
ORMS1020

Operations Research
with GNU Linear Programming Kit

Tommi Sottinen

tommi.sottinen@uwasa.fi
www.uwasa.fi/∼tsottine/orms1020

August 31, 2009

mailto:tommi.sottinen@uwasa.fi
http://www.uwasa.fi/~tsottine/orms1020

Contents

I Introduction 5

1 On Operations Research 6
1.1 What is Operations Research 6
1.2 History of Operations Research* 8
1.3 Phases of Operations Research Study 10

2 On Linear Programming 13
2.1 Example towards Linear Programming 13
2.2 Solving Linear Programs Graphically 15

3 Linear Programming with GNU Linear Programming Kit 21
3.1 Overview of GNU Linear Programming Kit 21
3.2 Getting and Installing GNU Linear Programming Kit 23
3.3 Using glpsol with GNU MathProg 24
3.4 Advanced MathProg and glpsol* 32

II Theory of Linear Programming 39

4 Linear Algebra and Linear Systems 40
4.1 Matrix Algebra . 40
4.2 Solving Linear Systems . 48
4.3 Matrices as Linear Functions* 50

5 Linear Programs and Their Optima 55
5.1 Form of Linear Program . 55
5.2 Location of Linear Programs’ Optima 61
5.3 Karush–Kuhn–Tucker Conditions* 64
5.4 Proofs* . 65

CONTENTS 2

6 Simplex Method 68
6.1 Towards Simplex Algorithm . 68
6.2 Simplex Algorithm . 75

7 More on Simplex Method 87
7.1 Big M Algorithm . 87
7.2 Simplex Algorithm with Non-Unique Optima 94
7.3 Simplex/Big M Checklist . 102

8 Sensitivity and Duality 103
8.1 Sensitivity Analysis . 103
8.2 Dual Problem . 121
8.3 Primal and Dual Sensitivity . 136

III Applications of Linear Programming 137

9 Data Envelopment Analysis 138
9.1 Graphical Introduction to Data Envelopment Analysis 138
9.2 Charnes–Cooper–Rhodes Model 152
9.3 Charnes–Cooper–Rhodes Model’s Dual 160
9.4 Strengths and Weaknesses of Data Envelopment Analysis . . . 167

10 Transportation Problems 168
10.1 Transportation Algorithm . 168
10.2 Assignment Problem . 179
10.3 Transshipment Problem . 184

IV Non-Linear Programming 190

11 Integer Programming 191
11.1 Integer Programming Terminology 191
11.2 Branch-And-Bound Method . 192
11.3 Solving Integer Programs with GNU Linear Programming Kit . 199

Preface

These lecture notes are for the course ORMS1020 “Operations Research” for
fall 2009 in the University of Vaasa. The notes are a slightly modified version
of the notes for the fall 2008 course ORMS1020 in the University of Vaasa.

The chapters, or sections of chapters, marked with an asterisk (*) may be
omitted — or left for the students to read on their own time — if time is scarce.

The author wishes to acknowledge that these lecture notes are collected
from the references listed in Bibliography, and from many other sources the
author has forgotten. The author claims no originality, and hopes not to be
sued for plagiarizing or for violating the sacred c© laws.

Vaasa August 31, 2009 T. S.

Bibliography

[1] Rodrigo Ceron: The GNU Linear Programming Kit, Part 1: Introduction
to linear optimization, Web Notes, 2006.
http://www-128.ibm.com/developerworks/linux/library/l-glpk1/.

[2] Matti Laaksonen: TMA.101 Operaatioanalyysi, Lecture Notes, 2005.
http://lipas.uwasa.fi/∼mla/orms1020/oa.html.

[3] Hamdy Taha: Operations Research: An Introduction (6th Edition), Pren-
tice Hall, Inc, 1997.

[4] Wayne Winston: Operations Research: Applications and Algorithms, Inter-
national ed edition, Brooks Cole, 2004.

http://www-128.ibm.com/developerworks/linux/library/l-glpk1/
http://lipas.uwasa.fi/~mla/orms1020/oa.html

Part I

Introduction

Chapter 1

On Operations Research

This chapter is adapted from Wikipedia article Operations Research and [4,
Ch. 1].

1.1 What is Operations Research

Definitions

To define anything non-trivial — like beauty or mathematics — is very difficult
indeed. Here is a reasonably good definition of Operations Research:

1.1.1 Definition. Operations Research (OR) is an interdisciplinary branch of
applied mathematics and formal science that uses methods like mathemati-
cal modeling, statistics, and algorithms to arrive at optimal or near optimal
solutions to complex problems.

Definition 1.1.1 is problematic: to grasp it we already have to know, e.g.,
what is formal science or near optimality.

From a practical point of view, OR can be defined as an art of optimization,
i.e., an art of finding minima or maxima of some objective function, and — to
some extend — an art of defining the objective functions. Typical objective
functions are

• profit,
• assembly line performance,
• crop yield,
• bandwidth,
• loss,
• waiting time in queue,
• risk.

From an organizational point of view, OR is something that helps manage-
ment achieve its goals using the scientific process.

http://en.wikipedia.org/wiki/Operations_research

What is Operations Research 7

The terms OR and Management Science (MS) are often used synonymously.
When a distinction is drawn, management science generally implies a closer
relationship to Business Management. OR also closely relates to Industrial
Engineering. Industrial engineering takes more of an engineering point of view,
and industrial engineers typically consider OR techniques to be a major part
of their tool set. Recently, the term Decision Science (DS) has also be coined
to OR.

More information on OR can be found from the INFORMS web page

http://www.thescienceofbetter.org/

(If OR is “the Science of Better” the OR’ists should have figured out a better
name for it.)

OR Tools

Some of the primary tools used in OR are

• statistics,
• optimization,
• probability theory,
• queuing theory,
• game theory,
• graph theory,
• decision analysis,
• simulation.

Because of the computational nature of these fields, OR also has ties to com-
puter science, and operations researchers regularly use custom-written soft-
ware.

In this course we will concentrate on optimization, especially linear opti-
mization.

OR Motto and Linear Programming

The most common OR tool is Linear Optimization, or Linear Programming
(LP).

1.1.2 Remark. The “Programming” in Linear Programming is synonym for
“optimization”. It has — at least historically — nothing to do with computer-
programming.

LP is the OR’ists favourite tool because it is

• simple,
• easy to understand,

http://www.informs.org/
http://www.thescienceofbetter.org/

History of Operations Research* 8

• robust.

“Simple” means easy to implement, “easy to understand” means easy to explain
(to you boss), and “robust” means that it’s like the Swiss Army Knife: perfect
for nothing, but good enough for everything.

Unfortunately, almost no real-world problem is really a linear one —
thus LP is perfect for nothing. However, most real-world problems are “close
enough” to linear problems — thus LP is good enough for everything. Example
1.1.3 below elaborates this point.

1.1.3 Example. Mr. Quine sells gavagais. He will sell one gavagai
for 10 Euros. So, one might expect that buying x gavagais from Mr.
Quine would cost — according to the linear rule — 10x Euros.

The linear rule in Example 1.1.3 may well hold for buying 2 , 3 , or 5 , or
even 50 gavagais. But:

• One may get a discount if one buys 500 gavagais.
• There are only 1,000,000 gavagais in the world. So, the price for

1,000,001 gavagais is +∞ .
• The unit price of gavagais may go up as they become scarce. So, buying

950,000 gavagais might be considerably more expensive than =C9,500,000 .
• It might be pretty hard to buy 0.5 gavagais, since half a gavagai is no

longer a gavagai (gavagais are bought for pets, and not for food).
• Buying −10 gavagais is in principle all right. That would simply mean

selling 10 gavagais. However, Mr. Quine would most likely not buy
gavagais with the same price he is selling them.

