 0 3 
20 20 TI "20 I3 20 

Xl 1 -7 0 0 0 1 3 0 0 0 -1 -3 0 0 27 
TI I3 I3 TI TI I3 

82 0 15 0 0 1 -4 1 0 0 -1 4 -1 0 0 9 
I3 TI I3 I3 TI I3 

P5 0 -59 0 0 0 1 8 1 0 0 -1 -8 -1 1 157 
20 20 13 "20 TI 2D 

Step 4. Examining the above simplex table, we get the value of objective 
function 8 2 equals to zero. It is to be observed that the relative 
costs of nonbasic variables X2 and 8t are zero. Thus, the pre­
ceding optimal table shown in Table 1 is the optimal solution of 
the case problem undertaken here. 

Step 7. This very solution is the optimal solution of the case problem 
with respect to their given priorities. 

Hence, the optimal solution is Xl = 27/13, X2 = 0, X3 = 3/26. 

The number of iterations required by the algorithm to find the 
optimal solution of the given problem is 3. The same problem has 
also been solved by LINDO software using lexicographic minimization 
method. The lexicographic minimization is defined as a sequential 
minimization of each priority whilst maintaining the minimum values 
reached by all higher priority level minimizations. It is found that the 
lexicographic minimization method requires 5 iterations to find the 
optimal solution. 
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Remarks. 

1. We observe that the value of the deviation variable 8 5 =157/26 
in the optimal table as shown in Table 1 is the same as the value of 
the objective function So=157/26. Applying Remarks 5 of Section 3, 
the deletion of the constraint (5) results in So to be equal to zero and 
thus the solution already obtained in Table 1 is the optimal solution 
of the given case problem. In fact, there is no need of deletion of the 
5th constraint. 

2. It is to be noted that as the vector a 5 = (0,0,0,0, 1)T, the 
basis variable 85 will go out of the basis and B-1 remains unchanged. 
And as a result, the value of the basic vector XB (i.e., B-1b where, 
b = (2,3,9,6, 2f) also remains same. With regard to the objective 
function, since CB = (0,0,0,0, Of, the objective function So will be 
equal to C~XB=O. Applying Remarks 6 of Section 3, the solution 
already obtained in Table 1 is the optimal solution of the given case 
problem. Thus, we should find out the value of CB before we finally 
delete the 5th constraint. 

3. It is to be observed that in the simplex table the a j - entries for 
the deviational, slack or surplus variables 8 j shall be negative of the 
a j + entries for 8j. 

4. The columns below nonbasic variables having the relative costs 
negative as well as the row and column corresponding to P5 may be 
deleted from the simplex tables constructed later as they will never 
enter into the basis afterwards. 

5. In the case the algorithm finds the optimal solution in Step 
2 when h = 0, then it, in general, requires less number of iterations 
than the number of iterations required using the lexicographic min­
imization. As the size of the case problems increases the algorithm 
performs better in the case when more than fifty percent of the goals 
in the order of decreasing priorities are satisfied. In other words, the 
algorithm works better if a large number of goals is satisfied. 

6. It is worth mentioning that the addition of a goal constraint as 
in the lexicographic minimization approach, first disturbs the simplex 
format and when the simplex format is restored, then the feasibility 
gets disturbed. The feasibility is restored by the dual simplex method 
in order to find the new optimal solution. However, such problems do 
not arise in the grouping algorithm where we delete a goal constraint 
from an LGPP. 
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Algorithm for Goal Constraints with Emptive Priority 
Factors 

We take the LGPP wherein goal constraints have not been assigned 
any priorities, i.e., goal constraints with emptive priorities. Here the 
decision maker desires to know the priorities to be assigned to the 
goals so that the maximum number of goals is satisfied. Let N g be the 
number of goal constraints that is satisfied. Then LGPP formulation 
considered for n variables, l real constraints, m goal constraints and t 
emptive priority levels corresponding to the goal constraints is given 
as 

max N g 

s.t. 
t m 

S = min L Pk L (wiksi + wlkst) 
k=1 i=1 

n 

L eqjxj = jq, q = 1,2, ... , P 
j=1 

n 

L aijXj + si - st = bi , i = 1,2, ... , m 
j=1 

xj,bi,si,st ~ O,j = 1,2, ... ,n;i = 1,2, ... ,m 

(16.26) 

(16.27) 

(16.28) 

(16.29) 

To solve LGPP (16.26)-(16.29), the algorithm solves a sequence 
of linear programming subproblems 1,2, ... ,p, where p is the last sub­
problem, each using the optimal solution of the previous subproblems. 
The steps involved in the algorithm are: 

Step 1. All real constraints and goal constraints after introducing devi­
ational variables are considered a group with the objective func­
tion being the sum of all weighted deviations in the subproblem 
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1 expressed as follows: 

m 

min 8 1 = 2)si + st) 

s.t. 
i=l 

n 

L eqjxj = jq, q = 1,2, ... ,f 
j=1 

n 

L aijXj + si - st = bi, i = 1,2, ... ,m 
j=l 
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(16.30) 

(16.31) 

(16.32) 

xj,bi,si,st ~ O,j = 1,2, ... ,n;i = 1,2, ... ,m 

Here, it is assumed that all deviational variables are having unit 
weight functions. We are indeed required to maximize the num­
ber of goal constraints, i.e., Ng , to solve LGPP (16.26)-(16.29). 
We do this exercise by first solving the subproblem 1 by the sim­
plex method and then we obtain the corresponding maximum 
number of goal constraints N;11 that are satisfied. Take h = O. 

Step 2. The simplex table is examined for the optimal solution. If the 
objective function 8h+1 has zero value, go to Step 9. 

Step 3. The optimal simplex table h + 1 is marked for three observations 
for all m goal constraints: 

(i) all deviational variables, slack and surplus variables are at 
zero level; 

(ii) the slack or surplus variables are zero but the deviational 
variables are nonzero; 

(iii) the deviational variables are zero but the slack or surplus 
variables are nonzero. 

For all the goal constraints satisfying observation (i) or (iii), go 
to Step 8. 

Step 4. Delete all the goal constraints in the subproblem (h+1) satisfying 
the observation (ii) and assign them the next higher priority 
(t - h). Let kt - h goal constraints satisfy the observation (ii). 
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The resulting subproblem (h+2) is given as follows: 

m 

min Sh+2 = 2) si + st) (16.33) 

s.t. 
i=l 

n 

L eqjXj = jq, q = 1,2, ... ,£ 
j=1 

n 

(16.34) 

L aijXj + si - st = bi , i = 1,2, ... , m - kt-h(16.35) 
j=1 

n 

L aijXj + si - st + UiPi = bi , i = m - kt-h + 1, 
j=1 

m - kt-h + 2, ... ,m (16.36) 

Xj, bi , si, st, Pi 2: 0, j = 1,2, ... ,n; i = 1,2, ... ,m 

here, the l1'i has a value of 1 or -1 depending upon the deviation 
variable is si or st corresponding to the equation (16.36). 

Apply sensitivity analysis to find out the effects of deletion of the 
kt - h goal constraints on the optimal solution of the subproblem 
(h+1) and thereby obtain the solution of the subproblem (h+2). 

Step 5. If the deletion of all goal constraints from the set may cause the 
objective function Sh+2 to be zero and (Zj - Cj ) entries below 
nonbasics are zero, then go to Step 7. In the deletion of the goal 
constraints, the next possibility may result in the objective func­
tion SM2 to be zero but (Zj - Cj ) entries below some nonbasic 
variables are nonzero, then go to Step 8. Furthermore, it is also 
possible that after deletion of the goal constraints, the objective 
function Sh+2 is nonzero, then go to Step 6. 

Step 6. The optimal simplex table h + 2 is marked for three observations 
for all m - kt-h goal constraints: 

(i) all deviational variables, slack and surplus variables are at 
zero level; 

(ii) the slack or surplus variables are zero but the deviational 
variables are nonzero; 

(iii) the deviational variables are zero but the slack or surplus 
variables are nonzero. 
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For all the goal constraints satisfying observation (i) or (iii), go 
to Step 8. For all the goal constraints satisfying observation (ii), 
h = h + 1 and go to Step 4. 

Step 7. The preceding table h + 1 gives the optimal solution of the given 
LGPP (16.26)-(16.29). Go to Step 9. 

Step 8. This very table gives the optimal solution and the remaining con­
straints may be assigned priorities at the disposal of the decision 
maker. Go to Step 10. 

Step 9. The optimal solution is obtained and all the goal constraints are 
assigned their respective priorities so that the maximum number 
of goals are satisfied. 

Step 10. Stop. 

Remarks. 

1. If a kth goal constraints satisfies the observation (i) or (iii), 
then the deletion of it may have no effect on the objective function 
since deviational variables corresponding to the kth goal constraint are 
zero. Therefore, the kth goal constraint can be assigned any priorities. 
In other words, the observation (i) or (iii) is a nonbinding on the 
optimal solution. So, we write for all the goal constraints satisfying 
observations (i) or (iii), go to Step 8. 

2. If a kth goal constraint satisfies the observation (ii), then the 
deletion of it may have impact on the objective function since devia­
tional variables corresponding to the kth goal constraint are nonzero. 
Therefore, the kth goal constraint can not be assigned any priorities. 
In other words, the observation (ii) is a binding on the optimal solu­
tion. 

3. If the optimal value of objective function S;l equals to zero, it 
means that all m goal constraints may be kept at same priority levels. 

4. In order to find the optimal solution of the the LGPP (16.26)­
(16.29) the algorithm solves a sequence of linear programming sub­
problems 1,2, ... ,p, where p is the last subproblem, each using the 
optimal solution of the previous subproblems. In fact, we are inter­
ested to maximize the number of goal constraints N 9 that is satisfied 
and thereby assign priorities to the goal constraints. In other words, 
we would like to have the value of objective function zero by deleting 
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the minimum number of goal constraints. We first solve the subprob­
lem 1 and obtain its optimal solution using the simplex method. The 
optimal value of the objective function Sl obtained is given by 

(16.37) 

Let N;11 be the maximum number of goal constraints satisfied while 
we solve subproblem 1. It means that deviations corresponding to N;11 

goal constraints are zero. If Si1 = 0, then 

(16.38) 

where m is the total number of goal constraints in the LGPP (16.26)­
(16.29). 

In case Si1 i= 0, we apply the sensitivity analysis to find all those 
goal constraints in Step 3 that may have effect on the objective function 
Sl. Let kt be the number of goal constraints that have impact on the 
value of objective function Sl. Then we assign t priorities to these 
kt goal constraints and delete all of them. We solve the resulting 
subproblem 2 using sensitivity analysis and get the optimal value of 
the objective function S2 as given below. 

(16.39) 

The corresponding maximum number of goal constraints satisfied is, 
say, N;;. From the equations (16.38) and (16.39), we get 

(16.40) 

Using the relation (16.40), we can write 

(16.41) 

Next, we delete the goal constraints that have effect on the value of 
the objective function and assign them the next higher priority (t -1) 
and so on till we assign all the priorities or till we get the lowest value 
of the objective function as zero. Let this condition reaches when we 
solve the subproblem p. We get the following relation 

(16.42) 
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where p ::; t. 

Thus, after solving the subproblem p we get the optimal solution 
of the LGPP (16.26)-(16.29) as follows: 

- -(*p). 1 2 si = si , '/, = , , ... , m 
+ - +(*p) .-si - si , '/, - 1,2, ... , m 

m 

8 = 8? = 2)s~(*p) + si(*p)) 
i=l 

N =N*P 9 gp 

Now, the algorithm is applied to the problems as follows: 

Example 6. 

Xl + X2 ::;10 

Xl '27 

2XI + X2 ::; 12 

Xl + 4X2 ::;4 

Xl, X2 '2 O. 

(16.43) 

(16.44) 

(16.45) 

(16.46) 

Here, there are two variables (n = 2) and four goal constraints 
(m = 4). We are required to assign priorities PI to P4 to the goal 
constraints so that the maximum goals are satisfied. 

Step 1. All four goal constraints after introducing deviational variables 
are considered a group with the objective function being the sum 
of all weighted deviations in the subproblem 1 as follows: 

min 80 = st + s2 + st + st 
s.t. 

Xl + X2 + s1 - st = 10 

Xl + s2 - st = 7 

2XI + X2 + (; - st = 12 

Xl + 4X2 + s4 - st = 4 

Xj,Si,st ~ O,j = 1,2;i = 1,2,3,4. 
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Here, we assume weight functions of all deviational variables to 
be at unity level. The problem is put on the simplex algorithm. 
The simplex table is as follows: 

Table 3 

BV Xl X2 81 82 83 84 8+ 
1 

8+ 
2 

8+ 
3 

8+ 
4 Soln 

81 0 0 0 -1 0 0 -1 0 -1 -1 0 

81 1 1 1 0 0 0 -1 0 0 0 10 

82 1 0 0 1 0 0 0 -1 0 0 7 

8;- 2 1 0 0 1 0 0 0 -1 0 12 

84 1 4 0 0 0 1 0 0 0 -1 4 

81 1 1 0 0 0 0 0 -1 -1 -1 -1 7 

81 1 1 1 0 0 0 -1 0 0 0 10 

8;- 1 0 0 1 0 0 0 -1 0 0 7 

8;- 2 1 0 0 1 0 0 0 -1 0 12 

f- 84 1 4 0 0 0 1 0 0 0 -1 4 

80 0 -4 0 0 0 -1 -1 -1 -1 0 3 

81 0 -3 1 0 0 -1 -1 0 0 1 6 

8;- 0 -4 0 1 0 -1 0 -1 0 1 3 

8;- 0 -7 0 0 1 -2 0 0 -1 2 4 

Xl 1 4 0 0 0 1 0 0 0 -1 4 

Step 2. The Table 3 is examined for the optimal solution. The objective 
function 8 1 is nonzero. 

Step 3. The optimal simplex tableau in Table 3 is marked for three ob­
servations for all goal constraints: 

(i) All deviational variables, slack and surplus variables are at 
zero level: constraint (4). 

(ii) The slack or surplus variables are zero but the deviational 
variables are nonzero: constraint (2). 
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(iii) The deviational variables are zero but the slack or surplus 
variables are nonzero: constraints (1) and (3). 

Step 4. The constraint (2) satisfying observations (ii) 

Xl + s:; - st = 7 

is deleted and assigned the lowest priority P4. As the deviation 
variable is s:;, a new variable P2 is added to this equation as 
follows: 

Xl + s:; - st + P2 = 7 

The resulting subproblem 2 is 

mm 82 = si + s:; + st + st 
s.t. 

Xl + X2 + s;:- - si = 10 

Xl + s:; - st + P2 = 7 

2XI + X2 + s3" - st = 12 

Xl + 4X2 + s4 - st = 4 

Xj,Si,S;,P2 2: O,j = 1,2;i = 1,2,3,4. 

For solving the subproblem 2, we apply the sensitivity analysis 
on the optimal table of the subproblem 1. A new column below 
this new variable P2 is obtained using the procedure explained in 
Section 3 and then it is introduced in the optimal simplex table 
as shown below. 
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Table 4 

BV Xl X2 51 52 53 54 5+ 
1 

5+ 
2 

5+ 
3 

5+ 
4 P2 1 Soln 

82 0 -4 0 0 0 -1 -1 -1 -1 0 1 3 

51 0 -3 1 0 0 -1 -1 0 0 1 0 6 

+- 52 0 -4 0 1 0 -1 0 -1 0 1 1 3 

53 0 -7 0 0 1 -2 0 0 -1 2 0 4 

Xl 1 4 0 0 0 1 0 0 0 -1 0 4 

8 2 0 0 0 -1 0 0 -1 -1 -1 -1 0 0 

51 0 -3 1 0 0 -1 -1 0 0 1 0 6 

P2 0 -4 0 1 0 -1 0 -1 0 1 1 3 

53 0 -7 0 0 1 -2 0 0 -1 2 0 4 

Xl 1 4 0 0 0 1 0 0 0 -1 0 4 

Step 5. The deletion of the constraint (2) causes the value of objective 
function 8 2 to be zero but (Zj - Cj ) entries below some nonbasic 
variables are nonzero. 

Step 7. This very table (Table 4) gives the optimal solution and the 
remaining constraints may be assigned any priorities. 

Step 9. The optimal solution is Xl = 4, X2 = 0, N g = 3. 

The goal constraints with the respective priorities being assigned 
are as follows: 

Xl + X2 ::; 10 

Xl '2.7 P4 

2Xl + X2 < 12 

Xl + 4X2 <4 

Xl,X2 '2. 0 

Here, the goal constraints (1), (3) and (4) may have any priorities 
from PI to P3 . 
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Remarks. 

1. The columns below nonbasic variables having the relative costs 
negative as well as the row and column corresponding to P2 are deleted 
from the simplex tables constructed later. The incorporation of these 
facts in the algorithm makes the method easy and convenient for solv­
ing the problems as well as it results in faster computation. 

2. In general, the solution obtained by the algorithm gives the 
varieties of choices to the decision maker to assign priorities to the 
goals. As in the Example problem 6, the decision maker may assign 
any priorities to the goals (1), (3) and (4) from PI to P3 • The algo­
rithm is thus useful for classifying many goal constraints required for 
some problem into nested subclasses ml, m2, . .. ,mt with different pri­
ority levels. Sometimes, it becomes essential for the decision maker to 
change the priorities of goal constraints for the successful completion 
of the project at hand. In such situations, the algorithm can find the 
solution with ease. 

Problem Set 16 

1. Solve the formulated LGPP in example of Section 14.1. 

2. Consider the following LGPP 

2XI + X2 ':::'. 11 PI 

Xl + X2 ':::'.9 P2 

Xl + 4X2 ~ 4 

Xl ~ 7 

The project manager decides that the third and fourth constraint 
should be satisfied as real constraint. Write the standard form 
of the LGPP, and then find its optimal solution. 

3. Show that any LGPP does not have infeasible or unbounded 
solution. 
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4. Solve the following linear goal programming problem by the 
grouping algorithm. 

(a) 

2XI + X2 ::; 15 P 2 

Xl + 4X2 ::; 20 P 3 

(b) 2XI + 5X2 + 4X3 = 600 

3XI + 7X2 + 5X3 = 500 

2XI + 5X2 + 6X3 = 450 PI 

4XI + 3X2 + 3X3 ::; 500 P2 

2XI + 3X2 + 4X3 ::; 600 P 3 

3XI + 3X2 + 5X3 2:: 500 P 4 

3Xl + 4X2 + 7X3 ::; 900 P5 

5XI + 3X2 + 3X3 ::; 800 P 6 

3XI + 6X2 + 4X3 2:: 400 P 7 

3XI + 2X2 + 2X3 ::; 500 Ps 

Xj 2:: 0, j = 1,2,3 

Also find the number of iterations required to obtain the optimal 
solution as compared to the lexicographic minimization method 
using the LINDO software. 

5. Can you prove that in the lexicographic minimization approach, 
the addition of a goal constraint (provided it affects the optimal 
solution) to an LGPP always worsens the current optimal value 
of the objective function whereas, in the grouping algorithm, 
the deletion of a goal constraint (provided it affects the optimal 
solution) from an LGPP always improves the current optimal 
value of the objective function? 
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6. The decision maker wish to assign the priorities to the goals 

Xl - X2 - X3 ::;2 

Xl + X2 + 2X3 ::;3 

4XI - X2 + 6X3 =9 

3XI - 2X2 - 2X3 2:6 

-2XI - X2 + X3 2:2 

Xl, X2, X3 2: 0 

with an objective that the maximum goals are satisfied. Find 
the optimal solution of the problem along with the priorities to 
be assigned to the goals. 

7. A company manufactures three products A, Band C. Each prod­
uct has to pass through three operations. The time each product 
takes in each operation is given below. Also, given are the max­
imum time for each an operation can work and profit per item. 
Find the number of units of each product to be manufactured so 
that the following goals in order of priorities are satisfied. 

(a) Meet a profit goal of $1,500; 

(b) Take care of the avoidance of ideal time in operation 1 and 
overtime in operations 2; 

(c) It is twice as significance the operation 2 as compared to 
operation 3. 

Operations Products Time required 
ABC 

1 1 0 1 480 

2 0 3 2 5000 

3 2 4 0 360 

Profit/item 4 3 6 



Chapter 17 

Games Theory 

The concept of games theory is introduced. In the end, the linear 
programming technique to solve two person zero sum game has been 
included. 

17.1 Introduction 

There is competition in every walk of life. Many a decision is taken 
in a competitive situation in which the outcome depends not on that 
decision alone but rather on the interaction between the decision maker 
and that of competitors. The term "game" now includes not only 
plausible activities of this kind, but also more earnest competitive 
situations of war and peace, love and hate, and die and survive. Such 
situations arise in business, politics, military operations, etc. 

In the year 1928, Von Neumann who is also the father of games 
theory developed the theory of games that is based on the minimax and 
maximin principle which implies that competitors will act to minimize 
his maximum loss or maximize the minimum gain. There are finite 
number of players and each player has finite number of possible courses 
of action, called strategies. All of the strategies must be known to each 
other but must not know which of these will be chosen. A play is said 
to played when each of the player chooses a single course of action. 
After all players have chosen a course of action, their respective gains 
are finite. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Let us define some terms frequently used in our studies on games 
theory. 

Pay-off. This is the outcome of the game or the gain the strategy 
to a player for any given counter strategy of the competitor. 

Pay-off matrix. This is the matrix whose entries the payoff of 
different strategies of the game. 

Optimal strategy. This is the course of action or plan which 
put the player in the most preferred position. Any deviation from this 
strategy results in decrease of pay for the player. 

Pure Strategies. If chance does not determine any move and 
both players choose their strategies deterministically, then such type 
of strategies are called pure strategies. The objective is to maximize 
the gain or to minimize the loss. 

Mixed Strategies. When some of the moves are determined by 
chance the situation is nondeterministic and the objective is to maxi­
mize the expected gain. 

In this chapter we are mainly concerned about zero-sum two person 
games. 

17.2 Two Person Zero Sum Game 
(Pure Strategies) 

It is a game between two person in which losses of one player are equal 
to the gains of other player so that the sum of net gain is zero. 

Strategy. The alternative which one perSOll A has to move for 
each possible moves of other persoll B is called strategy. 

Note. Similarly A may have different strategies for the same move B. 



17.2. TWO PERSON ZERO SUM GAME (PURE STRATEGIES)497 

Let us write the pay-off matrix of the player A. 

Pay-off matrix of A 

B's strategies 

Al au a12 

A2 a21 a22 

A's strategies 

If player A chooses the ith strategy and B chooses the jth strategy, 
then aij is pay-off to A from B. Now 

aij > 0 pay-off to A from B 

aij < 0 pay-off to B from A 

The matrix (aij)mxn is pay-off matrix of A. 

Minimum (Maximum) criterion. Consider the pay-off matrix 
of A. If A chooses ith strategy, then he is sure of getting 

min { aij }, j varies over the strategies of player B. 
J 

Then A will choose the strategy given by 

max min{aij}=g, i=1,2, ... ,m, j=1,2, ... ,n 
l J 

Conversely, if B chooses jth strategy, then he is sure that A does not 
get more than 

max{ aij}, i varies over the strategies of player A. 
l 

B will choose naturally the strategy given by 

minmax{aij}=a, i=1,2, ... ,m, j=1,2, ... ,n. 
J l 
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Now, 

Q ::; value of game::; a. 

If Q = a = game value, then the game is said to have saddle point. In 
this case an optimal solution of the game exists. Let 

ast = max min { aij} = min max { aij} such that ast = Q = a. 
~ J J ~ 

Hence, the optimal strategy of player A is As and optimal strategy of 
player B is B t . Game value = ast. 

For example, below is given the pay-off matrix of A and its solution 

-2 1 0 1 -2 

4 2 2 3 [I] 
1 3 1 3 1 

A2 : Best strategy for A 

B3 : Best strategy for B 

Game value = 2 

Again, we encounter with payoff matrix of A in which alternative so­
lution exists. 

4 0 -2 3 

3 11 4 1 

4 5 8 4 

2 13 17 1 

[i] 11 17 [i] 

The optimal solution is 

-2 

1 

[i] 
1 

A3 : Best strategy for A 

Bl : Best strategy for B 

Game value = 4 
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The alternative optimal solution is 

A3 : Best strategy for A 

B4 : Best strategy for B 

Game value = 4 

17.3 Two Person Zero Sum Game 
(Mixed Strategies) 

The concept of mixed strategies is utilized to solve game problems 
where saddle point does not exist, i.e.,g =1= a. Let PI,P2, .. · ,Pm and 
ql, q2, ... , qn be the probabilities of the events AI, A 2, . .. ,Am and 
B I , B 2, . .. ,Bn, respectively. Obviously, 

m n 
LPi = 1, Pi ~ 0, L qj = 1, qj ~ O. 
i=l j=l 

The pay-off matrix of A is as follows: 

BI B2 BJ Bn 

ql q2 qJ qn 

Al PI all a12 alj aln 

A2 P2 a2l a22 a2j a2n 

Am Pm amI am2 ... amj ... amn 

Our objective is to find Pi (i = 1 to m), and qj (j = 1 to n) when 
aij'S are given. 

Thus, A's problem is max {gains } and B's problem is min{losses}. 
Let us first, decide the problem of A. 

For deciding A's problem, let B select the jth strategy. Then, A's 
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expected pay-off will be 

m 

Plalj + P2a2j + ... + Pmamj = LPiaij. 
i=l 

Player B moves all strategies and he pays to A 

m m m 

L ail, L ai2,···, Lain. 
i=l i=l i=l 

Now, B's intention will be to pay minimum of the above pay-offs, i.e., 

But A's interest is to maximize these pay-offs, i.e., 

A's problem max {min {f ail, f ai2, ... , fain}} (17.1) 
t=l t=l t=l 

S.tPl + P2 + ... + Pm = 1, Pi ~ 0 (17.2) 

For deciding B's problem, let A select the ith strategy. Then, B 
will loose the following expected pay-offs to A (as A's payoff matrix 
is given) 

n 

ql ail + q2ai2 + ... + qnain = L qiaij' 
j=l 

A moves all strategies with the thinking that he gives maximum loss 
to B, i.e., 

{ 
n n n} 

max ~alj, ~a2j, ... , ~amj . 

Now, B's problem is to minimize these losses. Hence, 

B', problemmin { max {~ aU, ~ a,j, 

S.tql + q2 + ... + qn = 1, qi ~ 0 

000, ~ amj } }(1703) 

(17.4) 
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17.4 Games Theory vs Linear Programming 

Games theory and linear programming are closely related. In fact 
every two person zero sum can be represented by a linear programming 
problem. The concept of duality will also play significant role in games 
theory. 

Convert (17.1) and (17.2) into LPP as follows. Let 

Then, A's problem is 

max Zo = fl 
m 

s.t. LPiaij - fl2: 0, j = 1,2, ... , n 
i=l 
m 

L Pi = 1, Pi 2: ° 
i=l 

If g 2: 0, nothing is to be done, otherwise for g < 0, a positive constant 
is added so that new g becomes positive. then, this new g is used. 
The optimal value of the objective function is obtained by subtracting 
the constant c. Assume 

Pi Xi=-, i=I,2, ... ,m 
fl 

Then the above LPP reduces to 

Since 

max Zo = fl 

s.t. 
m 

L aij 2: 1 
i=l 

LXi= ~ 
i=l fl 

1 . 
max fl = min - = mmXl + X2 + ... + X m , 

g 
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the above LPP is finally converted into the form given below which 
represents the LPP corresponding to A 

mm Xo = Xl + X2 + ... + Xm 

s.t. aljXI + a2jX2 + ... + amjXm 2 1 

Xj 20, j = 1,2, ... , n. 

Similarly, using (17.3) and (17.4) the LPP associated with B's 
problem can be derived. 

Example 1. Consider the game between two players A and B. The 
pay-off matrix of A is given below. 

Bill 
~ 

First, we check whether saddle point exits. The maximin and min­
imax are computed as 

~GJ 
~-3 

2 IT] 4 

Since Q = -1 and a = 1, it follows that Q i- a. This suggests that we 
have to utilize the concept of mixed strategies. 

If maximin is negative, then add a constant c 2 -maximin + 1 such 
that each entry of the pay-off matrix turns to be nonnegative. Thus, 
add c 2 2. Let us take c = 2 and add each entry of the pay-off matrix. 

The maximin and minimax for the revised matrix are shown in the 
following matrix with the decision variables and probabilities. 

YI Y2 Y3 

ql q2 q3 

BI B2 B3 

Xl PI Al~[i] 
X2 P2 A2 4 -1 3 5 

4 []] 4 
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The LPP giving A's problem 

min Xo = Xl + X2 

s.t. Xl + 4X2 2: 1 

3Xl - X2 2: 1 

4Xl + 5X2 2: 1 

Xl,X2 2: 0 

The LPP giving B's problem 

max Yo = Yl + Y2 + Y3 

s.t. Yl + 3Y2 + 4Y3 ~ 1 

4Yl - Y2 + 5Y3 ~ 1 

Yl,Y2 2: 0 

As both the problems are dual to each other, solve anyone which is 
convenient and find the optimal solution of the other one using C~B-l. 
Since B's problem has smaller number of constraints, we prefer to solve 
B's LPP. 

The simplex iterations are 

BV Yl Y2 1 Y3 81 82 Soln 

Yo -1 -1 -1 0 0 0 

+--- 81 1 W 4 1 0 1 

82 4 -1 5 0 1 1 

Yo -2/31 0 1/3 1/3 0 1/3 

Y2 1/3 1 4/3 1/3 0 1/3 

+--- 82 
1 13/ 3 1 

0 19/3 1/3 1 4/3 

Yo 0 0 24/3 5/13 2/13 7/13 

Y2 0 1 11/3 4/13 -1/3 3/13 

Yl 1 0 19/3 1/13 3/13 4/13 

The optimal solution of B's problem: Yl = 4/13, Y2 = 3/13, 

Y3 = 0; Yo = 7/13. 

The optimal value of qi = ydyo: ql = 4/7, q2 = 3/7, q3 = o. 

From the optimal table of B's problem, we have 
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The optimal solution of A's problem: Xl = 5/13, X2 = 2/13, 

Xo = 7/13. 

The optimal value of Pi = XdXo: PI = 5/7, P2 = 2/7. 

The value of game = l/yo - C = l/xo - C = -1/7. 

Remarks. 1. Normally pay-off matrix of A is given. In case pay-off 
matrix of B is given then multiply all entries by -1 and solve the 
problem as pay-off matrix of A. 

2. Theoretically, it is better to add 

C = - min {negative entries of the matrix} + 1 

3. If strategies of A and B are given corresponding to columns and 
rows and it is given that it is A's pay-off matrix then take transpose 
of the matrix and solve as usual with the thinking A's pay-off matrix 
is given. 

4. The dual or primal may have alternative optimal solution. 
Hence the game problem may have alternate solution. Find alternate 
optimal solution also. 

5. Always use (}j(Zj - Cj) for entering variable in case of the game 
problem. 

Example 2. Prove that 

a pq = max min aij ::; min max aij = ars or Q ::; a 
t J J t 

Proof. maxi aij for any i and fixed j. minj aij ::; aij for any j and 
fixed i. Let 

Then 

Hence 

or 

max aij = arj for fixed j 

min aij = aiq for fixed i 

min arj 2': aij max aiq· 
J t 
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Remark. This chapter is concentrated only on two-person zero sum 
game with a finite number of strategies. It does not mean that game 
theory is limited to such type of game. In fact extensive research has 
been done on n-person game, where more than two players may partic­
ipate in the game. This is often the case, for example, in competition 
among business firms, in international diplomacy, and so forth. How­
ever, the existing theory for such games is less satisfactory than for 
two-person games. 

Another generalization is the nonzero-sum game, where the sum 
of the payoffs to the players need not be zero (or any other fixed con­
stant). This reflects the fact that many competitive situations include 
noncompetitive aspects that contribute to the mutual advantage or 
mutual disadvantage of the players. For example the, the advertis­
ing strategies of competing companies can affect not only how they 
will split the market but also the total size of the market for their 
competing products. 

Still another extension is to the class of infinite games, where the 
players have an infinite number of pure strategies available to them. 
These games are designed for the kind of situation where the strategy 
to be selected can be represented by a continuous decision variable. 

Problem Set 17 

1. Find probabilities of optimal strategies for players A and B in­
volved in a two person zero-sum game given that A's pay-off 
matrix is given in the table 

[iliJ4l3l 
~ 

Also, write the value of the game for optimal solution. 

2. Prove that the value of the game with a skew symmetric pay-off 
matrix is zero. 

3. A and B playa game in which each has three coins: 5 paise, 10 
paise and 20 paise. Each selects a coin with the knowledge of 
others choice. If the sum of coins is odd, A wins B's coin, and 
if the sum is even, B wins A's coin. Find the best strategy for 
each player and the value of the game. 

Suggestion. The pay-off matrix of A is 
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5 cents 

A 10 cents 

20 cents 

CHAPTER 17. GAMES THEORY 

B 

5 cents 10 cents 20 cents 

-5 10 20 

5 -10 -10 

5 -20 -20 

4. Players A and B take out one or two matches from a match box 
and guess how many opponent has taken. If one of the players 
guess exactly then the loser has to pay him as many rupees as the 
sum of the number of matches held by both players. Otherwise 
the payment is zero. Write the pay-off matrix and obtain the 
optimal strategies. 

5. Two players P and Q playa game where each of them has to 
choose one of the three colours white (W), black (B) and red (R) 
independently of the other. Thereafter the colours are compared. 
If both P and Q have chosen white (W, W) neither wins any thing. 
If player P selects Wand Q selects B, player P loses $2. In this 
way all choices are considered and we get the following pay-off 
matrix: 

Colour chosen by Q 

W B R 

W 0 -2 7 

Colour chosen by P B 2 5 6 

R 3 -3 8 

Find the optimal strategies of both the players and also find the 
value of the game. 

6. Find the range of values for p and q which will render the entry 
(2,2) a saddle point 

B 

1 q 3 

A p 5 10 

6 2 3 
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7. An investor is willing to invest $100,000 among three possible 
schemes: Deposits, Bonds and Stocks. The rate on these invest­
ments are given in the following table 

Actions 1 Nature of growth (in percentage) 

Low Medium High No 

growth growth growth growth 

Deposit 8 8 8 8 

Bonds 12 8 10 8 

Stocks -3 14 9 7 

(a) What action or combination of actions are to be taken by 
the investor in order to have maximum rates of return? 

(b) In case of Bonds, if the medium growth is 9% then how 
should the investor invest for optimal policy. 

(c) If the subjective probability of nature of growth is estimated 
to be 0.2 for Low growth, 0.4 for Medium growth, 0.2 for 
High growth and 0.3 for No growth, then what should be 
the optimal policy. 

8. The Australian cricket has three alternative lineups: AI, A2 
and A3 • The West Indies team has also three alternative line­
ups: WI, Y2 and Y3. The probability of an Australian team 
winning the different lineups of the West Indies team, which are 
approximately known from the previous experience, are given as 
follows: 

Al 

Australian team lineups A2 

A3 

West Indies team lineups 

0.2 0.8 0.6 

0.4 0.1 0.7 

0.5 0.6 0.3 

(a) Find with what the teams should use each of the lineups in 
matches against each other to score the largest number of 
victories 

(b) In case (3, 2) cell of the table is changed to 0.7, then what 
would be the solution? 