1.1.4 Remark. You may think of a curve that would represent the price of
gavagais better than the linear straight line — or you may even think as a
radical philosopher and argue that there is no curve.

Notwithstanding the problems and limitations mentioned above, linear
tools are widely used in OR according to the following motto that should
— as all mottoes — be taken with a grain of salt:

OR Motto. It’s better to be quantitative and naïve than qualitative and pro-
found.

1.2 History of Operations Research*

This section is most likely omitted in the lectures. Nevertheless, you should
read it — history gives perspective, and thinking is nothing but an exercise of
perspective.

http://www.naute.com/funimages/rabtiger.jpg

History of Operations Research* 9

Prehistory

Some say that Charles Babbage (1791–1871) — who is arguably the “father of
computers” — is also the “father of operations research” because his research
into the cost of transportation and sorting of mail led to England’s universal
“Penny Post” in 1840.

OR During World War II

The modern field of OR arose during World War II. Scientists in the United
Kingdom including Patrick Blackett, Cecil Gordon, C. H. Waddington, Owen
Wansbrough-Jones and Frank Yates, and in the United States with George
Dantzig looked for ways to make better decisions in such areas as logistics and
training schedules.

Here are examples of OR studies done during World War II:

• Britain introduced the convoy system to reduce shipping losses, but while
the principle of using warships to accompany merchant ships was gen-
erally accepted, it was unclear whether it was better for convoys to be
small or large. Convoys travel at the speed of the slowest member, so
small convoys can travel faster. It was also argued that small convoys
would be harder for German U-boats to detect. On the other hand, large
convoys could deploy more warships against an attacker. It turned out
in OR analysis that the losses suffered by convoys depended largely on
the number of escort vessels present, rather than on the overall size of
the convoy. The conclusion, therefore, was that a few large convoys are
more defensible than many small ones.

• In another OR study a survey carried out by RAF Bomber Command
was analyzed. For the survey, Bomber Command inspected all bombers
returning from bombing raids over Germany over a particular period.
All damage inflicted by German air defenses was noted and the recom-
mendation was given that armor be added in the most heavily damaged
areas. OR team instead made the surprising and counter-intuitive recom-
mendation that the armor be placed in the areas which were completely
untouched by damage. They reasoned that the survey was biased, since
it only included aircraft that successfully came back from Germany. The
untouched areas were probably vital areas, which, if hit, would result in
the loss of the aircraft.

• When the Germans organized their air defenses into the Kammhuber
Line, it was realized that if the RAF bombers were to fly in a bomber
stream they could overwhelm the night fighters who flew in individual
cells directed to their targets by ground controllers. It was then a matter
of calculating the statistical loss from collisions against the statistical

Phases of Operations Research Study 10

loss from night fighters to calculate how close the bombers should fly to
minimize RAF losses.

1.3 Phases of Operations Research Study

Seven Steps of OR Study

An OR project can be split in the following seven steps:

Step 1: Formulate the problem The OR analyst first defines the organi-
zation’s problem. This includes specifying the organization’s objectives
and the parts of the organization (or system) that must be studied before
the problem can be solved.

Step 2: Observe the system Next, the OR analyst collects data to esti-
mate the values of the parameters that affect the organization’s problem.
These estimates are used to develop (in Step 3) and to evaluate (in Step
4) a mathematical model of the organization’s problem.

Step 3: Formulate a mathematical model of the problem The OR an-
alyst develops an idealized representation — i.e. a mathematical model
— of the problem.

Step 4: Verify the model and use it for prediction The OR analyst
tries to determine if the mathematical model developed in Step 3 is an
accurate representation of the reality. The verification typically includes
observing the system to check if the parameters are correct. If the model
does not represent the reality well enough then the OR analyst goes
back either to Step 3 or Step 2.

Step 5: Select a suitable alternative Given a model and a set of alterna-
tives, the analyst now chooses the alternative that best meets the or-
ganization’s objectives. Sometimes there are many best alternatives, in
which case the OR analyst should present them all to the organization’s
decision-makers, or ask for more objectives or restrictions.

Step 6: Present the results and conclusions The OR analyst presents
the model and recommendations from Step 5 to the organization’s
decision-makers. At this point the OR analyst may find that the decision-
makers do not approve of the recommendations. This may result from
incorrect definition of the organization’s problems or decision-makers
may disagree with the parameters or the mathematical model. The OR
analyst goes back to Step 1, Step 2, or Step 3, depending on where the
disagreement lies.

Phases of Operations Research Study 11

Step 7: Implement and evaluate recommendation Finally, when the
organization has accepted the study, the OR analyst helps in implement-
ing the recommendations. The system must be constantly monitored
and updated dynamically as the environment changes. This means going
back to Step 1, Step 2, or Step 3, from time to time.

In this course we shall concentrate on Step 3 and Step 5, i.e., we shall
concentrate on mathematical modeling and finding the optimum of a math-
ematical model. We will completely omit the in-between Step 4. That step
belongs to the realm of statistics. The reason for this omission is obvious: The
statistics needed in OR is way too important to be included as side notes in
this course! So, any OR’ist worth her/his salt should study statistics, at least
up-to the level of parameter estimization.

Example of OR Study

Next example elaborates how the seven-step list can be applied to a queueing
problem. The example is cursory: we do not investigate all the possible objec-
tives or choices there may be, and we do not go into the details of modeling.

1.3.1 Example. A bank manager wants to reduce expenditures on
tellers’ salaries while still maintaining an adequate level of customer
service.

Step 1: The OR analyst describes bank’s objectives. The manager’s vaguely
stated wish may mean, e.g.,

• The bank wants to minimize the weekly salary cost needed to ensure that
the average waiting a customer waits in line is at most 3 minutes.
• The bank wants to minimize the weekly salary cost required to ensure

that only 5% of all customers wait in line more than 3 minutes.

The analyst must also identify the aspects of the bank’s operations that affect
the achievement of the bank’s objectives, e.g.,

• On the average, how many customers arrive at the bank each hour?
• On the average, how many customers can a teller serve per hour?

Step 2: The OR analyst observes the bank and estimates, among others,
the following parameters:

• On the average, how many customers arrive each hour? Does the arrival
rate depend on the time of day?

Phases of Operations Research Study 12

• On the average, how many customers can a teller serve each hour? Does
the service speed depend on the number of customers waiting in line?

Step 3: The OR analyst develops a mathematical model. In this example
a queueing model is appropriate. Let

Wq = Average time customer waits in line
λ = Average number of customers arriving each hour
µ = Average number of customers teller can serve each hour

A certain mathematical queueing model yields a connection between these
parameters:

(1.3.2) Wq =
λ

µ(µ− λ)
.

This model corresponds to the first objective stated in Step 1.
Step 4: The analyst tries to verify that the model (1.3.2) represents reality

well enough. This means that the OR analyst will estimate the parameter Wq ,
λ , and µ statistically, and then she will check whether the equation (1.3.2) is
valid, or close enough. If this is not the case then the OR analyst goes either
back to Step 2 or Step 3.

Step 5: The OR analyst will optimize the model (1.3.2). This could mean
solving how many tellers there must be to make µ big enough to make Wq

small enough, e.g. 3 minutes.
We leave it to the students to wonder what may happen in steps 6 and 7.

Chapter 2

On Linear Programming

This chapter is adapted from [2, Ch. 1].

2.1 Example towards Linear Programming

Very Naïve Problem

2.1.1 Example. Tela Inc. manufactures two product: #1 and #2 . To
manufacture one unit of product #1 costs =C40 and to manufacture
one unit of product #2 costs =C60 . The profit from product #1 is
=C30 , and the profit from product #2 is =C20 .