Chapter 18 

Special Topics 

This chapter contains various concepts on advanced level of the sub­
ject. The topics include a new technique to find initial BFS of trans­
portation problem, generalized transportation problem, generalized as­
signment problem, and multiobjective transportation problem. 

18.1 Extremum Difference Method 

The method concerning initial BFS of a transportation problem has 
been conceived by Kasana and Kumar. This is simpler than VAM. 
The algorithm is based on the principle: if an allocation is not made 
in the lowest cost cell of a row or column having the largest extremum 
difference, then the cost penalty per unit cost will be higher for any 
other choices of rows or columns with other extreme differences. This 
causes increase in the objective function value. 

The algorithm proceeds as follows: 

Step 1. For each row calculate the difference of the lowest and the highest 
costs, and write these in the right-hand side in front of each row. 
These numbers are called the row penalties. Similarly, calculate 
the column penalties and write these in the bottom of the cost 
matrix below each column. 

Step 2. Choose the row or column which has the largest penalty. For this 
row or column search the lowest cost cell and let it be (i, j)th 
cell. Then allocate min(ai' bj ). Ignore the row and column for 
further consideration which has been satisfied. 

H. S. Kasana et al., Introductory Operations Research
© Springer-Verlag Berlin Heidelberg 2004
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Step 3. Now, calculate the row and column penalties for the remain­
ing submatrix and allocate in the manner described in Step 2. 
Continue the process till all the rows and columns are satisfied. 

Rules for ties. 1. In case of tie for the largest penalty among rows 
only, choose the lowest cost cell in the tied rows. Similarly for tied 
columns (no row has a tie with these columns), choose the lowest cost 
cell of columns. 

2. Again, if there is a tie for the lowest cost in Rule 1, then consider 
the second level entries which are just next higher to the lowest cost of 
that row or column. Find the transportation cost for each second level 
entry with the assumption that allocation is made ignoring first level 
entries. Allocate in the smallest cost cell of tied rows and columns for 
which second level transportation cost turns out to be the highest. 

3. This situation arises when there is tie for the largest cost among 
rows and columns. Look for the saddle points (entries at intersection 
of tied rows and columns). Make allocation at the smallest saddle 
point. 

Consider the transportation problem of Section 7.1. 

Table 1 

20 10 3{)2{) 3 2 1 

4{) 6 6 6 -

15 20 20 55 4{) 2{) 7 6 

J5 W 40 5{) 

2{) .}{) 

5 2 5 4 

2 5 4 

5 4 

4 4 
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From Table 1, we write 

BFS: X13 = 20, X14 = 10, X24 = 40, X31 = 15, X32 = 20, X33 = 20; 

Cost of transportation: 445. 

Remark. 1. In case a tie exists for the highest second level transporta­
tion costs, we should proceed to third level entries and so on to decide 
the exact cell for allocation. When only one row or column remains 
unsatisfied in the last iteration, we use LCM for allocation. 

18.2 Generalized Transportation Problem 

A generalized transportation problem (GTP) is a LPP of specific struc­
ture. As in a transportation problem (TP), let Si, i = 1,2, ... , m and 
Dj, j = 1,2, ... , n be m sources and n destinations, respectively. 

We define the following quantities: 

ai = the quantity of material available at source Si, i = 1,2, ... , m. 

bj = the quantity of material required at destination Dj , j = 
1,2, ... ,no 

Cij = unit cost of transportation from source Si to destination Dj. 

The objective is to find how much material should be transported 
from each source Si to each destination D j so that the cost of trans­
portation is minimized. 

Let Xij be the number of units of the material to be transported 
from source Si to destination D j. Then the generalized transportation 
problem is formulated as 

m n 

min Xo = L L CijXij 

i=l j=l 

n 

s.t. L dijXij ± Si = ai, i = 1,2, ... ,m 
j=l 

m 

LXij = bj , j = 1,2,··· ,n 

i=l 

Xij ~ 0, Si ~ 0, and dij ~ 0, 

(18.1) 

(18.2) 

(18.3) 

(18.4) 
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where Si is the slack or surplus variable. 

Every generalized transportation problem can be represented by a 
matrix of order m by n, called the cost matrix or effectiveness matrix. 
For m = 3, n = 4, the structure of cost matrix is 

d u Cu d 12 C12 d 13 C13 

Xu X12 X13 

d21 C21 d22 C22 d23 C23 

X21 X22 X23 

d 31 C31 d 32 C32 d 33 C33 

X31 X32 X33 

d 14 ct4 

X14 

d 24 C24 

X24 

d 34 
C34 

X34 

Slack! 
Surplus 

±1 0 

S1 

±1 0 

S2 

±1 0 

S3 

Here 8 1 , 82, 83 are the sources, and D 1 , D 2 , D3 , D4 are the 
destinations. The last but one column corresponds to the slack or 
surplus variables S1, S2, 83. The entries ai, bj , d ij and Cij of the cost 
matrix are given. We have to determine Xij such that the product 
2: CijXij is minimum with the restrictions that (18.2) and (18.3) must 
be satisfied. 

Remarks. 1. The rank of coefficient matrix A is m + n in GTP, while 
in TP it is m + n - 1. 

2. In a GTP, Xij may not be necessarily nonnegative integers while 
all ai and bj are nonnegative integers. 

3. 2: ai = 2: bj need not be true. 

This problem differs from a transportation problem due to the 
presence of dij. These problems arise in many applications, for exam­
ple, the problem of machine assignment, etc. The above problem can 
be solved by the simplex method. But the u-v method by Charne's 
and Cooper after suitable modification works efficiently. In generalized 
transportation problem, we have 

where Aij is the column of Xij in the coefficient matrix A of (18.2) and 
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(18.3), while the column of Si in A is ±ei (unit n-dimensional vector 
having 1 at ith position) 

The coordinates ail for the generalized problem are not necessarily 
0, +1, -1. Consequently, Xij may not be integers even when all ai 

and bj are integers. 

The dual of the GTP (18.1) to (18.4) is written as 

m n 

max Yo = L aiui + L bjvj 

i=l j=l 

s.t. dijUi+Vj~Cij, i=1,2,···,mj=1,2, ... ,n 
± Ui ~ 0, i = 1,2,··· , m 

Ui and Vj are unrestricted 

(18.5) 

(18.6) 

(18.7) 

where + and - sign in (18.7) stand for slack and surplus variables, 
respectively. 

How to find BFS. The basic feasible solution of a generalized 
transportation problem can be found by the usual methods, viz., N-W 
corner rule, LCM, VAM, EDM. 

While applying these methods the only difference is how to allocate 
in a cell. Suppose we have to allocate in (i, j)the cell. Then the 
maximum allocation in this cell is computed as 

. {a i b} mm dij ' j = a. 

If a = bj , then the demand bj is satisfied and the new ai is ai - dija, 

otherwise ai is satisfied and the new bj is bj - a. 

Let us workout a problem which will make this discussion clear. 

Example 1. Find the basic feasible solutions of the following gener­
alized transportation problem using (a) N-W rule; (b) VAM. 

(a) For finding the BFS by N -W corner rule, choose the x 11 cell. 
The maximum possible allocation that can be made is 

min {~, 60} = 60. 
0.5 

Hence the demand is satisfied and the new al becomes 80 - 0.5 x 60 = 
50. Thus, the the first step is over. Now, ignore the first column and 
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.5 1 3 5 4 6 1 0 

80 

1 3 1 2 .4 3 1 0 

60 

3 2 .5 6 2 1 1 0 

30 

60 40 40 

the north-west corner in the remaining cost matrix is X12 cell. Again, 
compute 

min {50 40} = 50. 
3 ' 3 

Thus, the supply at first row is 50 - 3 x 50/3 = 0, i.e., the first row is 
satisfied and new b2 is 40 - 50/3 = 70/3. Continue in this manner till 
all the demands are satisfies. The unsatisfied supplies are filled up in 
the corresponding slack variable column, see Table 2. 

Table 2 

.5 1 3 5 4 6 1 0 

60 50/3 

1 3 1 2 .4 3 1 0 

70/3 40 62/3 

3 2 .5 6 2 1 1 0 

30 

BFS: Xu = 60, X12 = 50/3, X22 = 70/3, X23 = 40, 82 = 62/3, 83 = 30; 

. 250 140 
TransportatIOn cost: 60 + 3 + 3 + 120 = 310. 

(b) Compute row and column penalties as in Chapter 7 and allocate 
as per rules of the generalized transportation problem. Note that the 
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Table 3 

.5 1 3 5 4 6 1 0 

60 50 4 1 1 

1 3 1 2 .4 3 1 0 

40 25 10 

3 2 .5 6 2 1 1 0 
15 1 5 -

1 3 2 
3 2 
3 3 

slack column is adjusted in the last from the unsatisfied supplies, see 
Table 3. 

BFS: Xu = 60, X22 = 40, X23 = 25, X33 = 15, Sl = 50, S2 = 10; 

Transportation cost: 230. 

Remarks. 1. If some of the bj's remain unsatisfied in a GTP, then the 
problem has an infeasible solution. 

2. Even if all bj are satisfied and the ith row has surplus variable 
and ai is satisfied (before the last iteration), then the GTP has also 
an infeasible solution. 

3. There is no connection of 2.: ai and 2.: bj telling infeasibility. 

4. The degenerate BFS may also exist as in a GTP. 

Example 2. Solve the following GTP by VAM to find the basic 
feasible solution. 
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.5 1 3 5 4 6 -1 0 

90 

1 3 1 2 .4 3 -l 0 

10 

3 2 .5 6 2 1 -1 0 

20 

60 50 50 

Its solution is given by the same techniques as in Example 1. The 
significant point is that when supply is exhausted and demands remain 
unsatisfied, the additional demand at destinations are are allocated to 
cells of the lowest cost in that column. This will increase the supplies. 
Hence the surplus column is adjusted in the last, see Table 4. 

Table 4 

.5 1 3 5 4 6 -1 0 

60 20 4 1 1 1 

1 3 1 2 .4 3 -l 0 

10+20 20 
1 1 1 

3 2 .5 6 2 1 -1 0 

10+40 80 -20 1 5 

,6() ..-SO ..-SO 
A:6 A:6 

-20 

1 3 2 
3 2 
3 3 
0 0 

BFS: Xn = 60, X12 = 20, X22 = 30, 82 = 20, X33 = 50, 83 = 80 

Transportation cost: 270 

Note. If, in a surplus problem, all bj's are satisfied and some aj's 
remain unsatisfied, then the problem has infeasible solution. If, in 
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Example 2, we take al = 105, a2 = 30, a3 = 40 and bl = 60, b2 = 
35, b3 = 35, then it can be verified that the GTP becomes infeasi­
ble. Further, if in case the data 105 is replaced by 95, then the GTP 
becomes feasible. 

18.3 Generalized Assignment Problem 

Let us consider the problem associated with the assignment of indi­
viduals to jobs wherein more than one individual can be assigned a 
single job or, alternatively more than one job may be assigned to a 
single individual. Here we this problem is discussed by using EDM. 
The generalized assignment problem (GAP) is stated as 

where 

m n 

mm Xo = L L CijXij 
i=l j=l 

n 

s.t. LXij = 1, i = 1,2, ... ,m 
j=l 

m 

L CijXij :S aj, j = 1,2, ... , n, 

i=l 

X " _ { 1 if ith job is assigned to worker j 
tJ -

o otherwise 

Cij = time required to perform job i by worker j 

aj = total time that worker j can be assigned 

Algorithm. The algorithm for solving this problem is very much 
similar to EDM. The row penalties are determined by taking difference 
of the lowest and the highest entry of a row. Assignments are made 
one at a time to the job having the largest penalty provided such an 
assignment will not exceed the limit aj, available to the worker j. 
Specifically, the steps are as follows. Establish the problem in matrix 
format as shown in Tab. 4. Now proceed as 

Step 1. Compare the available time {aj} with the smallest time require­
ment {Cij} in columns j. If m~n { Cij} > aj strike out the column 

t 

j. Repeat this for j = 1,2, ... , n. 
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Step 2. Calculate the penalties and make an assignment to the minimum 
cost element in the row with the largest penalty, wherein such an 
assignment does not exceed the time aj. In case a tie is observed 
for the largest penalty, then take maximum of all minimum cost 
entries for tied rows. Again if there is a tie for minimum cost, 
then choose cost element arbitrarily keeping in view that total 
time available aj should not be surpassed. 

Step 3. Strike out the row associated with the assignment of Step 2 and 
reduce the associated available time. 

Step 4. Repeat steps 1 through 3 until all jobs are either assigned or all 
columns (workers) have been marked off. 

Example 3. In the table, given below the data for an example prob­
lem that is used to illustrate the algorithm is summarized. In this 
problem, there are seven jobs and four workers. The time required to 
perform a job is dependent on both match of the job requirements to 
workers skills and the individual difficulty of each job. These times 
are given in the interior cost cells of the table. At the bottom of the 
table the maximum amount of time that each worker can devote his 
set of jobs (as assigned). The problem is how to assign seven jobs to 
four workers so as to minimize the total amount of time required for 
all jobs while taking care not to assign any worker to a set of jobs 
such that time requirement would exceed the time limits indicated. 
The solutions by conventional method and EDM are shown in Tables 
5 and 6, respectively. 

~ Jobs A B C D 

1 4 5 4 4 

2 14 13 16 6 

3 6 4 2 3 

4 11 18 20 5 

5 3 5 2 5 

6 5 9 13 9 

7 5 9 4 13 

Available 
14 17 13 7 time (ai) 
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Table 5 

~s Jobs A B C D 

1 (3) 5 4 4 

2 14 13 16 (6) 

3 6 4 (2) 3 

4 (11) 18 20 5 

5 3 5 (2) 5 

6 5 (9) 13 9 

7 5 9 ( 4) 13 

Available 

time (aj) 14 17 13 7 

Solution by Conventional Method 

Total time required for all jobs = 37 units. 

Table 6 

~s Jobs 
A B C D 

1 (3) 5 4 4 

2 14 ( 13) 16 6 

3 6 4 (2) 3 

4 11 18 20 (5) 

5 3 5 (2) 5 

6 (5) 9 13 9 

7 5 9 ( 4) 13 

Available 

time (aj) 14 l7 13 7 

Solution by EDM 

Total time required for all jobs = 34 units. 

Remarks. 1. There are number of refinements possible with the GAP 
that are of interest. First, consider that we wish to maximize rather 
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than minimize. We again suggest to come out of the conventional 
methods of converting the maximization problem into minimization 
problem by the methods available in literature. We directly deal with 
the maximization problem with suitable modification in Steps 2 and 3 
of minimization case. 

2. Again, the solution of GAP has established the fact that the 
EDM is more efficient than the conventional methods. 

18.4 Multiobjective Transportation Problem 

Here we introduce a new algorithm to solve p objective systems (p: 
any positive integer) for a transportation problem. The algorithm 
takes advantage of using optimal solutions of any objective function 
as the basic feasible solutions (BFSs) for the succeeding objective and 
reducing the set of solutions to most compromising solution to the 
combined objective function. 

Formulation. Let us consider m origins and n destinations and 
also the quantities available at each origin and the quantities to be 
transported to each destination. The total quantities required at the 
destinations may differ from the total quantities available at the ori­
gins. For such situations, the problem is balanced by introducing ficti­
tious origin or destination, whichever is needed in order to get precisely 
the same total quantities at the origins and the destinations. We con­
sider specifically a balanced transportation problem as it amounts to 
no loss of generality. 

Let Xij be the quantity to be transported from origin i to destina­
tionj and for each fixed k : k = 0,1, ... , (p-l), nfj' i = 1,2, ... , m, j = 
1,2, ... ,n, be the units of the parameter required for transporting one 
unit of the quantity from origin i to destination j. What is to be deter­
mined is the routing from the origin i to the destination j satisfying p 
objectives. The starting objective is termed as primary and the others 
are classified as secondary. 

The primary objective is to minimize 

j n 

Zo = I: I: nijXij 

i=l j=l 

and for k = 1,2, ... , (p - 1), also to minimize 

Xk = max{ nfj : Xij ~ 0, i = 1,2, ... , m, j = 1,2, ... ,n} 

(18.8) 

(18.9) 
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in order of the priorities to be assigned under the constraints 

n 

L Xij = ai, i = 1,2, ... , m 
j=l 

m 

LXij=bj, j=I,2, ... ,n. 
i=l 

(18.10) 

(18.11) 

The problem formulated on this pattern has p objective functions given 
by Eqs. (18.8) and (18.9). 

For each arbitrarily chosen k( k = 1, 2, ... , p - 1), the set of param­
eters afj, i = 1,2, ... , m, j = 1,2, ... , n is decomposed into mutually 
disjoint subsets. The partitioning is done in such a way that the sub­
sets L Wk , Wk = 1,2, ... , q(k); 1 :S q(k) :S mn contain all afj which 
have the same numerical value. Next, these subsets are arranged in 
descending order corresponding to these numerical values such that 
numerical values of afj in L s - 1 be greater than numerical value of afj 
in Ls with s = 2,3, ... , q(k). 

The final problem is to minimize 

m n q(l) q(2) 

Z = LLafjXij + M1 L (nWI LXij) + M2 L (nW2 LXij) 
i=l j=l WI =1 LWI w2=1 LW2 

q(p-1) 

... + M p - 1 L (nWp _ I L Xij), (18.12) 
wp -l=l L Wp _ 1 

where n Wk is internal priority factor for the kth objective with the con­
dition that n1 » n2 » ... » nk and Ml, M 2 , ... , M p - 1 are external 
priority factors assigned to the secondary objective functions such that 

M k »Mk+1, k=I,2, ... ,p-2. (18.13) 

The primary objective function is linear and the secondary objec­
tive functions are nonlinear functions which cause nonlinearity to the 
combined objective. Now we elaborate a very simple procedure to 
solve this multiobjective system. 
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Algorithm 

The algorithm consists of the following steps: 

Step 1. Determine the optimal solution of the primary objective function 
Zo, using u - v method, see Section 6.2, Chapter 6. 