The company wants to maximize its profit. How many products #1
and #2 should it manufacture?

The solution is trivial: There is no bound on the amount of units the
company can manufacture. So it should manufacture infinite number of either
product #1 or #2 , or both. If there is a constraint on the number of units
manufactured then the company should manufacture only product #1 , and
not product #2 . This constrained case is still rather trivial.

Less Naïve Problem

Things become more interesting — and certainly more realistic — when there
are restrictions in the resources.

Example towards Linear Programming 14

2.1.2 Example. Tela Inc. in Example 2.1.1 can invest =C40, 000 in
production and use 85 hours of labor. To manufacture one unit of
product #1 requires 15 minutes of labor, and to manufacture one unit
of product #2 requires 9 minutes of labor.

The company wants to maximize its profit. How many units of product
#1 and product #2 should it manufacture? What is the maximized
profit?

The rather trivial solution of Example 2.1.1 is not applicable now. Indeed,
the company does not have enough labor to put all the =C40,000 in product
#1 .

To model Example 2.1.2 as an LP we follow a four-step procedure:

Step 1: Determine the decision variables
Step 2: Determine the objective function
Step 3: Determine the constraints
Step 4: Determine the sign constraints

Step 1: We are producing two products: #1 and #2 . So, our decision variables
are:

x1 = number of product #1 produced,
x2 = number of product #2 produced.

Step 2: Our objective is to maximize

profit: 30x1 + 20x2

Step 3: We have the following constraints for our decisions:

money: 40x1 + 60x2 ≤ 40,000
labor: 15x1 + 9x2 ≤ 5,100

Step 4: Finally we note that we cannot manufacture negative amount of prod-
ucts. So, we have the sign constraints x1, x2 ≥ 0 . The problem does not state
this explicitly, but it’s implied — we are selling products #1 and #2 , not
buying them.

What we have now is a Linear Program (LP), or a Linear Optimization
problem,

max z = 30x1 + 20x2

s.t. 40x1 + 60x2 ≤ 40,000
15x1 + 9x2 ≤ 5,100

x1, x2 ≥ 0

Solving Linear Programs Graphically 15

We will later see how to solve such LPs. For now we just show the solution.
For decision variables it is optimal to produce no product #1 and thus put all
the resource to product #2 which means producing 566.667 number of product
#2 . The profit will then be =C11,333.333 . In other words, the optimal solution
is

x1 = 0,
x2 = 566.667,
z = 11,333.333.

2.1.3 Remark. If it is not possible to manufacture fractional number of prod-
ucts, e.g. 0.667 units, then we have to reformulate the LP-problem above to
an Integer Program (IP)

max z = 30x1 + 20x2

s.t. 40x1 + 60x2 ≤ 40,000
15x1 + 9x2 ≤ 5,100

x1, x2 ≥ 0
x1, x2 are integers

We will later see how to solve such IPs (which is more difficult than solving
LPs). For now we just show the solution:

x1 = 1,
x2 = 565,
z = 11,330.

In Remark 2.1.3 above we see the usefulness of the OR Motto. Indeed, al-
though the LP solution is not practical if we cannot produce fractional number
of product, the solution it gives is close to the true IP solution: both in terms
of the value of the objective function and the location of the optimal point.
We shall learn more about this later in Chapter 8.

2.2 Solving Linear Programs Graphically

From Minimization to Maximization

We shall discuss later in Chapter 5, among other things, how to transform a
minimization LP into a maximization LP. So, you should skip this subsection
and proceed to the next subsection titled “Linear Programs with Two Decision
Variables” — unless you want to know the general, and rather trivial, duality
between minimization and maximization.

Any minimization problem — linear or not — can be restated as a maxi-
mization problem simply by multiplying the objective function by −1 :

Solving Linear Programs Graphically 16

2.2.1 Theorem. Let K ⊂ Rn , and let g : Rn → R . Suppose

w∗ = min
x∈K

g(x)

and x∗ ∈ Rn is a point where the minimum w∗ is attained. Then, if f = −g
and z∗ = −w∗ , we have that

z∗ = max
x∈K

f(x),

and the maximum z∗ is attained at the point x∗ ∈ Rn .

The mathematically oriented should try to prove Theorem 2.2.1. It’s not
difficult — all you have to do is to not to think about the constraint-set K or
any other specifics, like the space Rn , or if there is a unique optimum. Just
think about the big picture! Indeed, Theorem 2.2.1 is true in the greatest
possible generality: It is true whenever it makes sense!

Linear Programs with Two Decision Variables

We shall solve the following LP:

2.2.2 Example.

max z = 4x1 + 3x2

s.t. 2x1 + 3x2 ≤ 6 (1)
−3x1 + 2x2 ≤ 3 (2)

2x2 ≤ 5 (3)
2x1 + x2 ≤ 4 (4)

x1, x2 ≥ 0 (5)

The LP in Example 2.2.2 has only two decision variables: x1 and x2 . So, it
can be solved graphically on a piece of paper like this one. To solve graphically
LPs with three decision variables would require three-dimensional paper, for
four decision variables one needs four-dimensional paper, and so forth.

Four-Step Graphical Algorithm

Step 1: Draw coordinate space Tradition is that x1 is the horizontal axis
and x2 is the vertical axis. Because of the non-negativity constraints on
x1 and x2 it is enough to draw the 1st quadrant (the NE-quadrant).

Solving Linear Programs Graphically 17

Step 2: Draw constraint-lines Each constraint consists of a line and of in-
formation (e.g. arrows) indicating which side of the line is feasible. To
draw, e.g., the line (1), one sets the inequality to be the equality

2x1 + 3x2 = 6.

To draw this line we can first set x1 = 0 and then set x2 = 0 , and we
see that the line goes through points (0, 2) and (3, 0) . Since (1) is a
≤-inequality, the feasible region must be below the line.

Step 3: Define feasible region This is done by selecting the region satisfied
by all the constraints including the non-negativity constraints.

Step 4: Find the optimum by moving the isoprofit line The isoprofit
line is the line where the objective function is constant. In this case the
isoprofit lines are the pairs (x1, x2) satisfying

z = 4x1 + 3x2 = const.

(In the following picture we have drawn the isoprofit line corresponding
to const = 2 and const = 4 , and the optimal isoprofit line corresponding
to const = 9 .) The further you move the line from the origin the better
value you get (unless the maximization problem is trivial in the objective
function, cf. Example 2.2.3 later). You find the best value when the iso-
profit line is just about to leave the feasible region completely (unless the
maximization problem is trivial in constraints, i.e. it has an unbounded
feasible region, cf. Example 2.2.4 later).

Solving Linear Programs Graphically 18

0

1

2

3

4x2

0 1 2 3 4
x1

A
B

C

D

E

(1)

(2)

(3)

(4)

Redundant

Feasible region

Optimum

Isoprofit lines

From the picture we read — by moving the isoprofit line away from the
origin — that the optimal point for the decision variables (x1, x2) is

C = (1.5, 1).

Therefore, the optimal value is of the objective is

z = 4×1.5 + 3×1 = 9.

Example with Trivial Optimum

Consider the following LP maximization problem, where the objective function
z does not grow as its arguments x1 and x2 get further away from the origin:

Solving Linear Programs Graphically 19

2.2.3 Example.

max z = −4x1 − 3x2

s.t. 2x1 + 3x2 ≤ 6 (1)
−3x1 + 2x2 ≤ 3 (2)

2x2 ≤ 5 (3)
2x1 + x2 ≤ 4 (4)

x1, x2 ≥ 0 (5)

In this case drawing a graph would be an utter waste of time. Indeed,
consider the objective function under maximization:

z = −4x1 − 3x2

Obviously, given the standard constraints x1, x2 ≥ 0 , the optimal solution is

x1 = 0,
x2 = 0,
z = 0.