Step 2. If a unique solution for Zo exits, then go to Step 7; otherwise go 
to Step 3. 

Step 3. Determine the set of all different alternative optimal solutions 
80 of Zoo 

Step 4. Construct a subset 81 of 80 so that each element of 81 minimizes 
the first secondary objective function Zl. 

Step 5. Do the optimality test for each element of 8 1 for Zl. In case 
a single element of 8 1 yields optimal for Zl, then go to Step 7; 
otherwise go to Step 6. 

Step 6. Repeat Step 4 and Step 5, using 82,81 and Z2 in place of 81,80 
and Zo, respectively, and so on, till optimality is not disturbed. If 
optimality is disturbed, or all the secondary objective functions 
are optimized, then go to step 7. 

Step 7. The current solution obtained is the solution of the combined 
objective problem. 

Remarks 1. If optimality is not disturbed up to pth secondary ob­
jective, then from the construction of the sets 8 1 , 8 2 , ... , 8p - 1 , it is 
obvious that 8p - 1 <;;;; ..• <;;;; 82 <;;;; 81. Hence the subset 8p - 1 is the 
optimal solution of combined objective problem (with the condition 
that optimality is not disturbed up to and including the last objective 
function Zp-1). 

2. In case optimality is disturbed at the intermediary stages, 
8t : 1 < t < p - 1 (say), then elements in 8t are the optimal solu­
tions for Zl, Z2, ... ,Zt-1 secondary objective functions and the most 
compromising solutions for the remaining (p - t) secondary objective 
functions. 

Example 4. Now the above algorithm is tested for p = 2. We con­
sider the dead mileage system. 1 The dead mileage refers to the total 

1 Sharma, V. and Prakash, S. (1986), Optimizing dead mileage in urban bus 
routes, Journal of Transportation Engineering, ASeE, 112(1), 121-129. 



18.4. MULTIOBJECTIVE TRANSPORTATION PROBLEM 523 

distances travelled by all buses in the morning from the garages to 
the starting point of their route. In the dead mileage system there 
is no earning, however the fuel is consumed. To make the system 
economical, the primary objective is to minimize the cumulative dis­
tance travelled by all buses from the garages to the starting points of 
their routes, and the secondary objective is to minimize the maximum 
distance among the distances travelled by individual buses from the 
garages to the starting point of their respective routes. The secondary 
objective obviously reduces the operation time for which garage su­
pervisors are employed. 

The equivalent balanced transportation problem is shown in Table 
7. The cells in Table 7 correspond to the variables xij(i = 1,2,3, j = 
1,2, ... ,8), where Xij is the number of buses required from garage i to 
the starting point of their routes. Garages are denoted by gl, g2, g3 

and the starting points by Tl,T2, .. . ,TS. The north-west entries of all the 
(i, j) cells contain aij and afj. Further al = 35, a2 = 120, a3 = 100 
are the number of buses which can be parked over night in garages 
gl, g2, g3, respectively and bl = 40, b2 = 25, b3 = 15, b4 = 30, 
b5 = 35, b6 = 45, b7 = 20 are the number of buses required at initial 
point of their routes Tl, T2, T3, T4, T5, T6, T7, respectively. Here, aij 
(i = 1,2,3; j = 1,2, ... ,8) is the unit of distance from garage i to the 
starting point of route j. 

Table 7 

Starting point of Maximum buses 
that can be 

Item Tl T2 T3 T4 T5 T6 T7 TS parked overnight 

gl 15 12 3 10 2 18 4 0 35 

g2 7 18 2 12 3 6 16 0 120 

g3 15 5 18 12 4 10 15 0 100 

Buses 40 25 15 30 35 45 20 45 

Required 

The two-objective functions of the equivalent balanced problem 
associated with the numerical problem are 

3 S 

Zo = LLaijXij, 
i=1 j=1 
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Zl = max{at Xij > 0, i = 1,2,3, j = 1,2, ... ,8}, 

where aij = afj == dij. 

The combined objective function of the above problem is 

3 S q(l) 

Z= LLaijxij+M1 L(nW1LXij). 
i=l j=1 

Step 1. The optimal solution for the primary objective function Zo has 
been found out using stepping-stone method as shown in Ta­
ble 8, and the optimal value of Zo is 1235 units. The entries 
in the parentheses are basic cells giving optimal solution, and 
the entries without parentheses are the relative cost coefficients 
(aij - Ui - Vj). The values of the dual variables Ui and Vj, taking 
U2=0 are as follows: 

Ul = -1, U2 = 0, U3 = -1, 

VI = 7, V2 = 4, V3 = 2, V4 = 11, V5 = 3, V6 = 6, V7 = 5, 
Vs = -1. 

Table 8 

Starting point of Max. 

buses 

parked 

Item rl r2 r3 r4 r5 r6 r7 rs overnight 

gl 9 9 2 (15) 0 13 (20) 2 35 

g2 (40) 14 (15) 1 (20) (45) 11 1 120 

g3 7 (25) 15 (15) (15) 3 9 (45) 100 

Buses 40 25 15 30 35 45 20 45 

Req. 

Step 2. Since there is a nonbasic cell (1,4) with zero relative cost coef­
ficient as shown in Table 8, a unique solution for Zo does not 
exist. Go to Step 3. 
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Step 3. The set of all different alternative optimal BFSs So of Zo has 
been determined by bringing the nonbasic cells having zero rela­
tive cost coefficients into the basic vector. This results in two al­
ternative optimal BFSs besides the primary optimal BFS. Thus, 
three alternative optimal BFSs are as follows: 

(a) X14 = 15, X17 = 20, X21 = 40, X22 = 15, X25 = 20, X26 = 45, 

X32 = 25, X34 = 15, X35 = 15, X3S = 45. 

(b) X15 = 15, X17 = 20, X21 = 40, X23 = 15, X25 = 20, X26 = 45, 

X32 = 25, X34 = 30, X35 = 0, X3S = 45. 

(c) X14 = 0, X15 = 15, X17 = 20, X21 = 40, X23 = 15, X25 = 20, 

X26 = 45, X32 = 25, X34 = 30, X3S = 45. 

The set So = {(a), (b), (e)}. 

Step 4. The first secondary objective cost coefficients of (i, j) cells are 
shown in Table 9. The numeric values of the internal priority 
factors nW1 ; WI = 1,2, ... , 12 are given by 

nl, n2, n3, n4, n5, n6, n7, ns, ng, nlO, nu, n12· 

The values of the first secondary objective function ZI for the 
solutions (a), (b) and (e) are as follows: 

For (a): 15 * n5 + 20 * ng + 40 * n6 + 15 * nu + 20 * nlO + 45 * 
n7 + 25 * ns + 15 * n4 + 15 * ng + 45 * n12. 

For (b): 15 * nu + 20 * ng + 40 * n6 + 15 * nu + 20 * nlO + 45 * 
n7 + 25 * ns + 30 * n4 + ° * ng + 45 * n12. 

For (e): O*n5+15*n1l +20*ng+40*n6+15*n1l +20*nlO+ 

45 * n7 + 25 * ns + 30 * n4 + 45 * n12. 

The minimum of the first secondary objective function ZI occurs 
for (a); hence by our construction the subset SI = {(a)}. 

Step 5. Table 9 shows that optimality is not disturbed for the function 
ZI when we used SI as the basic feasible solution. The + entries 
in parentheses depict the value of (dij - Ui - Vj). The values of 
the dual variables Ui and Vj, taking U2=0 are as follows: 

Ul = n5 + ns - n4 - nlO, U2 = 0, U3 = ng - nlO, VI = n6, 

V2 = ns + nlO - ng, V3 = n1l, V4 = n4 + nlO - ns, V5 = nlO, 

V6 = n7, V7 = ng + n4 + nlO - n5 - ns, Vs = nlO + n12 - ng. 
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The relative cost coefficients of the nonbasic cells can be found 
as 

(1,1) cell: n3 + n4 + nlO - n5 - n6 - ns; 

(1,2) cell: 2 * n4 + ng - n5 - 2 * ns; 
(1,3) cell: 2 * nlO + n4 - n5 - ns - nll; 

(1,5) cell: n4 + nll - n5 - ns; 

(1,6) cell: nl + n4 + nlO - n5 - n7 - ns; 
(1,8) cell: n4 + ng - n5 - ns - n12; 

(2,2) cell: nl + ng - ns - nlO; 

(2,4) cell: ns - nlO; 

(2, 7) cell: n2 + n5 + ns - n4 - ng - nlO; 
(2,8) cell: ng - nlO; 

(3,1) cell: n3 + nlO - n6 - ng; 
(3,3) cell: nl + nlO - ng - nll; 

(3,6) cell: n5 + nlO - n7 - ng; 

(3, 7) cell: n3 + n5 + ns - n4· 

Table 9 

Starting point of 

Item Tl T2 T3 T4 T5 T6 

n3 n4 nlO n5 nll nl 

gl ( +) (+) (+ ) 15 (+ ) ( +) 

n6 nl n11 n4 nlO n7 

g2 40 ( +) 15 (+ ) 20 45 

n3 ns nl n4 ng n5 

g3 ( +) 25 ( +) 15 15 (+ ) 

Buses 40 25 15 30 35 45 

Required 

Max. 

buses 

parked 

T7 TS overnight 

ng n12 

20 ( +) 35 

n2 n12 

(+ ) (+ ) 120 

n3 n12 

(+ ) 45 100 

20 45 

It is observed that optimality for primary optimal basic feasible 
solutions (b) and (c) is disturbed with respect to secondary objec­
tive function. In particular, for (b), the relative cost coefficients 
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of cell (1, 4) turn out to be n5 + ng - n4 - nl1 and this is certainly 
negative in view of the assumption n1 » n2 » ... »n12. Simi­
larly, it can be verified that optimality of the secondary objective 
function is disturbed for the solution (c). 

Step 6. Since there are no other secondary objectives left to be opti­
mized, go to Step 7. 

Step 7. Thus, in view of the proposed algorithm, the solution (a) hap­
pens to be the optimal solution of the combined problem with 
Zo = 1235 units and Zl = 12 units. 

Remarks. 1. The algorithm proposed here is simple and efficient in 
solving transportation problems with more than two objectives, be­
cause it accounts for additional secondary objectives in partitioning 
and ordering the coefficients before solving. 

2. The algorithm can be applied to unbalanced transportation 
problems as well. Such problems can be balanced by introducing fic­
titious row or column whichever is desired. 

Problem Set 18 

1. Solve the following multiobjective transportation problem (p = 
4) described as 

Availability: a1 = 30, a2 = 40, a3 = 30, 

Requirement: b1 = 20, b2 = 20, b3 = 25, b4 = 30, b5 = 5. 

Primary Objective Cost Coefficients: 

o:~\ = 57, 0:12 = 60, 0:13 = 64, 0:14 = 58, 0:15 = 55, 

0:21 = 58, 0:22 = 62, 0:23 = 63, 0:24 = 57, 0:25 = 57, 

0:~1 = 57, 0:~2 = 60, 0:~3 = 67, 0:~4 = 61, 0:~5 = 56. 

First Secondary Objective Cost Coefficient: 

o:it = 7(ns), O:I2 = 1O(n5), O:I3 = 14(n2), O:I4 = 14(n2), 
O:I5 = O(nlO); 

0:~1 = 7(ns), 0:~2 = 11(n4), 0:~3 = 12(n3), 0:~4 = 12(n3), 
0:~5 = O(nlO); 

0:11 = 5(ng), 0:12 = 8(n7), 0:13 = 15(n1), 0:14 = 14(n2), 
0:15 = O(nlO). 
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Second Secondary Objective Cost Coefficient: 

ail = 15(n5), ai2 = 20(n3), ai3 = 15(n5), ai4 = lO(n7), 
ai5 = lO(n7); 

a~l = 21(n2), a~2 = 26(nl), a~3 = 20(n3), a~4 = 5(ns), 
a~5 = 20(n3); 

a§l = lO(n7), a§2 = 15(n5), a§3 = 12(n6), a§4 = 5(ns), 
a§5 = lO(n7). 

Third Secondary Objective Cost Coefficient: 

atl = 21(n3), at2 = 25(n2), at3 = lO(ns), at4 = lO(ns), 
at5 = 15(n6); 

a~l = 25(n2), a~2 = 26(nd, a~3 = lO(ns), a~4 = 7(ng), 
a~5 = 20(n4); 

a~l = 5(nlO), a~2 = 20(n5), a~3 = 7(ng), a~4 = 5(nlO), 
a~5 = 12(n7). 

The internal priority factors are shown above within the paren­
theses. 



Appendix: 
Objective Type Questions 

1. Let 8 1 = {(XI,X2): 2XI +3X2 = 5}, 82 = {(I, I)} be two subsets 
of jR2. Then 8 1 n 82 is 

(a) a convex set (b) not a convex set 

2. Let 8 1 and 82 be two convex subsets of jRn. If 8~ and 8~ represent 
the compliments of 8 1 and 8 2, respectively. Then 

(a) 8 1 +82 (b)8I U82 (c)8~n8~ (d)8~U82 

is always a convex set 

3. Let 8 1 and 82 be two convex subsets ofjRn. If 8~ and 8~ represent 
the compliments of 8 1 and 82, respectively. Then 

(a) 8 1 -82 (b)8~U8~ (c)8~n82 (d)8In8~ 

is always a convex set 

4. Consider the set 8 = {(Xl, X2) : X~ ::; Xl}. Then 8 has 

(a) no vertex (b) finite number of vertices (c) infinite num-
ber of vertices 

5. The number of extreme point(s) that a hyper-plane has 

(a) infinite (b) finite (c) none of these 

6. The set 8 = {(Xl, X2) : Xl + X2 = I} has no vertex because it is 

(a) not convex (b) not bounded 
( c) not closed ( d) none of these 

7. Consider the unit simplex 8 = {(Xl, X2, X3) : Xl + X2 + X3 

1, Xl, X2, X3 20}. Then number of vertices 8 has 

(a) 2 (b) 4 (c) 5 (d) none of these 
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8. Let S = {X E ~2 : IXI < I}. Then S has no vertex because it is 

(a) not closed (b) empty 
( c) unbounded ( d) not convex. 

9. Let S = {( X I, X2) : XI + X§ :S I}. Then S has 

(a) no vertex (b) finite number of vertices ( c ) infinite 
number of vertices 

10. Consider the set S = {(XI,X2): Xl +X2:2: -1, XI:S 0, X2:S I}. 
Then S has 

( a) no vertex 

( c) only two vertices 

(b) infinite number of vertices 

( d) none of these 

11 The vertex of the set S = {X : X = (1 - a)XI + aX2 , a :2: 
0, Xl, X2 E ]R2} is 

12. The set PF \ A, where A is the set of all vertices of PF is 

(a) convex set 

( c) mayor may not be convex 

13. The system of equations 

Xl - X2 + X3 = 4 

2XI + X2 - 5X3 = 3 

(b) not a convex set 

( d) none of these 

is equivalent to the following system with inequalities 
(a) Xl - X2 + X3 :S 4, 2XI + X2 - 5X3 :S 3, -Xl + 2X2 + 6X3 :2: 7 
(b) Xl - X2 + X3 :S 4, 2XI + X2 - 5X3 :S 3, -Xl + 2X2 + 6X3 :S 1 
(c) Xl - X2 + X3 :S 4, 2XI + X2 - 5X3 :S 3, 2XI - 4X3 :S 1 
(d) Xl - X2 + X3 :S 4, 2XI + X2 - 5X3 :S 3, 3XI - 4X3 :2: 7 

14. The vertex of the set S = {X : X = (1 - A)XI + AX2 , 0 < A :S 
1, Xl, X2 E ]R2} is 
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15. For Xl, X2 2: 0, consider the system 

Xl + X2 - X3 - 2X4 + 5X5 = 2 

X2 + X3 + 5X4 + 5X5 = 2 

Its solution Xl = X3 = X4 = 0, X2 = 7,X5 = -1 is 

531 

(a) a basic solution (b) a basic feasible solution (c) not a basic 
solution (d) feasible solution 

16. Let the optimal of a LP occur at vertices Xl and X 2• Then we 
know that it also occurs at each 

(a) X is a basic solution (b) X is not a BFS (c) X is not a basic 
solution (d) none of these 

17. For Xl, X2 2: 0, consider the system 

Xl + 2X2 - X3 - 2X4 - 3X5 = -1 

2X2 + X3 + 5X4 - 3X5 = -1 

Its solution Xl = 0, X2 = 1, X3 = 0, X4 = 0, X5 = 1 is 

(a) a basic solution 

(c) feasible solution 

(b) a basic feasible solution 

( d) none of these 

18. In a simplex table, there is a tie for the leaving variable, then 
the next BFS 

(a) will be nondegenerate (b) will be degenerate 

(c) may be degenerate 

or nondegenerate 

(d) does not exist 

19. Two vertices of PF are (XI,X2, X3, X4) = (0,0,1,2) and (3,0,0,1). 
Then a point of PF which can not be the vertices 

(a) (1,2,0,0) (b) (0,1,3,0) (c) (0,1,2,0) (d) (1,2,3,0) 

20. A LPP in standard form has m constraints and n variables. The 
number of basic feasible solutions will be 

(a) C:J (b) :::; (~) (c) 2 (~) (d) none of these 
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21. A LPP in standard form has m constraints and n variables. Then 
number of adjacent vertices corresponding to a vertex are 

(a) n - m 
of these 

(b) :S n - m (c) n!/m!(n - m)! (d) none 

22. In Problem 19, if m = 5 and n = 8, and X is basic feasible 
solution with 3 components at positive level. Then, the number 
of bases which correspond to X due to degeneracy are 

(a) 5 (b) 10 (c) 15 (d) 20 

23. In an LPP, let P = number of vertices and q = number of BFS. 
Then 

( a) P :S q (b) P = q ( c) P ;:: q ( d) none of these 

24. In a simplex iteration, if the leaving variable rule is violated, 
then the next table will 

25. 