Whenever you have formulated a problem like this you (or your boss) must
have done something wrong!

Example with Unbounded Feasible Region

2.2.4 Example.

max z = 4x1 + 3x2

s.t. −3x1 + 2x2 ≤ 3 (1)
x1, x2 ≥ 0 (2)

From the picture below one sees that this LP has unbounded optimum, i.e.,
the value of objective function z can be made as big as one wishes.

Solving Linear Programs Graphically 20

0

1

2

3

4x2

0 1 2 3 4
x1

(1)

Isoprofit lines

Feasible region

Whenever you have formulated a problem like this you (or your boss) must
have done something wrong — or you must be running a sweet business, indeed!

Chapter 3

Linear Programming with GNU Linear Pro-
gramming Kit

This chapter is adapted from [1].

3.1 Overview of GNU Linear Programming Kit

GNU Linear Programming Kit

The GNU Linear Programming Kit (GLPK) is a software package intended
for solving large-scale linear programming (LP), mixed integer programming
(MIP), and other related problems. GLPK is written in ANSI C and organized
as a callable library. GLPK package is part of the GNU Project and is released
under the GNU General Public License (GPL).

The GLPK package includes the following main components:

• Revised simplex method (for LPs).
• Primal-dual interior point method (for LPs).
• Branch-and-bound method (for IPs).
• Translator for GNU MathProg modeling language.
• Application Program Interface (API).
• Stand-alone LP/MIP solver glpsol.

glpsol

GLPK is not a program — it’s a library. GLPK can’t be run as a computer
program. Instead, client programs feed the problem data to GLPK through
the GLPK API and receive results back.

However, GLPK has a default client: The glpsol program that interfaces
with the GLPK API. The name “glpsol” comes from GNU Linear Program
Solver. Indeed, usually a program like glpsol is called a solver rather than a
client, so we shall use this nomenclature from here forward.

Overview of GNU Linear Programming Kit 22

There is no standard Graphical User Interface (GUI) for glpsol that the
author is aware of. So one has to call glpsol from a console. If you do not
know how to use to a console in your Windows of Mac, ask your nearest guru
now! Linux users should know how to use a console.

3.1.1 Remark. If you insist on having a GUI for GLPK, you may try

• http://bjoern.dapnet.de/glpk/ (Java GUI)
• http://qosip.tmit.bme.hu/∼retvari/Math-GLPK.html (Perl GUI)
• http://www.dcc.fc.up.pt/∼jpp/code/python-glpk/ (Python GUI)

The author does not know if any of these GUIs are any good.

To use glpsol we issue on a console the command

glpsol -m inputfile.mod -o outputfile.sol

or the command

glpsol –model inputfile.mod –output outputfile.sol

The commands above mean the same. Indeed, -m is an abbreviation to
–model, and -o is an abbreviation to –output.

The option -m inputfile.mod tells the glpsol solver that the model to be
solved is described in the file inputfile.mod, and the model is described in the
GNU MathProg language. The option -o outputfile.sol tells the glpsol
solver to print the results (the solution with some sensitivity information) to
the file outputfile.sol.

GNU MathProg

The GNU MathProg is a modeling language intended for describing linear
mathematical programming models.

Model descriptions written in the GNU MathProg language consists of:

• Problem decision variables.
• An objective function.
• Problem constraints.
• Problem parameters (data).

As a language the GNU MathProg is rather extensive, and can thus be a
bit confusing. We shall not give a general description of the language in this
course, but learn the elements of it through examples.

http://bjoern.dapnet.de/glpk/
http://qosip.tmit.bme.hu/~retvari/Math-GLPK.html
http://www.dcc.fc.up.pt/~jpp/code/python-glpk/

Getting and Installing GNU Linear Programming Kit 23

3.2 Getting and Installing GNU Linear Programming Kit

GLPK, like all GNU software, is open source: It is available to all operating
systems and platforms you may ever use. This is the reason we use GLPK in
this course instead of, say, LINDO.

General information on how to get GLPK and other GNU software can be
found from

http://www.gnu.org/prep/ftp.html.

The GLPK source code can be downloaded from

ftp://ftp.funet.fi/pub/gnu/prep/glpk/.

If you use this method you have to compile GLPK by yourself. If you do not
know what this means try following the instructions given in the links in one
of the following subsections: Windows, Mac, or Linux.

Windows

From

http://gnuwin32.sourceforge.net/packages/glpk.htm

you should find a link to a setup program that pretty much automatically
installs the GLPK for you. Some installation instructions can be found from

http://gnuwin32.sourceforge.net/install.html.

The instructions given above may or may not work with Windows Vista.

Mac

From

http://glpk.darwinports.com/

you find instruction how to install GLPK for Mac OS X.

Linux

If you are using Ubuntu then just issue the command

sudo apt-get install glpk

in the console (you will be prompted for your password). Alternatively, you
can use the Synaptic Package Manager: Just search for glpk.

If you use a RedHat based system, consult

http://www.gnu.org/prep/ftp.html
ftp://ftp.funet.fi/pub/gnu/prep/glpk/
http://gnuwin32.sourceforge.net/packages/glpk.htm
http://gnuwin32.sourceforge.net/install.html
http://glpk.darwinports.com/

Using glpsol with GNU MathProg 24

http://rpmfind.net/

with the keyword glpk.
Debian users can consult

http://packages.debian.org/etch/glpk.

For other Linux distributions, consult

http://www.google.com/.

3.3 Using glpsol with GNU MathProg

We show how to build up an LP model, how to describe the LP problem by
using the GNU MathProg language, and how to solve it by using the glpsol
program. Finally, we discuss how to interpret the results.

Giapetto’s Problem

Consider the following classical problem:

3.3.1 Example. Giapetto’s Woodcarving Inc. manufactures two types
of wooden toys: soldiers and trains. A soldier sells for =C27 and uses
=C10 worth of raw materials. Each soldier that is manufactured in-
creases Giapetto’s variable labor and overhead costs by =C14 . A train
sells for =C21 and uses =C9 worth of raw materials. Each train built
increases Giapetto’s variable labor and overhead costs by =C10 . The
manufacture of wooden soldiers and trains requires two types of skilled
labor: carpentry and finishing. A soldier requires 2 hours of finishing
labor and 1 hour of carpentry labor. A train requires 1 hour of finish-
ing and 1 hour of carpentry labor. Each week, Giapetto can obtain all
the needed raw material but only 100 finishing hours and 80 carpen-
try hours. Demand for trains is unlimited, but at most 40 soldier are
bought each week.

Giapetto wants to maximize weekly profits (revenues - costs).

To summarize the important information and assumptions about this prob-
lem:

1. There are two types of wooden toys: soldiers and trains.
2. A soldier sells for =C27 , uses =C10 worth of raw materials, and increases

variable labor and overhead costs by =C14 .

http://rpmfind.net
http://packages.debian.org/etch/glpk
http://www.google.com/

Using glpsol with GNU MathProg 25

3. A train sells for =C21 , uses =C9 worth of raw materials, and increases
variable labor and overhead costs by =C10 .

4. A soldier requires 2 hours of finishing labor and 1 hour of carpentry
labor.

5. A train requires 1 hour of finishing labor and 1 hour of carpentry labor.
6. At most, 100 finishing hours and 80 carpentry hours are available weekly.
7. The weekly demand for trains is unlimited, while, at most, 40 soldiers

will be sold.

The goal is to find:

1. the numbers of soldiers and trains that will maximize the weekly profit,
2. the maximized weekly profit itself.

Mathematical Model for Giapetto

To model a linear problem (Giapetto’s problem is a linear one — we will see
this soon), the decision variables are established first. In Giapetto’s shop, the
objective function is the profit, which is a function of the amount of soldiers
and trains produced each week. Therefore, the two decision variables in this
problem are:

x1 : Number of soldiers produced each week
x2 : Number of trains produced each week
Once the decision variables are known, the objective function z of this

problem is simply the revenue minus the costs for each toy, as a function of x1

and x2 :

z = (27− 10− 14)x1 + (21− 9− 10)x2

= 3x1 + 2x2.

Note that the profit z depends linearly on x1 and x2 — this is a linear problem,
so far (the constraints must turn out to be linear, too).

It may seem at first glance that the profit can be maximized by simply
increasing x1 and x2 . Well, if life were that easy, let’s start manufacturing
trains and soldiers and move to the Jamaica! Unfortunately, there are restric-
tions that limit the decision variables that may be selected (or else the model
is very likely to be wrong).

Recall the assumptions made for this problem. The first three determined
the decision variables and the objective function. The fourth and sixth assump-
tion say that finishing the soldiers requires time for carpentry and finishing.
The limitation here is that Giapetto does not have infinite carpentry and fin-
ishing hours. That’s a constraint! Let’s analyze it to clarify.

One soldier requires 2 hours of finishing labor, and Giapetto has at most 100
hours of finishing labor per week, so he can’t produce more than 50 soldiers per

Using glpsol with GNU MathProg 26

week. Similarly, the carpentry hours constraint makes it impossible to produce
more than 80 soldiers weekly. Note here that the first constraint is stricter
than the second. The first constraint is effectively a subset of the second, thus
the second constraint is redundant.

The previous paragraph shows how to model optimization problems, but it’s
an incomplete analysis because all the necessary variables were not considered.
It’s not the complete solution of the Giapetto problem. So how should the
problem be approached?

Start by analyzing the limiting factors first in order to find the constraints.
First, what constrains the finishing hours? Since both soldiers and trains re-
quire finishing time, both need to be taken into account. Suppose that 10
soldiers and 20 trains were built. The amount of finishing hours needed for
that would be 10 times 2 hours (for soldiers) plus 20 times 1 hour (for trains),
for a total of 40 hours of finishing labor. The general constraint in terms of
the decision variables is:

2x1 + x2 ≤ 100.

This is a linear constraint, so we are still dealing with a linear program.
Now that the constraint for the finishing hours is ready, the carpentry hours

constraint is found in the same way to be:

x1 + x2 ≤ 80.

This constraint is a linear one.
There’s only one more constraint remaining for this problem. Remember

the weekly demand for soldiers? According to the problem description, there
can be at most 40 soldiers produced each week:

x1 ≤ 40,

again a linear constraint.
The demand for trains is unlimited, so no constraint there.
The modeling phase is finished, and we have the following LP:

max z = 3x1 + 2x2 (objective function)
s.t. 2x1 + x2 ≤ 100 (finishing constraint)

x1 + x2 ≤ 80 (carpentry constraint)
x1 ≤ 40 (demand for soldiers)

x1, x2 ≥ 0 (sign constraints)

Note the last constraint. It ensures that the values of the decision variables
will always be positive. The problem does not state this explicitly, but it’s still
important (and obvious). The problem also implies that the decision variables
are integers, but we are not dealing with IPs yet. So, we will just hope that

Using glpsol with GNU MathProg 27

the optimal solution will turn out to be an integer one (it will, but that’s just
luck).

Now GLPK can solve the model (since GLPK is good at solving linear
optimization problems).

Describing the Model with GNU MathProg

The mathematical formulation of Giapetto’s problem needs to be written with
the GNU MathProg language. The key items to declare are:

• The decision variables
• The objective function
• The constraints
• The problem data set

The following code, written in the (ASCII) text file giapetto.mod, shows
how to solve Giapetto’s problem with GNU MathProg. The line numbers are
not part of the code itself. They have been added only for the sake of making
references to the code.

1 #
2 # Giapetto’s problem
3 #
4 # This finds the optimal solution for maximizing Giapetto’s profit
5 #
6
7 /* Decision variables */
8 var x1 >=0; /* soldier */
9 var x2 >=0; /* train */

10
11 /* Objective function */
12 maximize z: 3*x1 + 2*x2;
13
14 /* Constraints */
15 s.t. Finishing : 2*x1 + x2 <= 100;
16 s.t. Carpentry : x1 + x2 <= 80;
17 s.t. Demand : x1 <= 40;
18
19 end;

Lines 1 through 5 are comments: # anywhere on a line begins a comment
to the end of the line. C-style comments can also be used, as shown on line 7 .
They even work in the middle of a declaration. Comments are there to make
the code more readable for a human reader. Computer reader, i.e. the GNU
MathProg translator, will ignore comments.

Empty lines, like line 6 , are simply ignored by the MathProg translator.
So, empty lines can be used to structure the code more readable.

Using glpsol with GNU MathProg 28

The first MathProg step is to declare the decision variables. Lines 8 and
9 declare x1 and x2. A decision variable declaration begins with the keyword
var. To simplify sign constraints, GNU MathProg allows a non-negativity
constraint >=0 in the decision variable declaration, as seen on lines 8 and 9 .

Every sentence in GNU MathProg must end with a semicolon (;). Be care-
ful! It is very easy to forget those little semicolons at the end of declarations!
(Even moderately experienced programmers should be very familiar with this
problem.)

Recall that x1 represents soldier numbers, and x2 represents train numbers.
These variables could have been called soldiers and trains, but that would
confuse the mathematicians in the audience. In general, it is good practice to
use x for decision variables and z for the objective function. That way you will
always spot them out quickly.

Line 12 declares the objective function. LP’s can be either maximized or
minimized. Giapetto’s mathematical model is a maximization problem, so the
keyword maximize is appropriate instead of the opposite keyword, minimize.
The objective function is named z. It could have been named anything, e.g.
profit, but this is not good practice, as noted before. Line 12 sets the objec-
tive function z to equal 3*x1+2*x2. Note that:

• The colon (:) character separates the name of the objective function and
its definition. Don’t use equal sign (=) to define the objective function!
• The asterisk (*) character denotes multiplication. Similarly, the plus (+),

minus (-), and forward slash (/) characters denote addition, subtraction,
and division as you’d expect. If you need powers, then use either the
circumflex (ˆ) or the double-star (**).

Lines 15 , 16 , and 17 define the constraints. The keyword s.t. (subject
to) is not required, but it improves the readability of the code (Remember
good practice!). The three Giapetto constraints have been labeled Finishing,
Carpentry, and Demand. Each of them is declared as in the mathematical
model. The symbols <= and >= express the inequalities ≤ and ≥ , respectively.
Don’t forget the ; at the end of each declaration.

Every GNU MathProg text file must end with end;, as seen on line 19 .

3.3.2 Remark. There was no data section in the code. The problem was
so simple that the problem data is directly included in the objective function
and constraints declarations as the coefficients of the decision variables in the
declarations. For example, in the objective function, the coefficients 3 and 1
are part of the problem’s data set.

Solving the Model with glpsol

Now, glpsol can use the text file giapetto.mod as input. It is good practice to
use the .mod extension for GNU MathProg input files and redirect the solution

Using glpsol with GNU MathProg 29

to a file with the extension .sol. This is not a requirement — you can use any
file name and extension you like.