(a) not give basic solution (b) give a basic solution 

which is not feasible 

(c) give a nonbasic solution (d) nothing can be said 

For max PI = -3Xl + X2, subject to 3Xl - X2 < 6· X2 < , 
3; Xl, X2 2: 0, the optimal table is 

BV Xl X2 81 82 Soln 

PI 3 0 1 0 3 

81 0 1 1 0 9 

X2 3 0 1 1 3 

If max P2 = Xl - X2, then optimal solution (Xl, X2) = (0,3) 
remains optimal for the weighted LP: P = max alPl +a2P2, O:S 
al :S a2, then a2 is 

(a) 1/2 (b) 3/4 (c) 1 ( d) none of these 

26. If in any simplex iteration the minimum ratio rule fails, then the 
LPP has 

(a) nondegenerate BFS 

(c) unbounded solution 

(b) degenerate BFS 

(d) infeasible solution 
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27. In a max LPP with bounded solution space, a variable having 
positive relative cost is permitted to enter and the minimum ratio 
rule is properly followed, then 

(a) the next solution will (b) the objective function 

not be BFS value decreases 

(c) the objective function (d) none of these 

increases 

28. If Xj is a basic variable in some simplex table, then relative cost 
of Xj is 

(a) positive (b) negative (c) infinite (d) 0 

29. In some simplex table of a maximization LPP, the column of Xj 

is (3; -2, -1, -3f. Then this shows that 

( a) PF is bounded (b) solution is unbounded 

(c) PF is unbounded (d) solution is infeasible 

in Xj direction 

30. In phase-I of the two phase method an artificial variable turns 
out to be at positive level in the optimal table of Phase-I, then 
the LPP has 

(a) no feasible solution 

(c) optimal solution 

(b) unbounded solution 

(d) none of these 

31. In a maximization problem, a basic variable corresponding to 
minimum ratio leaves the basis, this ensures 

(a) largest increase in 

objective function 

(b) the next solution will be 

aBFS 

(c) decrease in objective (d) none of these 

function 

32. In a maximization problem, a nonbasic variable with most neg­
ative relative cost enters the basis ensures 
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( a) largest increase in 

objective function 

(b) the next solution will be 

a BFS 

(c) decrease in objective (d) none of these 

function 

33. Let B = (AI, A 3 , A5) be a basis for a LPP such that A4 = 
aA I + {3A2 + ,A3 . Suppose anyone column of B is replaced by 
A4 to have a new basis. Then 

(a) a,{3" > ° (b) a,{3,,::; ° 
no such relationship required 

(c) a,{3" =1= ° (d) 

34. The optimum of a LPP occurs at X = (1,0,0,2) and Y = 
(0, 1,0,3). Then optimum also occurs at 

(a) (2,0,3,0) 
(c) (0,1,5,0) 

(b) (1/2,1/2,0,5/2) 
( d) none of these 

35. If in a simplex table the relative cost Zj - Cj is zero for a non­
basic variable, then there exists an alternate optimal solution, 
provided 

(a) it is starting simplex table (b) it is optimal simplex table 

(c) it can be any simplex table (d) none of these 

36. A LPP amenable to solution by simplex method has third and 
fourth constraint as Xl + X2 + X3 ::; 3 and 2XI + X2 + 3xs ::; 8. 
These constraints can be represented by a single constraint 

(a) 3XI +2X2+4x3::; 11 (b) Xl +2X3::; 5 (c) 3XI +X2+3x3::; 11 
( d) none of these 

37. In canonical form of a LPP, the availability vector b 

( a) is restricted to ~ ° (b) is restricted to ::; ° (c) any component 

may be ::; ° or ~ ° 
38. Suppose, in some simplex iteration Xj enters the basis. Then, at 

later stage in some simplex iteration 

( a) X j can leave the basis (b) X j can not leave the basis (c) both 
(a) and (b) are possible 

Suggestion. If the rule () j (Zj - Cj) is not followed then answer is 
(c), otherwise it is (b). 
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39. Suppose, in some simplex iteration Xj leaves the basis. Then, in 
just next iteration 

(a) Xj can enter the basis (b) Xj can not enter the basis (c) both 
(a) and (b) are possible 

40. By inspecting the dual of the following LPP find the optimal 
value of its objective function 

max z = 2XI + X2 + 3X3 

s.t. Xl - X2 + X3 ~ 5 

XI,X2,X3 ~ 0 

41. The following LPP has 

min Xo = -2XI + lOx2 

s.t. Xl - X2 ~ 0 

- Xl + 5X2 ~ 5 

Xl, X2 ~ 0 

(a) alternative solution (b) unique solution (c) unbounded solu­
tion (d) none of these 

Suggestion. This is an interesting problem in which the LPP has 
alternate optimal solution. Every point on the line -Xl +5X2 = 5 
gives optimal solution with optimal value 10. From the optimal 
table, it is not possible to find alternate optimal solution, since 
the solution space is unbounded. Except Xl = 5/4, X2 = 5/4, all 
other optimal solutions are nonbasic. 

42. Let min f(X) = CT X, AX ~ b, X ~ 0 be a primal LPP. 
Suppose Xo and Yo are the primal and dual feasible. Then 

(a) CT Xo ::; bTyo (b) CT Xo ~ bTyo (c) CT Xo = bTyo 
( d) none of these 

43. Let max f(X) = CT X, AX ::; b, X ~ 0 be a primal LPP. 
Suppose Xo and Yo are the primal and dual feasible. Then 

(a) CT Xo ::; bTyo (b) CT Xo ~ bTyo (c) CT Xo = bTyo 
( d) none of these 

44. The dual simplex method is applicable provided 
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(a) optimality remains 

satisfied 

(b) feasibility remains satisfied 

(c) both remain unsatisfied (d) optimality is satisfied but 

feasibility is disturbed 

45. Application of dual simplex method requires that availability 
vector b must satisfy 

(a) b"2 ° (b) b ~ ° ( c) no restriction of ( a) and (b) type 

46. In dual simplex table Xj is the only variable with negative value 
in solution column, but all other entries in xrrow are "2 0. Then 
LPP has 

(a) unbounded solution 

( c) alternate optimal solution 

(b) infeasible solution 

( d) none of these 

47. If the primal has degenerate optimal solution, the dual has 

(a) alternate optimal solution (b) degenerate optimal solution 
(c) no feasible solution 

48. If a variable Xj is unrestricted in sign in a primal LPP, then the 
corresponding dual jth constraint in the dual will be 

(a) ~ (b) "2 (c) equality constraint (d) none ofthese 

49. If the jth constraint in the primal is an equality, then the corre­
sponding dual variable is 

( a) unrestricted in sign 
stricted to ~ ° (b) restricted to "2 ° 

50. The primal LPP is 

max Xo = Xl - 2X2 

s.t. Xl - 3X2 ~ -3 

-Xl +2X2 =-2 

XI,X2 "2 ° 

(c) re-

The C~B-I in optimal table of above LPP is (0, If. Then the 
the optimal solution of the dual is 

(a) (O,l)T (b) (O,-lf (c) (0,2f (d) none of these 
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51. Consider the LPP 

max z = Xl + 5X2 + 3X3 

s. t. Xl + 2X2 + X3 = 3 

2XI - X2 = 4 

XI,X2,X3::::: 0 
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Given that in optimal table of this problem Xl and X3 are basic 
variables, then the optimal solution of the dual problem is 

Suggestion. First and third dual constraints are satisfied as 
equality constraints. 

52. Consider the LPP 

max z = Xl + 5X2 + 2X3 

s.t. Xl + 2X2 + X3 = 15 

2XI - X2 = 10 

XI,X2,X3::::: 0 

Given that in optimal table of this problem Xl is a basic variable 
and X3 is a nonbasic variable with relative cost 1/5, then the 
optimal solution of the dual problem is 

53. Let primal be a min LP and let a feasible solution which is not 
optimal of primal causes objective function value to 25. Then 
which of the following can be the value of dual objective function 

(a) 25 (b) 24.5 (c) 26 ( d) none of these 

54. If a slack or surplus variable Si is positive in optimal BFS of 
primal, then in optimal dual solution 

(a) the dual variable Yi is 0 (b) the dual variable Yi > 0 

( c) the slack or surplus of ( d) none of these 

ith dual constraint is 0 
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55. If the primal LPP has an unbounded solution, then the dual 
problem has 

(a) an optimal solution (b) infeasible solution (c) an unbounded 
solution (d) none of these 

56. If the dual LPP has an unbounded solution, then the primal 
problem has 

(a) optimal solution (b) infeasible solution (c) unbounded solu­
tion (d) none of these 

57. A primal LPP has nondegenerate optimal solution, then the op­
timal solution of the dual 

(a) is nondegenerate 

( c) may be nondegenerate or degenerate 

(b) is degenerate 

( d) none of these 

58. If the primal LPP has infeasible solution, then the solution of 
the dual problem is 

(a) unbounded (b) infeasible (c) either unbounded or infeasible 
( d) none of these 

59. If in dual simplex method, the rule for entering variable is not 
followed, then 

(a) the feasibility will further (b) the optimality will be 

deteriorate 

( c) there will be no change 

60. Consider the LPP: 

disturbed 

( d) none of these 

max z = 5Xl + 2X2 

s.t. Xl + X2 ::; 3 

2Xl + 3X2 ~ 5 

Xl, X2 ~ 0 

Which of the following primal-dual solutions are optimal: 

(a) Xl = 3,X2 = 1; 

Yl = 4, Y2 = 1 

( c) Xl = 3, X2 = 0; 

Yl = 5, Y2 = 0 

(b) Xl = 4,X2 = 1; 

Yl = 1, Y2 = 0 

(d) Xl = 2,X2 = 5; 

Yl = 1, Y2 = 5 
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61 In dual simplex method, let the variable Xi leave the basis and 
the variable Xj enter. Let Xj > O. Then later on 

(a) Xj can become negative (b) Xj will remain positive (c) none 
of these 

62. For every maximization LPP with m equality constraints and n 
variables (m < n), the number of unrestricted dual variables will 
always be 

( a) ::; m (b) m (c)::; n ( d) n 

Suggestion. Consult the LPP max Xl + 5X2 + 3X3, subject to 
Xl + 2X2 + X3 = 3, 2Xl - X2 = 4, Xl, X2, X3 2: O. 

63. Suppose primal is infeasible and dual is feasible. Then dual will 
have 

(a) unbounded solution (b) finite solution (c) alternate optimal 
solution (d) none of these 

64. The jth constraint in dual of a LPP is satisfied as strict inequality 
by the optimal solution. Then the jth variable of the primal will 
assume a value 

(a) -# 0 (b) ::; 0 (c) 2:0 (d) 0 

65. Let PF be the feasible set of a LPP which is bounded and 
nonempty. If a constraint is deleted then the feasible set of the 
new LPP 

(a) may be unbounded (b) may be empty (c) will always be 
bounded (d) none of these 

66. A LPP is given in canonical form with b 2: 0, and its optimal 
table is 

B. V. Xl X2 81 82 Soln 

Xo 0 0 2 1 34 

X2 1 0 2 -3 2 

Xl 0 1 -3 5 1 

Then for b' = (1 l)T CT B~lb' is , " B 
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67. Consider the optimal table of Problem 65. The objective func­
tion of the LPP is 

68. Consider the optimal table of Problem 65. The right hand vector 
of the LPP is 

69. Consider the optimal table of Problem 65. The column A1 asso­
ciated with Xl in constraint matrix of the LPP is 

Suggestion. For Problems 67 to 69, compute B from B-1. 

70. The optimal table of a LPP in which Sl is a surplus variable and 
S2 is a slack variable in standard form of the LPP is 

zOO -1 -2 2 

Xl 1 0 -3 -2 1 

X2 0 1 1 1 1 

The right hand side vector is assigned b' = (4,5)T. Then the 
new optimal solution is 

71. If the variable X2 is deleted from the LPP whose optimal table 
is in the preceding problem, then the optimal solution of the 
changed problem is 

72. Following is the optimal table of a LPP (Sl' S2, S3 ~ 0 are the 
slack variables when LPP is written in standard form) 

BV Xl X2 Sl S2 S3 Soln 

Xo 0 0 7/6 13/6 0 218/5 

S3 0 0 3/2 -25/2 1 5 

Xl 1 0 1/3 -2/3 0 16/5 

X2 0 1 -1/6 5/6 0 10/3 
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If the third constraint is deleted, then optimal solution of the 
revised LPP 

(a) Xl = 14/5, X2 = 11/3 (b) Xl = 3, X2 = 4 
(c) Xl = 16/5, X2 = 10/3 (d) none of these 

73. Change in all the coefficients of a particular variable in a LPP 

(a) disturbs feasibility (b) disturbs optimality 

(c) may disturb both feasibility (d) none of these 

and optimality 

74. Change in some column of the coefficients of a LPP 

(a) disturbs feasibility (b) disturbs optimality 

(c) may disturb both feasibility (d) none of these 

and optimality 

75. Addition of variable and deletion of a constraint simultaneously 
to a LPP 

(a) disturbs feasibility (b) disturbs optimality 

(c) may disturb both feasibility (d) none of these 

and optimality 

76. In a max LPP, if a constraint is added then the objective function 
value 

(a) will decrease 

( c) will increase 

(b) will decrease or remains same 

( d) nothing can be said 

77. In a LPP the costs are changed and simultaneously a constraint 
is deleted, then in the optimal table 

(a) only feasibility may be 

disturbed 

(b) only optimality is 

disturbed 

(c) both feasibility and optimality (d) nothing can be said 

may be disturbed 

78. Write true and false for each of the following statements 
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(a) Dual of dual is primal 

(b) To solve a LP problem with some constraints of the type ::; 
and some of the type ;:::, it is must to use big M-method 

( c) In standard form of a LPP all constraints must be of the 
type ::; 

(d) A LPP with two constraints and three variables can be 
solved by the graphical method 

(e) A LPP may have two optimal solutions one nondegenerate 
and other one degenerate 

(f) In optimal table of a LPP, the relative cost for a nonbasic 
variable is the indication of alternate optimal solution. It 
is always possible to find alternate optimal basic feasible 
solution by permitting to enter this nonbasic variable into 
the basis 

(g) In general, the dual of a LPP with m equality constraints 
contains m unrestricted variables. It is possible to have a 
dual which has less than m unrestricted variables 

(h) The number of vertices of any closed bounded set can not 
be infinite 

(i) A LPP has 7 variables and 5 constraints. It is possible 
to find the optimal solution of this LPP by the graphical 
method 

(j) It is possible to construct examples in which primal and 
dual are both unbounded 

(k) A LPP has an optimal solution. It is possible to get un­
bounded solution by changing the right hand side vector 
arbitrarily 

(1) If a linear program is infeasible, then its dual must be un­
bounded. 

(m) If a minimization LPP problem has a feasible vector, then 
its dual can never go to unbounded maximum value. 

Suggestion. For (f), see Problem 42. 

79. In a balanced transportation problem with m sources and n des­
tinations, the number of basic variables is 

(a) m + n 
these 

(b) m + n + 1 (c)m+n-l (d) none of 
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80. If some constant is added to each cost Cij of a row or column in 
a transportation matrix, then the the optimal value 

(a) decreases (b) increases ( c) may increase or decrease 
( d) remains same 

81. In a balanced transportation problem with 3 sources and 3 des­
tinations, the number of basic feasible solutions possible are 

(a) 100 (b) 120 (c) 124 (d) 126 

82. In a balanced transportation model, if Ui'S and vi's are the dual 
variables associated with rows and columns, then 

(a) Ui 2: 0 (b) Vj 2: 0 (c) Ui, Vj 2: 0 (d) Ui, Vj 

unrestricted 

83. In a balanced transportation problem with m sources and n des­
tinations, the number of dual constraints will be 

(a) m + n (b) m + n + 1 (c) m + n - 1 (d) mn 

84. In a balanced transportation problem with m sources and n des­
tinations, the number of nonbasic basic variables will be 

(a) mn (b) (m-1)(n-1) (c) m(n+ 1) (d) (n+ l)m 

85. In a balanced transportation problem with m sources and n des­
tinations, the number of dual variables will be 

(a) m + n (b) m + n + 1 ( c) m + n - 1 ( d) none of 
these 

86. In a transportation problem, one dual variable can be assigned 
arbitrary 

(a) any real value 

(c) only values 2: 0 

(b) only zero value 

(d) only values:::; 0 

87. For a balanced transportation problem with 2 sources and 3 des­
tinations, the optimal solutions are Xn = 10, X13 = 8, X22 = 
4, X23 = 4 and Xu = 6, X13 = 12, X21 = 4, X22 = 4, then 
Xu = 8, X13 = 10, X21 = 2, X22 = 4, X23 = 2 

(a) is a solution but not (b) mayor may not be optimal 

optimal solution 

( c) is an optimal basic ( d) is a nonbasic optimal 

solution solution 
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88. In TP one of the dual variable is assigned arbitrary value because 

(a) solution is available (b) one of the constraint 

immediately in TP is redundant 

(c) construction of loop (d) none of these. 

becomes simple 

89. In balanced TP, the dual variables are unrestricted in sign be­
cause 

(a) TP is a minimization (b) TP is with equality 

problem constraint 

( c) all decision variables (d) none of these. 

are integers 

90. In a balanced TP with two sources and three destinations and 
availabilities 30 at each source and demand 20 at each desti­
nation, the dual variables in the optimal table corresponding to 
sources and destinations are -1,2 and 1, 2, 3, respectively. Then 
the optimal value is 

(a) 90 (b) 110 (c) 80 (d) 150 

91 In a transportation problem the value of the dual variables are 
not unique. If one dual variable is assigned two different values 
and remaining are computed as usual, then 

(a) Zij - Cij will also change (b) Zij - Cij are unique (c) mayor 
may not change 

92. In an assignment problem with m jobs and m machines, the 
number of basic variables at zero level in a BFS is 

(a) m (b) m-l (c) m + 1 (d) none of these 

93. If some constant is added to each cost Cij of the assignment 
matrix then the 

(a) optimal solution changes 
same. 