Giapetto’s MathProg file for this example will be giapetto.mod, and the
output will be in the text file giapetto.sol. Now, run glpsol in your favorite
console:

glpsol -m giapetto.mod -o giapetto.sol

This command line uses two glpsol options:

-m The -m or –model option tells glpsol that the input in the file
giapetto.mod is written in GNU MathProg (the default modeling
language for glpsol).

-o The -o or –output option tells glpsol to send its output to the file
giapetto.sol.

3.3.3 Remark. Some people prefer to use the extension .txt to indicate
that the file in question is a (ASCII) text file. In that case giapetto.mod
would be, e.g., giapetto_mod.txt. Similarly, giapetto.sol would be, e.g.,
giapetto_sol.txt. The command would be

glpsol -m giapetto_mod.txt -o giapetto_sol.txt

The solution report will be written into the text file giapetto.sol (unless
you used the .txt extension style command of Remark 3.3.3), but some infor-
mation about the time and memory GLPK consumed is shown on the system’s
standard output (usually the console window):

Reading model section from giapetto.mod...
19 lines were read
Generating z...
Generating Finishing...
Generating Carpentry...
Generating Demand...
Model has been successfully generated
glp_simplex: original LP has 4 rows, 2 columns, 7 non-zeros
glp_simplex: presolved LP has 2 rows, 2 columns, 4 non-zeros
lpx_adv_basis: size of triangular part = 2
* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)
* 3: objval = 1.800000000e+02 infeas = 0.000000000e+00 (0)
OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (114537 bytes)
lpx_print_sol: writing LP problem solution to ‘giapetto.sol’...

The report shows that glpsol reads the model from the file giapetto.mod
that has 19 lines, calls a GLPK API function to generate the objective func-
tion, and then calls another GLPK API function to generate the constraints.

Using glpsol with GNU MathProg 30

After the model has been generated, glpsol explains briefly how the problem
was handled internally by GLPK. Then it notes that an optimal solution is
found. Then, there is information about the resources used by GLPK to solve
the problem (Time used 0.0 secs, wow!). Finally the report tells us that the
solution is written to the file giapetto.sol.

Now the optimal values for the decision variables x1 and x1, and the optimal
value of the objective function z are in the giapetto.sol file. It is a standard
text file that can be opened in any text editor (e.g. Notepad in Windows, gedit
in Linux with Gnome desktop). Here are its contents:

Problem: giapetto
Rows: 4
Columns: 2
Non-zeros: 7
Status: OPTIMAL
Objective: z = 180 (MAXimum)

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 180
2 Finishing NU 100 100 1
3 Carpentry NU 80 80 1
4 Demand B 20 40

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 20 0
2 x2 B 60 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
max.rel.err. = 0.00e+00 on column 0
High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

End of output

Using glpsol with GNU MathProg 31

Interpreting the Results

The solution in the text file giapetto.sol is divided into four sections:

1. Information about the problem and the optimal value of the objective
function.

2. Precise information about the status of the objective function and about
the constraints.

3. Precise information about the optimal values for the decision variables.
4. Information about the optimality conditions, if any.

Let us look more closely:
Information about the optimal value of the objective function is found in

the first part:

Problem: giapetto
Rows: 4
Columns: 2
Non-zeros: 7
Status: OPTIMAL
Objective: z = 180 (MAXimum)

For this particular problem, we see that the solution is OPTIMAL and that
Giapetto’s maximum weekly profit is =C180 .

Precise information about the status of the objective function and about
the constraints are found in the second part:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 180
2 Finishing NU 100 100 1
3 Carpentry NU 80 80 1
4 Demand B 20 40

The Finishing constraint’s status is NU (the St column). NU means that there’s
a non-basic variable (NBV) on the upper bound for that constraint. Later,
when you know more operation research theory you will understand more pro-
foundly what this means, and you can build the simplex tableau and check it
out. For now, here is a a brief practical explanation: Whenever a constraint
reaches its upper or lower boundary, it’s called a bounded, or active, constraint.
A bounded constraint prevents the objective function from reaching a better
value. When that occurs, glpsol shows the status of the constraint as either
NU or NL (for upper and lower boundary respectively), and it also shows the
value of the marginal, also known as the shadow price. The marginal is the
value by which the objective function would improve if the constraint were re-
laxed by one unit. Note that the improvement depends on whether the goal is
to minimize or maximize the target function. For instance, in Giapetto’s prob-
lem, which seeks maximization, the marginal value 1 means that the objective

Advanced MathProg and glpsol* 32

function would increase by 1 if we could have one more hour of finishing labor
(we know it’s one more hour and not one less, because the finishing hours con-
straint is an upper boundary). The carpentry and soldier demand constraints
are similar. For the carpentry constraint, note that it’s also an upper bound-
ary. Therefore, a relaxation of one unit in that constraint (an increment of
one hour) would make the objective function’s optimal value become better by
the marginal value 1 and become 181 . The soldier demand, however, is not
bounded, thus its state is B, and a relaxation in it will not change the objective
function’s optimal value.

Precise information about the optimal values for the decision variables is
found in the third part:

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 20 0
2 x2 B 60 0

The report shows the values for the decision variables: x1 = 20 and x2 =
60. This tells Giapetto that he should produce 20 soldiers and 60 trains to
maximize his weekly profit. (The solution was an integer one. We were lucky:
It may have been difficult for Giapetto to produce, say, 20.5 soldiers.)

Finally, in the fourth part,

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
max.rel.err. = 0.00e+00 on column 0
High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

there is some technical information mostly for the case when the algorithm is
not sure if the optimal solution is found. In this course we shall omit this topic
completely.

3.4 Advanced MathProg and glpsol*

This section is not necessarily needed in the rest of the course, and can thus
be omitted if time is scarce.

Advanced MathProg and glpsol* 33

glpsol Options

To get an idea of the usage and flexibility of glpsol here is the output of the
command

glpsol -h

or the command

glpsol –help

which is the same command (-h is just an abbreviation to –help):

Usage: glpsol [options...] filename

General options:
--mps read LP/MIP problem in Fixed MPS format
--freemps read LP/MIP problem in Free MPS format (default)
--cpxlp read LP/MIP problem in CPLEX LP format
--math read LP/MIP model written in GNU MathProg modeling

language
-m filename, --model filename

read model section and optional data section from
filename (the same as --math)

-d filename, --data filename
read data section from filename (for --math only);
if model file also has data section, that section
is ignored

-y filename, --display filename
send display output to filename (for --math only);
by default the output is sent to terminal

-r filename, --read filename
read solution from filename rather to find it with
the solver

--min minimization
--max maximization
--scale scale problem (default)
--noscale do not scale problem
--simplex use simplex method (default)
--interior use interior point method (for pure LP only)
-o filename, --output filename

write solution to filename in printable format
-w filename, --write filename

write solution to filename in plain text format
--bounds filename

write sensitivity bounds to filename in printable
format (LP only)

--tmlim nnn limit solution time to nnn seconds
--memlim nnn limit available memory to nnn megabytes
--check do not solve problem, check input data only
--name probname change problem name to probname
--plain use plain names of rows and columns (default)

Advanced MathProg and glpsol* 34

--orig try using original names of rows and columns
(default for --mps)

--wmps filename write problem to filename in Fixed MPS format
--wfreemps filename

write problem to filename in Free MPS format
--wcpxlp filename write problem to filename in CPLEX LP format
--wtxt filename write problem to filename in printable format
--wpb filename write problem to filename in OPB format
--wnpb filename write problem to filename in normalized OPB format
--log filename write copy of terminal output to filename
-h, --help display this help information and exit
-v, --version display program version and exit

LP basis factorization option:
--luf LU + Forrest-Tomlin update

(faster, less stable; default)
--cbg LU + Schur complement + Bartels-Golub update

(slower, more stable)
--cgr LU + Schur complement + Givens rotation update

(slower, more stable)

Options specific to simplex method:
--std use standard initial basis of all slacks
--adv use advanced initial basis (default)
--bib use Bixby’s initial basis
--bas filename read initial basis from filename in MPS format
--steep use steepest edge technique (default)
--nosteep use standard "textbook" pricing
--relax use Harris’ two-pass ratio test (default)
--norelax use standard "textbook" ratio test
--presol use presolver (default; assumes --scale and --adv)
--nopresol do not use presolver
--exact use simplex method based on exact arithmetic
--xcheck check final basis using exact arithmetic
--wbas filename write final basis to filename in MPS format

Options specific to MIP:
--nomip consider all integer variables as continuous

(allows solving MIP as pure LP)
--first branch on first integer variable
--last branch on last integer variable
--drtom branch using heuristic by Driebeck and Tomlin

(default)
--mostf branch on most fractional varaible
--dfs backtrack using depth first search
--bfs backtrack using breadth first search
--bestp backtrack using the best projection heuristic
--bestb backtrack using node with best local bound

(default)
--mipgap tol set relative gap tolerance to tol
--intopt use advanced MIP solver
--binarize replace general integer variables by binary ones

(assumes --intopt)
--cover generate mixed cover cuts

Advanced MathProg and glpsol* 35

--clique generate clique cuts
--gomory generate Gomory’s mixed integer cuts
--mir generate MIR (mixed integer rounding) cuts
--cuts generate all cuts above (assumes --intopt)

For description of the MPS and CPLEX LP formats see Reference Manual.
For description of the modeling language see "GLPK: Modeling Language
GNU MathProg". Both documents are included in the GLPK distribution.

See GLPK web page at <http://www.gnu.org/software/glpk/glpk.html>.

Please report bugs to <bug-glpk@gnu.org>.

Using Model and Data Sections

Recall Giapetto’s problem. It was very small. You may be wondering, in a
problem with many more decision variables and constraints, would you have to
declare each variable and each constraint separately? And what if you wanted
to adjust the data of the problem, such as the selling price of a soldier? Do
you have to make changes everywhere this value appears?

MathProg models normally have a model section and a data section, some-
times in two different files. Thus, glpsol can solve a model with different
data sets easily, to check what the solution would be with this new data. The
following listing, the contents of the text file giapetto2.mod, states Giapetto’s
problem in a much more elegant way. Again, the line numbers are here only
for the sake of reference, and are not part of the actual code.

1 #
2 # Giapetto’s problem (with data section)
3 #
4 # This finds the optimal solution for maximizing Giapetto’s profit
5 #
6
7 /* Set of toys */
8 set TOY;
9

10 /* Parameters */
11 param Finishing_hours {i in TOY};
12 param Carpentry_hours {i in TOY};
13 param Demand_toys {i in TOY};
14 param Profit_toys {i in TOY};
15
16 /* Decision variables */
17 var x {i in TOY} >=0;
18
19 /* Objective function */
20 maximize z: sum{i in TOY} Profit_toys[i]*x[i];
21
22 /* Constraints */

Advanced MathProg and glpsol* 36

23 s.t. Fin_hours : sum{i in TOY} Finishing_hours[i]*x[i] <= 100;
24 s.t. Carp_hours : sum{i in TOY} Carpentry_hours[i]*x[i] <= 80;
25 s.t. Dem {i in TOY} : x[i] <= Demand_toys[i];
26
27
28 data;
29 /* data section */
30
31 set TOY := soldier train;
32
33 param Finishing_hours:=
34 soldier 2
35 train 1;
36
37 param Carpentry_hours:=
38 soldier 1
39 train 1;
40
41 param Demand_toys:=
42 soldier 40
43 train 6.02E+23;
44
45 param Profit_toys:=
46 soldier 3
47 train 2;
48
49 end;

Rather than two separate files, the problem is stated in a single file with a
modeling section (lines 1 through 27) and a data section (lines 28 through 49).

Line 8 defines a SET. A SET is a universe of elements. For example, if I
declare mathematically x, for all i in {1;2;3;4}, I’m saying that x is an array,
or vector, that ranges from 1 to 4, and therefore we have x[1], x[2], x[3],
x[4]. In this case, {1;2;3;4} is the set. So, in Giapetto’s problem, there’s a
set called TOY. Where are the actual values of this set? In the data section
of the file. Check line 31. It defines the TOY set to contain soldier and train.
Wow, the set is not a numerical range. How can that be? GLPK handles this
in an interesting way. You’ll see how to use this in a few moments. For now,
get used to the syntax for SET declarations in the data section:

set label := value1 value2 ... valueN;
Lines 11, 12, and 13 define the parameters of the problem. There are three:

Finishing_hours, Carpentry_hours, and Demand_toys. These parameters
make up the problem’s data matrix and are used to calculate the constraints,
as you’ll see later.

Take the Finishing_hours parameter as an example. It’s defined on
the TOY set, so each kind of toy in the TOY set will have a value for
Finishing_hours. Remember that each soldier requires 2 hours of fin-
ishing work, and each train requires 1 hour of finishing work. Check lines 33,

Advanced MathProg and glpsol* 37

34, and 35 now. There is the definition of the finishing hours for each kind of
toy. Essentially, those lines declare that

Finishing_hours[soldier]=2 and Finishing_hours[train]=1.
Finishing_hours is, therefore, a matrix with 1 row and 2 columns, or a row
vector of dimension 2.

Carpentry hours and demand parameters are declared similarly. Note that
the demand for trains is unlimited, so a very large value is the upper bound
on line 43.

Line 17 declares a variable, x, for every i in TOY (resulting in x[soldier]
and x[train]), and constrains them to be greater than or equal to zero. Once
you have sets, it’s pretty easy to declare variables, isn’t it?

Line 20 declares the objective (target) function as the maximization of z,
which is the total profit for every kind of toy (there are two: trains and soldiers).
With soldiers, for example, the profit is the number of soldiers times the profit
per soldier.

The constraints on lines 23, 24, and 25 are declared in a similar way. Take
the finishing hours constraint as an example: it’s the total of the finishing
hours per kind of toy, times the number of that kind of toy produced, for the
two types of toys (trains and soldiers), and it must be less than or equal to
100. Similarly, the total carpentry hours must be less than or equal to 80.

The demand constraint is a little bit different than the previous two, be-
cause it’s defined for each kind of toy, not as a total for all toy types. Therefore,
we need two of them, one for trains and one for soldiers, as you can see on line
25. Note that the index variable ({i in TOY}) comes before the :. This tells
GLPK to create a constraint for each toy type in TOY, and the equation that
will rule each constraint will be what comes after the :. In this case, GLPK
will create

Dem[soldier] : x[soldier] <= Demand[soldier]
Dem[train] : x[train] <= Demand[train]
Solving this new model must yield the same results. So issue the command

glpsol -m giapetto2.mod -o giapetto2.sol

and the text file giapetto2.sol should read:

Problem: giapetto2
Rows: 5
Columns: 2
Non-zeros: 8
Status: OPTIMAL
Objective: z = 180 (MAXimum)

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 180
2 Fin_hours NU 100 100 1

Advanced MathProg and glpsol* 38

3 Carp_hours NU 80 80 1
4 Dem[soldier] B 20 40
5 Dem[train] B 60 6.02e+23

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x[soldier] B 20 0
2 x[train] B 60 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err. = 0.00e+00 on column 0
max.rel.err. = 0.00e+00 on column 0
High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

End of output

Note how the constraints and the decision variables are now named after
the TOY set, which looks clean and organized.