(b) optimal solution remains 

94. Which one of the following is not a deterministic model 

(a) Linear programming problem (b) Transportation problem 
(c) CPM (d) PERT 
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95 In a minimization ILPP with Xl and X2 as the terminal nodes 
of Branch and bound algorithm at a particular stage are shown 
below 

Xo = 15 
I 1, 2 I 

N(1) 

Xo = 13 
11.2, 31 

N(2) 

Xo = 10 
11, 2.31 
N(3) 

Xo = 16 

I 2, 5 I 
N(4) 

Xo = 15 
12, 7.21 

N(5) 

The next branching must be done from the node 

Xo = 13 
12, 3.51 
N(6) 

(a) N(5) (b) N(3) (c) N(2) (d) none of these 

96. In above problem the next branching corresponds to 

(a) Xl :s: 1, X2 2': 2 (b) Xl :s: 2, X2 2': 3 
(c) Xl :s: 7, X2 2': 7 (d) none of these 

97. State true or false 

(a) The sum of two convex functions is convex 

(b) The product of two convex functions is convex 

(c) If in TP, two dual variables are assigned arbitrary value 
then the method will yield correct solution 

(d) Assignment problem is not a linear model 

(e) Assignment problem can be solved by using u-v method 

(f) A cyclic solution of an assignment problem with m machines 
and m jobs is also a solution of traveling salesman problem 
with m cities 

(g) In traveling salesman problem we reduce the cost matrix 
first by row-wise and then by column-wise. If the process 
is reversed, then amount of reduction is always same 

(h) In traveling salesman problem with n cities the number of 
possible tours are (n - 1)! 

(i) A maximum flow problem has always a unique solution 

(j) The sum of two unimodal functions is unimodal 

(k) A convex function is always unimodal 

(1) The minimal spanning tree always gives unique solution 

98. In an n-node square matrix the completion of Floyd's algorithm 
to find shortest route between any two nodes requires the number 
of comparisons: 

(a) n2 (b) n2(n - 1) (c) n(n - 1)2 (d) n(n + 1) 
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99. The following table shows the machine time (in days) for 5 jobs 
to be processed on two different machines Ml and M2 in the 
order M 1M 2 : 

Job 1 2 3 4 5 

Ml 3 7 4 5 7 

M2 6 2 7 3 4 

The optimal sequence of jobs to be processed on theses machines 
to minimize the total elapsed time is 

(a) 1 --) 2 --) 3 --) 4 --) 5 

(c) 1--)3--)5--)4--)2 

(b) 1 --) 4 --) 5 --) 2 --) 3 

(d) 1--)5--)3--)4--)2 

100. The number of all possible optimal sequences to minimize the 
total elapsed time required to complete the following tasks is 
(each job is processed in the order MIM3M2M4). 

(a) 2 

Job 1 234 

Processing time on Ml 20 17 21 25 

Processing time on M2 10 7 8 5 

Processing time on M3 9 15 10 9 

Processing time on M4 25 5 9 25 

(b) 4 (c) 16 (d) 24 

101. The function f(X) = 3xi - 2x~ + x§ is 

(a) positive definite (b) positive semi-definite (c) negative 
definite (d) indefinite 

102. The function f(X) = xi + x~ + x§ - 2XIX2 is 

(a) convex (b) strictly convex ( c) concave ( d) strictly con­
cave 

103. In dichotomous search technique with J = 0.1 and Lo = 1, width 
of initial interval of uncertainty, after four experiments the width 
of interval of uncertainty is reduced to 

(a) 0.325 (b) 0.375 (c) 0.425 (d) 0.475 
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104. In Fibonacci search technique with n = 5 and Lo = 1, the mea­
sure of effectiveness is 

(a) 0.001 (b) 0.01 (c) 0.1 (d) 0.125 

105. Let L4 and L~ be the length of interval of uncertainty after 
four experiments in Fibonacci and Golden section search, re­
spectively. Then 

(a) L4 < L~ (b) L~ < L4 (c) L4 = L~ (d) none of 
these 

106. The number of experiments in Fibonacci search that reduce the 
interval of uncertainty to ~ O.OOlLo (Lo: initial interval of un­
certainty) is 

(a) 13 (b) 14 (c) 15 (d) 16 

107. The number of experiments in Golden search that reduce the 
interval of uncertainty to ~ 0.05571Lo (Lo: initial interval of 
uncertainty) is 

(a) 7 (b) 8 (c) 9 (d) 10 

108. For positive definite quadratic XT AX in n(> 3) variables, let 
Xl be the initial approximation for minimum point when the 
conjugate gradient method is applied. Then the exact minimum 
occurs at 

(a) X n - 1 (b) Xn (c) Xn+l ( d) none of these 

109. Consider the following pay-off matrix 

[~ ~2 ~l 
If solved as game of pure strategies then the game value is 

(a) -2 (b) 1 (c) 2 (d) none of these 
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Answers 

Problem Set 1 

1. opt z = 2Xl + X~ - xt + X3 + 1 

s.t. 2Xl + x~ - xt + x~ + 81 = 4 

3Xl - 2x~ - 3xt + 3x3 + 82 = 5 

Xl - 3x~ + 4xt - 4x3 - 83 = 5 

Xl + x~ + xt - x3 = 3 

I + - >0 Xl, X2' X3 , X3 ,81,82,83 _ 

2. opt z = 2Xl - X~ + X3 

S.t. Xl + X~ + 2X3 - 81 = 2 

u +v + 82 = 4 

2Xl - x~ - X3 - u + v = 0 

3Xl + 2x~ - 7X3 + 84 = 3 

3. opt z = Xl + 2x~ - xt + x3 + 2p 

S.t. Xl + X~ - xt + X3 + 81 = 5 - P 

Xl - 2x~ - 3xt + 3X3 + 82 = 4 + 2p 

2Xl + 3x~ - 4xt + 4X3 - 83 = 3 - 3p 

Xl + X~ + xt - X3 = 2 - P 

I + - >0 Xl,X2,X3 ,X3 ,81,82,83 _ . 

The range of p is - 2 ::; p ::; 1. 



554 Answers 

4. (a) This is not an LPP (b) min z = xi + Xl + 2xt + 2x2 - X3 

s.t. xi - Xl + xt - X2 - X3 ::; 9 

xi - Xl - 2xt + 2x2 + 3X3 = 11 

+ - + - >0 Xl ,xl' X2 , X2 ,X3 _ 

5. Assume Y = I min{xl' X2}1. The LPP is min z = Yl + Y2 - 2y 

s.t. Yl + Y2 - 2y + 81 = 6 

Yl - 2Y2 + Y - 82 = 3 

6. Define r = 6 + 3;1 _ X2 > O. This implies 3xlr - X2 r = 1 - 6r. 

Let rXj = Yj, j = 1,2,3. The required LP model is 

max 2Yl + 5Y2 - 5Y3 - 3r, 

s.t. 3Yl - Y2 = 1 - 6r 

Yl - Y2 ~ 0 

7 Yl + 9Y2 + 1OY3 ::; 30r 

Yl ~ 0, Y2 ~ r, Y3 ~ 0 

7. Xj = number of units required of jth food, j = 1,2, ... ,n 
min z = 2:/1=1 CjXj 

s.t. Lj=l aijXj ~ bi , i = 1,2, ... ,m 

Xj ~ 0, j = 1,2, ... ,n. 

8. Xi = number of units manufactured of ith product, i = A, B 
max z = 5XA + 10xB 

s.t. XA + 5XB ::; 10000 

3XA + XB ::; 7000 

X A, X B ~ 0 and are integers 

9. Xl = number of belts of type A, X2 = number of belts of type 
B, 
max z = 3Xl + 2X2 
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s.t. 2Xl + X2 :S 1500 

Xl + X2 :S 1000 

Xl :S 500 

X2 :S 800 

Xl, X2 ~ 0 and integers 

555 

10. ml = units of milk produced in Plant-I per day, m2 = units of 
milk produced in Plant-II per day, bl = units of butter produced 
in Plant-I per day, b2 = units of milk produced in Plant-II per 
day. Assume that one unit milk == 1000 liters and one unit butter 
== 100 kgs. 

min z = (15ml + 28bl + 18m2 + 26b2)1000 

s. t. ml + m2 ~ 10 

bl + b2 ~ 8 

3ml + 2bl :S 16 

bl + 1.5b2 :S 16 

11. max z = 75xl + 50X2 

s.t. 25xl + 40X2 :S 4400 

30Xl + 15x2 :S 3300 

JL < X2 < 17 
19 - Xl - S 

Xl ~ 0, X2 ~ 0 and are integers 

12. Xi = number of master rolls cut on the pattern Pi, i = 1,2, ... ,8 
min z = Xl + X2 + ... + Xs 

s.t. 5Xl + 3X2 + 3X3 + 2X4 + X5 ~ 200 

X2 + 2X5 + X6 + X7 ~ 90 

X3 + X6 + 2xs ~ 350 

X4 + X7 ~ 850 

Xl, X2,··· ,Xs ~ 0 and integers 

13. Xi = Number of parent metallic sheets cut on the pattern Pi, 

i = 1,2,3. 
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min z = Xl + X2 + X3 

s.t. 10Xl + 6X2 + 2X3 2': 2500 

X2 + 2X3 2': 1500 

Xl, X2 2': 0 and are integers 

14. Xl = number of tables and X2 = number of chairs to be manu­
factured 
max z = 9Xl + 6X2 

s.t. 30Xl + 20X2 :s: 381 

10Xl + 5X2 :s: 117 

Xl, X2 2': 0 and integers 

15. max z = 15xl + 25x2 

s.t. 3Xl + 4X2 = 100 

2Xl + 3X2 :s: 70 

Xl + 2X2 :s: 30 

Xl 2': 0, X2 2': 3 

16. Let Xl, X2, X3 be the number of models I, II, III, respectively to 
be manufactured. 
max z = 30Xl + 20X2 + 60X3 

s.t. 6Xl + 3X2 + 2X3 :s: 4200 

2Xl + 3X2 + 5X3 :s: 2000 

4Xl + 2X2 + 7 X3 :s: 3000 

Xl 2': 200, X2 2': 200, X3 2': 150 and integers 

17. Xij = number of units of product i processed on machine j, 
i = 1,2, ... ,~; j = 1,2, . .. ,n 
min z = 2::::1 2::j=l CijXij 

s.t. ailxl1 + ai2X12 + ... + ainXln :s: bi 

Xlj + X2j + ... + Xmj 2': dj 

Xij 2': 0; i = 1,2, ... ,~, j = 1,2, ... , n. 

18. Xij = the amount (in tons) of the ith commodity given the place­
ment at jth position, i = A, B, C, j = 1 (for forward), 2 (for 
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centre), 3 (for after) 

maxz = 60(XAI + XA2 + XA3) + 80(XBl + XB2 + XB3) 

+ 50(XCI + XC2 + XC3) 

s.t. XAI + XA2 + XA3 ::; 6000 

XBl + XB2 + XB3 ::; 4000 

XCI + XC2 + XC3 ::; 2000 

XAI + XBl + XCI::; 2000 

XA2 + XB2 + XC2 ::; 3000 

XA3 + XB3 + XC3 ::; 1500 

60x Al + 50x Bl + 25xCl ::; 100000 

60XA2 + 50xB2 + 25xC2 ::; 135000 

60x A3 + 50x B3 + 25xC3 ::; 30000 

Xij ;:: 0 

19. min z = Y 

s.t. 20Xla + 25x2a + 20X3a - Y ;:: 0 

25xlb + 20X2b + 5X3b - Y ;:: 0 

Xla + Xlb ::; 100 

X2a + X2b ::; 150 

X3a + X3b ::; 200 

Xij,Y;:: 0, i = 1,2,3; j = 1,b 
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20. The first constraint 6Xl + 3X2 + 2X2 in answer to Problem 16 is 
replaced by 

Xl + 2X2 ::; 700 

X2 + 3X3 ::; 1400 

21. max z = min U:=:l ailXil, ~ 2:=:1 ai2 X i2, ... , ~ 2:=:1 ainXin} 

S.t. XiI + Xi2 + ... + Xin ::; bi 

Xij ;:: 0, j = 1,2, ... , n 
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22. Let Xj be the number of waiters recruited on jth day, j = 

1,2,3,4,5 
min z = Xl + X2 + X3 + X4 + X5 

s.t. Xl + X4 + X5 2: 25 

Xl + X2 + X5 2: 35 

Xl + X2 + X3 2: 40 

X2 + X3 + X4 2: 30 

X3 + X4 + X5 2: 20 

o ::; X j ::; 30 and are integers 

23. Xij = number of buses of type i allocated to city j; i = 1, 2, 3, 
j = 1,2,3,4. 8j = number of passenger not served for the cities 
j = 1,2,3,4 

min z = 3000Xl1 + 2200X12 + 2400X13 + 1500X14 

+ 3600X21 + 3000X22 + 3300X23 + 2400X24 

+ 3500X31 + 4500X32 + 3600X33 + 2000X34 

+ 4081 + 5082 + 4583 + 7084, 

subject to 

2:J=l X1j ::; 5, 2:J=l X2j ::; 8, 2:J=l X3j ::; 10 

300Xl1 + 280X21 + 250X31 + 81 = 1000 

200X12 + 210x22 + 250X32 + 82 = 2000 

200X13 + 210x23 + 200X33 + 83 = 900 

100X14 + 140x24 + 100X34 + 84 = 1200 

all Xij 2: 0, and 8j 2: 0 

24. XiA = amount invested in year i under Scheme A; XiB = amount 
invested in year i under Scheme B 
max z = 2.4x2B + 1.6x3A 

s.t. X1A + X1B ::; 2,00,000 

X2A + X2B ::; 1.6x1A 

X3A ::; 2.4x1B + 1.6x2A 

XiA,XiB2:0, i=1,2,3 
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25. Define Xl = number of units of PI made on regular time; X2 = 
number of units of P2 made on regular time; X3 = number of 
units of PI made on overtime; X4 = number of units of P 2 made 
on overtime; X5 = number of units of PI made on regular time 
on MI and overtime on M 2 ; X6 = number of units of P2 made 
on regular time on MI and overtime on M 2 . 

max z = 8XI + lOx2 + 4X3 + 8X4 + 6X5 + 9X6 

s.t. 5XI + 4X2 + 5X5 + 4X6 :::; 120 (regular time of Mt) 

5X3 + 4X4+ :::; 50 (overtime of M I ) 

3XI + 6X2 :::; 150 (regular time on M 2) 

3X3 + 6X4 + 3X5 + 6X6 :::; 40 (overtime on M 2) 

Xj ~ 0, j = 1,2, ... 6 

s.t. 24xI + 36YI - 0.75xll - 0.75Yll - 0.33Y12 :::; GI 

8XI + 12YI - 0.5Xll - 0.5Yll :::; G2 

100XI + 50YI - 0.9Xll - 0, 9Yll - 0.6Y12 :::; PI 

27. Xl = number of units of PI, X2 = number of units of P 2 
max z = lOXI + 30X2 

s.t. -0.6XI + 0.4X2 :::; 0 

Xl :::; 100 

Xl + 2X2 :::; 120 

28. max z = 4000(XIA + XlB + XlC) + 3000(X2A + X2B + X2C) + 

4000(X3A +X3B +X3C) 
subject to 

Availability of acreage for each crop 

XIA +XIB +XIC:::; 700 

X2A + X2B + X2C :::; 800 

X3A +X3B +X3C:::; 300 
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Availability of usable acreage in each farm 

XIA +X2A +X3A ~ 400 

XIB + X2B + X3B ~ 600 

XIC +X2C+X3C ~ 300 

Water available (in acre feet) constraints 

5XlA + 4X2A + 3X3A ~ 1500 

5XlB + 4X2B + X3C ~ 2000 

5XlC + 4X2C + X3C ~ 900 

Answers 

To ensure that the percentage of usable acreage is same for each 
farm 
XIA + xlB + XlC _ X2A + X2B + X2C _ X3A + X3B + X3C 0 

400 - 600 - 300 r 

3(XIA + XlB + XlC) = 2(X2A + X2B + X2c) 

X2A +X2B +X2C = 2(X3A +X3B +X3C) 

Xij 2: 0 i = 1, 2, 3; j = A, B, C 

29 ,,8 (1 )x·· X2j X3j b' t t . max z = 6j=1 Uj - Plj 'J P2j P3j , su Jec 0 

z.=J=l Xij S ai, i = 1,2,3 

2:~=lXij2:bj, j=1,2, ... ,8 

Xij, Pij 2: 0, 
where Pij is the probability that target j will be undamaged by 
weapon i and Xij is the number of weapons i assigned for target 
J. 

Problem Set 2 

1. (a) Not convex; (b) convex; (c) not convex; (d) convex; (e) not 
convex; (f) not convex 

2. min z = 2Xl + X2, 

s.t. Xl + X2 2: 1 

Xl + 2X2 2: 2 
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7. The equivalent system with inequalities is 

x+l+x+2:::;1 
2Xl - 4X3 :::; -5 

-3Xl - X2 + 4X3 :::; 4 
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10. (a) Triangle with vertices at (0, -1), (2,0), (1,2); (b) ]R2; (c) 
Disc {(Xl,X2) : xI + x§ :::; I}; (d) quadrilateral with vertices as 
these points. 

12. (a) (0,2,0,0,0); (b) (-6,14,0,0,0); (c) for X3 and X4 as basic 
variables: infinite solutions; (d) if we take Xl and X5 as basic 
variables: nonexisting solution 

13. (1,2,0,0,0,0), (0,5/3,4/3,0,0), (3,0,0,0,8) 

17. No 

19. 

20. 

( n-p ) 
m-p 

Problem 18 ensures the existence of three bases corresponding to 
the degenerate BFS (0,2,0,0). Two bases are given in Example 

2[' ~eC~~ln 2.3 and the third one is 

-1 -1 

21. (-11,5,2,8) 

24. (a) Xl = 2, X2 = 0, Z = -2; (b) Unbounded solution 

25. The optimum will not exist until the objective function is con­
stant. 

29. min Z = -Xl - X2 + 14, 

s.t. -3Xl + X2 :::; 3 

X2 :::; 7 

Xl - X2 :::; 2 

xI,x2:2:0 
Optimal solution: Xl = 9, X2 = 7, Z = -2 

30. (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,7/2,0, -3/2), (0,0, -7/2, -3/2) 
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Problem Set 3 

2. (a) Xl = 2/3, X2 = 7/3, Z = 16/3; (b) Xl = 2, X2 = 2, Z = 14; 
(c) Xl = 0, X2 = 1, Z = 1; (d) Xl = 0, X2 = 30, Z = 18 

3. max z = -4Xl + X2 

s.t. 7Xl - 3X2 ~ 3 

-2Xl +X2 ~ 1 

4. Basic solution (4,0, -6,0), but not feasible 

5. Unbounded solution 

6. Xl = 0, X2 = -2, z = 6 

8. (i) X3, Xl and 83 are the basic variables in that order; (ii) The 
LPP is 

max z = 6Xl + 2X2 + 10X3 + 2X4, 

s.t. X2 + 2X3 ~ 5 

3Xl - X2 + X3 + X4 ~ 10 

Xl + X3 + X4 ::; 8 

10. Unbounded solution 

11. (a) Xl = 0, X2 = 2, 81 = 1, 82 = 0, 83 = 7 
(b) Xl = 1/8, X2 = 9/4, 81 = 11/8, 82 = 83 = ° 

12. (a) (0,2,1,0,1) (b) (1/8,9/4,11/8,0,0) 

13. Xl = X2 = 0, X3 = X4 = 1, X5 = 3, z = 5 

15. The solution space is unbounded in X2 direction 

16. Xl = 7, X2 = -1, z = 22 

17. Optimal solution: Xl = 22/5, X2 = 31/5, X3 = ° Z = 8 

18. Xl must be preferred if 01 (Zl - cd < 02(Z2 - C2) for min problem, 
and the reverse inequality is considered for max problem 

21. Xl = 1, X2 = 0, X3 = 1, X4 = 0, Z = -5/4 
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Problem Set 4 

1. C = -b and A is skew-symmetric matrix 

2. Yes, take (Xl, X2) as the starting BFS 

3. Dual: 
max z = -Yl - 2Y2 - 2Y3 

s.t. -YI + Y2 - Y3 ::; -2 

-2YI + Y3 ::; -3 

Y2 - 2Y3 ::; -1 

Yl, Y2,Y3 ~ 0 
Optimal solution of the primal Xl = 0, X2 = 1/2, X3 = 5/4, Xo = 
-11/4 

4. Optimal solution of primal: Xl = 1/8, X2 = 9/4, Xo = 7/4; 
Optimal solution of the dual: YI = 0, Y2 = 7/4, Y3 = 1/4, Yo = 

7/4. 

5. Dual: 
min Yo = 14YI + 17Y2 - 19Y3 + 100 

s.t. -3YI - 5Y2 + 2Y3 ::; -9 

8Yl - 2Y2 - 4Y2 ::; 6 

-5Yl + 6Y2 = -4 

YI, Y3 ~ 0, Y2 unrestricted 

6. Primal: 
min z = -2XI - 3X2 

s.t. Xl - X2 ~ 3 

-Xl + X2 ~ 2 

Dual: 
max z' = 3YI + 2Y2 

s.t. Yl - Y2 ::; -2 

-Yl + Y2 ::; -3 

Yl, Y2 ~ 0 
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7. Xl = 0, X2 = 5, Xo = 15; Dual: 
min Yo = -3YI + 5Y2 

s.t. 2YI + 3Y2 2:: 2 

-YI + Y2 2:: 3 

YI, Y2 2:: 0 

10. Converse is also true 

11. min Xo = 2XI + 3X2 + 4X3 

s.t. X2 + X3 2:: -2 

-Xl + 3X3 2:: 3 

-2XI - 3X2 2:: 4 

13. yes, converse is also true 

15. min Yo = 5YI + 10Y2 + 8Y3 

s.t. 3Y2 + Y3 2:: 6 

YI - Y2 2:: 2 

2YI + Y2 + Y3 2:: 10 

Y2 + Y3 2:: 0 

Y - 1, Y2, Y3 2:: 0 
Optimal solution: YI = 4, Y2 = 2, Y3 = 0, Yo = 40 

16. Xl = -4, X2 = 4, Xo = 0 

17. YI = 3, Y2 = -1, Yo = 5 

18. (b) YI = 1, Y2 = -4/3, Yo = 11/3 

Answers 

19. Optimal solution is Xl = 1.286, X2 = 0.476, X3 = 0, Z = 2.095 

20. No feasible solution 

21. Optimal of primal: Xl = 0, X2 = 0, X3 = 3.57, X4 = 1.43, X5 = 
0, X6 = 0.86, Xo = 2.71, Optimal of dual: YI = -0.36, Y2 = 
0.07, Y3 = 0.93, Yo = 2.71 
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22. max Yo = bTy +£Ty' -uTy", subject to ATy +IY' -IY" S C, 
where Y = (Yl,Y2, ... ,Ym) unrestricted, y' = (y',y', ... y~)?: 0, 
y" = (y{, y~, ... ,y~) ?: 0 and I is identity matrix of order n 

23. max Yo = Ym+l, subject to ATy + eYm+l S C, where Y 
(Yl, Y2, ... ,Ym)T and Ym+l are unrestricted 

Problem Set 5 

1. Xl = 71/10, X2 
2/5, Z = 71/10 

0, X4 

2. Infeasible solution (no solution) 

3. Xl = 5/3, X2 = 0, Xo = 10/3 

4. Xl = 0, X2 = 14, X3 = 9, Z = -9 

5. Xl = 4, X2 = 15/4, X3 = 0, Z = 123/14 

6. Yl = 3, Y2 = 5, Y3 = 2, Z = 34 

13/10, X5 

7. A-type belts = 200, B-type belts 800, maximum profit = 2200 

8. max Z = 6Xl + 7.50X2 - 0.5x3 
s.t. 10Xl + 12x2 + xt - x:3 = 2500 

150 S Xl S 200 

X2 S 45 

all var ?: 0 

(a) Optimal solution Xl = 200, X2 = 45, xt = 0, xt = 40 and 
Z = $1517.50 

(b) Optimal solution Xl = 196, X2 = 45, xt = 0, xt = 0 and 
Z = $1513.50, hence no overtime is recommended by the 
new solution. 

9. Xl = 47/20, X2 = 1/10, X3 = 27/10, X4 = 6/4, Z = 479/10 

11. Taking Q = 26 = 65, n = 6 and M > 0 (large), the Karmarkar's 
standard form is 
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min Yo = 65Yl + 65Y2 + 65Y3 - 195Y4 + 390Y5 + 260Y6 + M Y9 

S.t. Yl + Y2 + 3Y4 - Y5 + 2Y6 - 6Y7 = 0 

Y2 + Y3 - Y4 + 4Y5 + Y6 - 3Y7 - 3ys = 0 

Yl + Y3 - 2Y4 + Y5 + Y5 + 5Y6 - 5Y7 - Ys 

Yl + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 - 64ys + 57Y9 = 0 

m+~+~+~+~+m+~+~+~=l 

all var ;::: 0 

12. With a = 1/ V6, xl = (4/9,5/18,5/18), min = 5/9. Continuing 
this iterative process, the Karmarkar's algorithm will stop at the 
optimal solution xl = (1,0,0), min = 0 

Problem Set 6 

1. For same optimal solution the variation in costs satisfies the in­
equality ~ :-:; 8 :-:; <5, where 

~ = m;x {m:;x (Zjc:t, a{, j E N) ,-oo}, 
i5 = min {min (Zj-Cj a j j E N) +oo} 

j k a{' k' , 

2. For same optimal basis the variation 8 in b satisfies the inequality 

~ :-:; 8 :-:; <5, where ~ = m:;x { mrx { ~~~, f3ik > O} , -00 } , 

i5 = m1n { m}n { ~~~, f3ik < O} , +00 } 

4. (a) CI E [1,6] (b) b2 E [5/3,10] 

6. (a) Xl = 7/2, X2 = 1/2, Xo = 17/2 (b) Xl = 12/5, X2 = 
6/5, Xo = 42/5 (c) Xl = 1, X2 = 1, Xo = 5 or Xl = 5/2, X2 = 
0, Xu = 5 

7. (a) Xl = 0, X2 = 2, X3 = 0, Xo = -4 (b) Xl = 0, X2 = 6, X3 = 
4, Xo = -8 (c) Unbounded solution 

9. Xl = X2 = 0, X3 = 8, Z = -8, Dual variables YI = 1, Y2 = 
0, Yo = 8; (a) optimal solution remains unchanged (b) optimal 
solution remains unchanged (c) Xl = X2 = 0, X3 = 4, Xo = -4 
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(d) Increase right side of the first constraint. Since Cj;B- I = 
( -1, 0), the increase in right side of the first constraint will fur­
ther reduce the objective function value, it is profitable to in­
crease right side of the first constraint. Increase in right side of 
second constraint will cause no effect on the objective function 
value. 

10. (i) Optimal solution Xl = 0, X2 = 8, X3 = 20/3, Xo = 20/3, 
Xo = 680/3; (ii) CI > 44/3; (iii) C2 = 56/3; (iv) Xl = 0, X2 = 
43/5, X3 = 17/3, Xo = 686/3 when bl = 103, and Xl = 0, X2 = 
12, X3 = 0, Xo = 240, when bl = 200 

11. Xl = 7/5, X2 = 2/5, z = 4; Xl = X2 = X3 = 1, z' = 6 

12. (a) Deletion of first constraint renders the LPP with unbounded 
solution. Similar is the case when third constraint is deleted (b) 
The deletion of second constraint causes no effect on the optimal 
solution 

13. Xl = 20, X2 = 0, Xo = 80 

Problem Set 7 

1. X12 = 5, Xl3 = 20, X21 = 20, X24 

5, X43 = 10, X45 = 25, Xo = 590 

3. Xl3 = 50, X21 = 30, X23 = 120, X31 
Xo = 1460 

10, X32 15, X34 

70, X32 130, X43 30; 

4. Xl2 = 50, X22 = 50, X23 = 100, X31 = 100, X33 = 100, X42 = 30; 
Xo = 1500 

5. Xl2 = 15,X13 = 13,X21 = 5,X23 = 7,X24 = 6,X25 = 5,X34 = 19; 
Xo = 148 

6. N-W rule: 1765, LCM: 1800, VAM: 1695, modified VAM: 1645. 
Clearly, modified VAM gives better initial basic feasible solution. 

7. (m~n++;)) 

8. (a) No (b) up to 4 (c) yes, Xl2 = 12, Xl4 
1, X23 = 10, X31 = 5, X3dummy = 3, Xo = 89 

9. 270 

9, Xldummy 
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12. (a) Not an optimal schedule (b) 4 (c) no change 

13. X13 = 20, X21 = 30, X24 = 10, X32 = X33 = 25; Xo = 495 

14. WI ----7 M 4 , W2 ----7 M 3 , W3 ----7 M 2 , W 4 ----7 M 1, W5 ----7 M 5 , W5 ----7 

M6 

16. 1 ----7 1, 2 ----7 2, 3 ----7 3, 4 ----7 4, total cost: $15,000 

17. Ml ----7 A, M2 ----7 C, M3 ----7 B, M4 ----7 D, minimum cost of 
installation: 34 

21. The formulation of the problem is 

I m n 

mIll Xo = L L L CijkXijk 
i=1 j=1 k=1 

m 

s.t. L Xijk 2: aik, i = 1,2, ... , l; k = 1,2, ... , n (demand) 
j=1 

I 

LXijk2:bjk, j=1,2, ... ,m; k=1,2, ... ,n (demand) 
i=1 

n 

LXijk:::;dij, i=1,2, ... ,l; j=1,2, ... ,m (supply) 
k=1 

Xijk 2: 0 for all i, j, and k. 

Problem Set 8 

1. (a) Connect nodes 1 and 2, 2 and 3, 3 and 4, 3 and 5, 3 and 
6, 5 and 7, minimum length = 14 units (b) shortest path: 1 ----7 
2 ----7 5 ----7 7, shortest distance = 10 units, alternate shortest path: 
1----73----75----77 

2. (a) 1 ----7 3 ----7 2 ----7 5 ----7 6 ----74----7 7, distance 11 units (b) 7 ----7 
6 ----7 5 ----7 2 ----7 3 ----7 1, distance 11 units (c) 2 ----7 5 ----7 6 ----7 4 ----7 7, 
distance 7 units 

3. max flow 25 units and optimal flow in arcs 1 ----7 2: 8 units, 1 ----7 3: 
13, 1 ----7 5: 4, 2 ----7 4: 2, 2 ----7 5: 6, 3 ----7 4: 3, 3 ----7 5: 10, 4 ----7 5: 5 



Answers 569 

(a) surplus capacities: 1 ---+ 3 1 unit, 2 ---+ 4 2 units 3 ---+ 4 3 
units; 

(b) flow through node 2 = 8 units, through node 3 = 13 units, 
through node 4 = 5 units; 

(c) can be increased along 3 ---+ 5 because there is surplus ca­
pacity at node 1, increase along 4 ---+ 5 is also possible; 

(d) alternative optimal solution: max flow 25 units and optimal 
flow in arcs 1 ---+ 2: 7, 1 ---+ 3: 14, 1 ---+ 5: 4, 2 ---+ 4: 3, 2 ---+ 5: 
6, 3 ---+ 2: 4, 3 ---+ 4: 3, 3 ---+ 5: 10, 4 ---+ 5: 5 

4. maximum flow = 110 million bbl/day; (a) Refinery 1 = 20 million 
bbl/day, Refinery 2 = 80 million bbl/day, Refinery 10 million 
b bl / day; (b) Terminal 7 = 60 million b bl / day, Terminal 8 = 
50million bbl/day; (c) Pump 4 = 30 million bbl/day, Pump 5 = 
50 million bbl/day, Pump 6 = 70 million bbl/day 

5. maximum flow = 100 million bbl/day; Pump 4 = 30 million 
bbl/day, Pump 5 = 40 million bbl/day, Pump 6 = 60 million 
bbl/day. 

Problem Set 9 

1. Denote (1,2)=A, (1,3)=D, (2,4)=B, (3,5)=E, (4,5)=C and join ap­
propriate nodes in ascending order 

2. Critical path: BEGIJ 

3. Take A = (1,2), B = (1,3), C = (1,4), D = (2,3), G = (3,4), 
1= (3,5), E = (2,6), F = (2,7), H = (4,6), dummy activity = 
(6,7), J = (6,9), M = (7,8), 0 = (8,9), dummy activity (5,8), 
L = (5,9), K = (5,10), P = (9,10) and join appropriate nodes 
in ascending order 

4. A is initial node and H is terminal node, Also, introduce dummy 
activity from E to F. Critical path: A ---+ B ---+ D ---+ E ---+ F ---+ 

H, Normal duration 29 days 

5. Critical path ADF I, 67 days 

6 . C ri tical P at h: 1 -----+ 2 -----+ 5 -----+ 6 -----+ 7 -----+ 8 -----+ 1 0 -----+ 

12 -----+ 13. The normal duration is 320 hours 
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7. Critical path: ABEG (dummy activity connects D and E), Nor­
mal duration = 26 days 

8. The most economical schedule is for 21 days with total cost = 
9535 

Problem Set 10 

1. 1 ---t 3 ---t 5 ---t 4 ---t 2, Total elapsed time = 28 days, idle time for 
MI = 2 days, idle time for M2 = 6 days 

2. 1 ---t 4 ---t 3 ---t 7 ---t 2 ---t 6 ---t 5, Total elapsed time = 485 hours, 
idle time for MI = 20 hours, idle time for M2 = 105 hours 

3. A ---t D ---t C ---t G ---t B ---t F ---t E, Total elapsed time = 85 
hours, idle time for MI = 12 hours, idle time for M2 = 9 hours 

4. No method is applicable 

5. (a) 3 ---t 6 ---t 5 ---t 7 ---t 2 ---t 4 ---t 1, alternative sequence 3 ---t 

5 ---t 7 ---t 2 ---t 6 ---t 4 ---t 1, Total elapsed time = 54 hours (b) 
1 ---t 4 ---t 3 ---t 6 ---t 2 ---t 5 ---t 7, Total elapsed time = 88 hours 

6. D ---t A ---t C ---t B 

8. Job 1 precedes job 2 on machine M I , job 1 precedes job 2 on 
machine M 2 , job 1 precedes job 2 on machine M 3 , job 2 precedes 
on machine 1; Total elapsed time 22 + 10 + 1 = 33 hours 

9. 4 ---t 1 ---t 3 ---t 6 ---t 5 ---t 2, Total elapsed time = 159 minutes, 
idle time for A = 17 minutes, idle time for B = 3 minutes 

Problem Set 11 

1. Xl = 1, X2 = 3, min value = 4. 

2. Xl = 15, X2 = 2, min value = 106 

4. Optimal tour 1 ~ 2 ~ 4 ~ 3 ~ 1, Cost of travel = 14 

5. Optimal tour 1 ~ 4 ~ 2 ~ 3 ~ 1, Travel cost = 13 

6. Optimal tour 1 ~ 3 ~ 4 ~ 2 ~ 1, Travel cost = 170 



Answers 

9. Xi = amount of the food item i to be loaded, i = 1,2,3,4,5. 

max 40XI + 50X2 + 60X3 + 55x4 + 60X5 

s.t. 20XI + 30X2 + 40X3 + 55x4 + 80X5 ::; 105 

Xi = ° or 1 

Problem Set 12 

2. X = 0, Y = 2, min value: 2 

3. YI = 18/3, Y2 = 12/13 min value: 30/13 
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4. YI = 1, Y2 = 1, Y3 = 18 max value: 326, For alternate solutions 
any two variables at unity level and third variable at 18. 

5. YI = 4, Y2 = 5, Y3 = 1, Yo = 38 

7. Xl = 7, X2 = 11, Zmax = 106 

8. Xl = 2, X2 = 6, Zmax = 36 

Problem Set 13 

1. (a) Indefinite (b) positive semi-definite 

2. (a) {(Xl, X2) : Xl > 1/3, X2 > 3 - 7XI} (b) {(Xl, X2) Xl > 
0, XIX2 > I} 

3. Not convex 

4. Minimum points: Xl = (2,2,1), X 2 = (2, -2, 1), X3 = (2.8,0,1.4) 
is not an extreme point 

9. Optimal solution Xl = 2/3, X2 = 14/9, Zmax = 22/9. 

10. Optimal solution Xl = 0, X2 = 1, fmax = 1 

11. Infeasible solution 

12. Optimal solution Xl = 4/11, X2 = 3/11, Xo - 5/11. 

13. XA = 0, XB = 85/2; f(X) = 80325/4, Xi = number of units of 
product i, i = A, B 
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15. min z = 3x~ + 3x~ + 8X3 

s.t. Xl - X3 = 200 

X2 + X3 = 200 

Xl, X2,X3 ~ 0 

Answers 

Xl = 748/3, X2 = 752/3, X3 = 148/3, where Xl = number of 
units produced in January, X2 = number of units produced in 
February, X3 = number of units sold at the end of January. 

Problem Set 14 

4. (a) 34 (b) 20 (c) 16 (d) 16 

5. (a) Xmin = 1.49975, fmin = 0.943 (b) Xmin = 1.845, fmin = 0.25 
(c) Xmin = 1.932, fmin = 0.0.26 

6. For both methods with n = 8, Xmin = 0.01, fmin = 2.01 

10. Minimum point X3 = (-1, 3/2)T and fmin = 0.25 

11. Minimum point X 2 = (4/3,0)T and !min = 248/27, only one 
iteration is required, since V!(X2) = (O,O)T. 

Problem Set 15 

1. (a) v'2 (b) 1 

5. minimum cost = 2C4 V; each side = [2C4 V/(CI + C2 + C3)]1/3 L = 
[Vc!IC7rC§N)j1/3, R = [VC2/(7rcIN)j1/3, Land R are length and 
radius of the pipe, respectively 

10. 100[1 - n(1 + O.01k)] 

P. (p2 ) 1/3 (2) 1/3 12. 2 = 1 P4 , P3 = PtP4 
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Problem Set 16 

1. Xl = 25/3, X2 = 0, X3 = 5/3, st = 25/3. Since 8 1 = st = 0 
and 8t = 0, the first and third goals are fully satisfied. However, 
the employment level exceeds by 25/3, i.e.,833 employees. 

4. (b) The formulation of the problem is 

min S = H(81 + 8t) + P2 sT + P3 st + P4 S4 + P58t + P68t 

+P7 S7 + PS 8t 
s.t. 

2XI + 5X2 + 4X3 + d l = 600 

3Xl + 7 X2 + 5X3 + d2 = 500 

2XI + 5X2 + 6X3 + 8 1 - 8t = 450 

4XI + 3X2 + 3X3 + 82 - 8T = 500 

2x 1 + 3X2 + 4X3 + 83 - 8t = 600 

3XI + 3X2 + 5X3 + 84 - 8t = 500 

3Xl + 4X2 + 7X3 + 8[; - st = 900 

5XI + 3X2 + 3X3 + 86 - 8ci = 800 

3Xl + 6X2 + 4X3 + 8 7 - sf = 400 

3Xl + 2X2 + 2X3 + 88 - 8t = 500 

d I , d2 , X j, 8 i ' 8 t 2': 0, j = 1, 2, 3; i = 1, 2, ... , 8. 

The optimal solution is Xl = 91.66, X2 = 0, X3 = 44.44, d l = 
238.88, d2 = 2.78, 83 = 238.88, 84 = 2.78, 8[; = 313.88, 86 = 
208.33, 8i = 52.77, 88 = 136.11, S = 2.78. The algorithm 
requires 4 iterations to find the optimal solution of the problem 
whereas, the number of iterations required by the lexicographic 
minimization method using LINDO software is 8. 

6. The optimal solution is Xl = 27/13, X2 = 0, X3 = 3/26, N g = 4. 
The goal constraints with the respective priorities being assigned 
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are: 

Xl - X2 - X3 ::;2 

Xl + X2 + 2X3 ::;3 

4XI - X2 + 6X3 =9 

3XI - 2X2 - 2X3 2':4 

-2XI - X2 + X3 2':2 P5 

Xl, X2, X3 2': 0 

Here the goal constraints (1), (2), (3) and (4) may be assigned 
any priorities from PI to P4 . 

Problem Set 17 

1. Xl = 1/2, X2 = 1/2, value of game = 2.5; YI = 1/2, Y2 = 1/2, 
Y3 = 0 

3. Xl = 1/2, X2 = 1/2, value of game = 0; YI = 2/3, Y2 = 1/3, 
Y3 = 0 

4. Xl = 2/3, X2 = 1/3, value of game = 4/3; YI = 2/3, Y2 = 1/3 

5. Xl = 0, Xl = 2/3, value of game = 7/3; YI = 8/9, Y2 = 1/9, 
Y3 = 0 

6. p = (5,00), q = (-00,5) 

7. Xl, x2 and X3 are the investments on Deposits, Bonds and Stocks, 
respectively. (a) Xl = 1,000,000, X2 = 0, X3 = 0, value of the 
game = 8,000; (b) Xl = 0, X2 = 87,500, X3 = 12,500, value of 
the game = 8, 750; (c) Xl = 0, X2 = 1,000,000, X3 = 0; value of 
the game = 1,000. 

8. Let Xl and X2 correspond to frequency the Australian and West 
Indies teams use lineup-i and lineup- j, respectively, i = 1, 2, 3 
and j = 1,2,3. (a) Xl = 0, X2 = 2/5, X3 = 3/5 ,YI 
4/5, Y2 = 0, Y3 = 1/5, value of the game = 23/50; (b) Xl 

23/49, X2 = 9/49, X3 = 17/49, value of the game = 22/49 
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Problem Set 18 

1. Xu = 10, Xl2 = 0, Xl3 = 15, Xl4 = 0, Xl5 = 5, X21 = 0, X22 = 
0, X23 = 10, X24 = 30, X25 = 0, X31 = 10, X32 = 20, X33 = 
0, X34 = 0, X35 = 0. 

This solution yields values of 14, 20 and 21 for the first, second 
and third secondary objective functions, respectively. The solu­
tion also happens to be the optimal solutions for the second and 
third secondary objective functions. 

Appendix: Answers to Objective Type 
Questions 

1. (a) 2. (a) 3. (a) 4. (c) 5. (c) 6. (b) 7. (b) 8. (a) 9. (c) 10. 
(c) 11. Xl 12. (a) 13. (d) 14. X 2 15. (c) 16. (c) 17. (c) 18. (b) 
19. (d) 20. (b) 21. (a) 22. (b) 23. (a) 24. (b) 25. (d) 26. (c) 
27. (c) 28. (d) 29. (c) 30. (a) 31. (b) 32. (a) 33. (c) 34. (b) 
35. (b) 36. (d) 37. (c) 38. (c) and (b) depending whether the rule 
Bj(zj - Cj) is followed 39. (c) 40 -541. (a) 42. (b) 43. (a) 44. (d) 
45. (c) 46. (b) 47. (a) 48. (c) 49. (a) 50. (b) 51. (0, _l)T 52. 
YI = -16/5,Y2 = -11/10 53. (b) 54. (a) 55. (b) 56. (c) 57. (c) 
58. (c) 59. (b) 60. (c) 61. (a) 62. (a) 63. (a) 64. (d) 65. (a) 
66. 3 67. 8XI + 13x2 68. (13,8)T 69. (3,2f70. Xl = 2, X2 = 1 71. 
Xl = 4, X2 = ° 72. (d) 73. (b) 74. (b) 75. (c) 76. (a) 77. (c) 78. (a) 

true (b) False (c) False (d) True (e) True (f) True, if solution space is 
bounded; False, if solution space is unbounded (g) True (h) False (i) 
True (j) False (k) False (1) False (m) True 79. (c) 80 (c) 81. (d) 82. 
(d) 83. (d) 84. (b) 85. (a) 86. (a) 87. (d) 89. (b) 90. (d) 91. (a) 
92. (b) 93. (b) 94. (d) 95. (b 96. (b) 97. (a) True (b) False (c) 
False (d) False (e) True (f) True (g) false (h) true (i) False (j) True 
(k) True (1) False 98. (c) 99. (c) 100. (a) 101. (d) 102. (b) 103. 
(a) 104. (d) 105. (a) 106. (c) 107. (b) 109. (b) 
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Absolute minimum, 390 
Activity, 286 

critical, 289 
dummy, 286 
noncritical, 293 
slope of, 292 

Addition of a constraint, 183 
Addition of variable, 186 
Alternative optimal solution, 95 
AM-GM inequality, 443 
Artificial variable, 84 
Assignment problem, 236 

Backward recursion, 367 
Basic feasible solution (BFS), 51 

degenerate, 51 
nondegenerate, 51 

Basic infeasible solution, 63 
Basic solution, 50 
Basic variables, 51 
Basis matrix, 51 
Beta distribution, 302 
Bibliography, 535 
Big-M method, 84 
Bland's rule, 102 
Bolzano search, 439 
Bordered Hessian matrix, 390 
Boundary point, 36 
Bounded interval programming, 

170 
Bounded set, 36 
Bounded variable technique, 148 
Branch and bound algorithm, 

336 

Bus scheduling problem, 12 

Canonical form 
of equations, 55 
of LPP, 111 

Capital budgeting problem, 374 
Cargo loading problem, 350, 375 
Caterer problem, 13 
Change in availabilities, 179 
Change in constraint matrix, 183 
Change in cost vector, 174 
Charne's perturbation method, 

98 
Closed half-space, 40 
Closed set, 36 
Complexity, 147 

simplex algorithm, 147 
Complimentary slackness con­

ditions, 118 
Complimentary slackness theo-

rem, 120 
Compression limit, 293 
Conjugate gradient method, 433 
Conjugate vectors, 433 
Constraint, 4 

goal, 468 
matrix, 41 
real, 468 
redundant, 50 
resource, 468 
rigid, 468 

Convex 
function, 394 
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hull, 45 
linear combination, 36 
set, 37 

Convexity, 35 
Cost vector, 6 
CPM, see 

Critical path method, 286 
Crash cost, 291 
Crash duration, 291 
Crash limit, 293 
Critical activity, 289 
Critical path, 289 
Critical path method, 286 
Critical point, 388 
Cycling, 98 

Decision variable, 4 
Decomposition principle, 155 
Degeneracy, 51, 97 

cyclic, 98 
permanent, 98 
temporary, 98 

Deletion of constraint, 188 
Deletion of variable, 190 
Dichotomous search, 423 
Diet problem, 10 
Dijkstra's algorithm, 266 
Dual, 112 

constraint, 113 
feasibility, 116 
variable, 112 

Duality 
in NLPP, 413 
economic interpretation, 122 
in LPP, 111 

Dummy 
activity, 286 
destination, 226 
source, 226 

Dynamic programming, 359 
backward, 360 
forward, 362 

INDEX 

vs linear programming, 379 

Earliest starting time, 289 
Eigenvalue test, 387 
Elapsed time, 316 
Elimination theorem, 470 
Ellipsoid method, 2 
Extremal direction, 57 
Extreme point (s) 

of the function, 391 
of the set, 47 

Extremum difference method, 497 

Farka's lemma, 133 
Fathomed node, 337 
Feasible solution, 41 
FF limit, 293 
FF limit method, 292 
Fibonacci search, 425 
Floyd's algorithm, 268 
Formulation, 9 
Forward recursions, 378 
Free float limit (FF limit), 293 
Free floats, 292 

Gambler problem, 18 
Games theory, 483 
Gamma function, 302 
Generalized assignment problem, 

505 
Generalized simplex algorithm, 

132 
Generalized transportation prob-

lem, 499 
Geometric programming, 443 
Goal constraint, 468 
Goal programming, 467 
Golden search, 429 
Gradient method, 430 
Gradient vector, 388 
Graphical method, 59, 326 

Half-space, 38 
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closed, 40 
open, 38 

Hessian matrix, 388 
Hungarian method, 238 
Hyperplane, 38 

Inconsistency, 49 
Indefinite (quadratic form), 386 
Infeasible solution, 63, 93 
Infinity solutions, 55 
Inflexion point, 388 
Integer programming, 335 
Interior point, 36 
Interior point algorithm, 160 
Interval of uncertainty, 422 
Interval programming, 170 
Inverse matrix method, 136 

Karmakar's specific format, 161 
Karmarkar algorithm, 160 
Knapsack problem, 350, 375 
Kuhn-Thcker conditions, 398 

Lagrange function, 390 
Lagrange multipliers, 390 
Latest completion time, 289 
Least cost method, 213 
Linear combination, 36 

convex, 36 
Linear programming problem, 4 

duality in, 112 
Fundamental theorem of, 58 
geometric interpretation, 35 
standard form-I, 86 
standard form-II, 86 

Linearly independent, 68 
Local minimum, 389 

Matrix 
Basis, 51 
bordered Hessian, 390 
constraint, 41 
Hessian, 388 

nonsingular, 69 
pay-off, 485 
rank of, 49 
reduced, 238 
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Matrix minor test, 386 
Maximum flow problem, 274 
Measure of effectiveness, 422 
Minimal spanning tree algorithm, 

260 
Minimum ratio rule, 78 
Mixed strategy, 484 
Modified distribution method, 

217 

Negative definite, 386 
Negative semi-definite, 386 
Neighbourhood, 35 

deleted, 35 
Network, 286 
N onbasic solution, 52 
Nonbasic variables, 51 
Noncritical activity, 293 
N ondegeneracy, 51 
Nonlinear programming problem, 

4 
duality in, 413 

Nonnegative restriction, 4 
Nonredundant, 43 
Norm, 167 
Normal cost, 293 
Normal duration, 293 
Normality condition, 450 
North-West rule, 212 

Objective function, 4 
One-dimensional search techniques, 

430 
Open half-space, 38 
Open set, 36 
Optimal scheduling, 291 
Optimal solution, 41 
Optimality principle, 365 
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Optimization, 1 
Ordered basis, 70 
Orthogonal condition, 450 

Parametric programming, 197 
Pay-off matrix, 485 
Penalty method, 85 
PERT, 301 
Polyhedron, 40 
Polytope, 41 
Positive definite, 386 
Positive semi-definite, 386 
Post optimal analysis, 173 
Posynomial, 448 
Primal, 112 
Primal feasibility, 116 
Principal of optimality, 359 
Problem of n jobs on m ma-

chines, 321 
Problem of n jobs on two ma-

chines, 316 
Product mix problem, 11 
Production planning problem, 19 
Programming 

bounded interval, 170 
dynamic, 359 
geometric, 443 
goal, 467 
integer, 5, 335 
linear, 4 
linear fractional, 23 
mathematical, 4 
nonlinear, 4 
quadratic, 5, 401 
separable, 406 

Pure strategy, 484 

Quadratic form, 385 
Quadratic programming, 401 

Rank, 68 
Real constraint, 468 

INDEX 

Reduced matrix, 238 
Relative cost, 70 
Relative minimum, 389 
Reliability problem, 372 
Resolution theorem, 57 
Resource constraint, 468 
Restricted variable, 6 
Revised dual simplex method, 

146 
Revised simplex method, 135 
Rigid Constraint, 468 

Saddle point, 388, 486 
Sensitivity analysis, 173 
Separable function, 406 
Separable programming, 406 
Separation theorem, 46 
Sequencing, 315 
Shortest path problem, 266 
Simplex method, 68 

dual, 123 
primal, 124 
revised, 135 

Simplex multiplier, 139 
Slack variable, 6 
Standard form, 5 
Standard form-I, 86 
Standard form-II, 86 
State variables, 366 
Stationary points, 388 
Steepest descent method, 430 
Stepping step method, 300 
Strategy 

mixed, 484 
pure, 484 

Strong duality theorem, 117 
Supporting hyperplane, 46 
Surplus variable, 6 

Total float, 293 
Transportation problem, 209 
Transshipment, 231 
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Traveling salesman problem, 341 
Trim-loss problem, 15 
Two jobs on ordered m machines, 

325 
Two person zero sum game, 484, 

489 
with mixed strategies, 487 
with pure strategies, 484 

Two phase method, 87 

u-v method, 217 
Unbalanced transportation prob­

lem, 225 
Unbounded 

objective value, 117 
solution, 94 

Unconstrained minimization, 448 
Unimodal function, 421 
Unrestricted variable, 6 

Variable(s) 
artificial, 84 
basic, 51 
decision, 4 
deviational, 470 
dual, 112 
nonbasic, 51 
restricted, 6 
slack, 6 
state, 366 
surplus, 6 
unrestricted, 6 

Vector 
column, 69 
coordinate, 70 
gradient, 388 
norm, 167 
row, 4 

Vertex, 47 
Vogel approximation method, 214 

581 

Wander salesman problem, 356 
Warehousing problem, 12 
Weak duality theorem, 116 
Wolfe's method, 402 