Part II

Theory of Linear Programming

Chapter 4

Linear Algebra and Linear Systems

Most students should already be familiar with the topics discussed in this
chapter. So, this chapter may be a bit redundant, but it will at least serve us
as a place where we fix some notation.

4.1 Matrix Algebra

Matrices, Vectors, and Their Transposes

4.1.1 Definition. A matrix is an array of numbers. We say that A is an
(m× n)-matrix if it has m rows and n columns:

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
Sometimes we write A = [aij] where it is understood that the index i runs

from 1 through m , and the index j runs from 1 through n . We also use the
denotation A ∈ Rm×n to indicate that A is an (m× n)-matrix.

4.1.2 Example.

A =
[

5 2 −3
6 0 0.4

]
is a (2 × 3)-matrix, or A ∈ R2×3 . E.g. a12 = 2 and a23 = 0.4 ; a32

does not exist.

4.1.3 Definition. The transpose A′ of a matrix A is obtained by changing

Matrix Algebra 41

its rows to columns, or vice versa: a′ij = aji . So, if A is an (m× n)-matrix

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
then its transpose A′ is the (n×m)-matrix

A′ =

a′11 a′12 · · · a′1m
a′21 a′22 · · · a′2m
...

...
. . .

...
a′n1 a′n2 · · · a′nm

 =

a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 .

4.1.4 Example. If

A =
[

5 2 −3
6 0 0.4

]
,

then

A′ =

 5 6
2 0
−3 0.4

 .
So, e.g., a′12 = 6 = a21 .

4.1.5 Remark. If you transpose twice (or any even number of times), you are
back where you started:

A′′ = (A′) ′ = A.

4.1.6 Definition. A vector is either an (n × 1)-matrix or a (1 × n)-matrix.
(n× 1)-matrices are called column vectors and (1×n)-matrices are called row
vectors.

Matrix Algebra 42

4.1.7 Example. If x is the column vector

x =

1

−0.5
−8
11

 ,
then x′ is the row vector

x′ = [1 − 0.5 − 8 11].

4.1.8 Remark. We will always assume that vectors are column vectors. So,
e.g., a 3-dimensional vector x will be x1

x2

x3

 ,
and not

[x1 x2 x3] .

Matrix Sums, Scalar Products, and Matrix Products

Matrix sum and scalar multiplication are defined component-wise:

4.1.9 Definition. Let

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 and B =

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 .
Then the matrix sum A + B is defined as

A + B =

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .
Let λ be a real number. Then the scalar multiplication λA is defined as

λA =

λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n
...

...
. . .

...
λam1 λam2 · · · λamn

 .

Matrix Algebra 43

4.1.10 Example. Let

A =
[

5 2
33 20

]
and I =

[
1 0
0 1

]
.

Then

A− 100I =
[−95 2

33 −80

]
.

4.1.11 Definition. Let A be a (m× n)-matrix

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
and let B be a (n× p)-matrix

B =

b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 · · · bnp

 .
Then the product matrix [cij] = C = AB is the (m× p)-matrix defined by

cij =
n∑
k=1

aikbkj .

4.1.12 Example.

[
2 1 5
0 3 −1

] 1 5 3 −1
7 −4 2 5
0 2 1 6

 =
[

9 16 13 33
21 −14 5 9

]
,

since, e.g.,

9 = c11

= a11b11 + a12b21 + a13b31

= 2×1 + 1×7 + 5×0.

Matrix Algebra 44

4.1.13 Remark. Note that while matrix sum is commutative: A+B = B+A ,
the matrix product is not: AB 6= BA . Otherwise the matrix algebra follows
the rules of the classical algebra of the real numbers. So, e.g.,

(A + B)(C + D) = (A + B)C + (A + B)D
= AC + BC + AD + BD

= A(C + D) + B(C + D).

Inverse Matrices

4.1.14 Definition. The identity matrix In is an (n × n)-matrix (a square
matrix) with 1s on the diagonal and 0s elsewhere:

In =

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

.

We shall usually write shortly I instead of In , since the dimension n of
the matrix is usually obvious.

4.1.15 Definition. The inverse matrix A−1 of a square matrix A , if it exists,
is such a matrix that

A−1A = I = AA−1.

4.1.16 Example. Let

A =
[

1 2
1 3

]
.

Then

A−1 =
[

3 −2
−1 1

]
.

The inverse matrix A−1 in Example 4.1.16 above was found by using the
Gauss–Jordan method that we learn later in this lecture. For now, the reader
is invited to check that A−1 satisfies the two criteria of an inverse matrix:
A−1A = I = AA−1 .

Matrix Algebra 45

4.1.17 Example. Let

A =
[

1 1
0 0

]
.

This matrix has no inverse. Indeed, if the inverse A−1 existed then,
e.g., the equation

Ax =
[

1
1

]
would have a solution in x = [x1 x2]′ :

x = A−1

[
1
1

]
.

But this is impossible since

Ax =
[
x1 + x2

0

]
6=

[
1
1

]
no matter what x = [x1 x2]′ you choose.

Dot and Block Matrix Notations

When we want to pick up rows or columns of a matrix A we use the dot-
notation:

4.1.18 Definition. Let A be the matrix

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
Then its ith row is the n-dimensional row vector

ai• = [ai1 ai2 · · · ain] .

Similarly, A ’s j th column is the m-dimensional column vector

a•j =

a1j

a2j
...

amj

 .

Matrix Algebra 46

4.1.19 Example. If

A =
[

5 2 −3
6 0 0.4

]
,

then
a2• = [6 0 0.4]

and

a•3 =
[−3

0.4

]
.

4.1.20 Remark. In statistical literature the dot-notation is used for summa-
tion: There ai• means the row-sum

∑n
j=1 aij . Please don’t be confused about

this. In this course the dot-notation does not mean summation!

When we want to combine matrices we use the block notation:

4.1.21 Definition. Let A be a (m× n)-matrix

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
and let B be a (m× k)-matrix

B =

b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...
bm1 bm2 · · · bmk

 .
Then the block matrix [A B] is the (m× (n+ k))-matrix

[A B] =

a11 a12 · · · a1n b11 b12 · · · b1k
a21 a22 · · · a2n b21 b22 · · · b2k
...

...
. . .

...
...

...
. . .

...
am1 am2 · · · amn bm1 bm2 · · · bmk

 .

Similarly, if C is an (p × n)-matrix, then the block matrix
[

A
C

]
is defined

Matrix Algebra 47

as

[
A
C

]
=

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn
c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cp1 cp2 · · · cpn

.

4.1.22 Example. Let

A =

 5.1 2.1
6.5 −0.5
0.1 10.5

 , c =
[

20
30

]
, and 0 =

 0
0
0

 .
Then [

1 −c′

0 A

]
=

1 −20 −30
0 5.1 2.1
0 6.5 −0.5
0 0.1 10.5

 .

Block matrices of the type that we had in Example 4.1.22 above appear
later in this course when we solve LPs with the simplex method in lectures 6
and 7.

4.1.23 Example. By combining the dot and block notation we have:

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =

a1•
a2•
...

am•

 = [a•1 a•2 · · · a•n] .

Order Among Matrices

4.1.24 Definition. If A = [aij] and B = [bij] are both (m×n)-matrices and
aij ≤ bij for all i and j then we write A ≤ B .

In this course we use the partial order introduced in Definition 4.1.24 mainly
in the form x ≥ b , which is then a short-hand for: xi ≥ bi for all i .

Solving Linear Systems 48

4.2 Solving Linear Systems

Matrices and linear systems are closely related. In this section we show how
to solve a linear system by using the so-called Gauss–Jordan method. This is
later important for us when we study the simplex method for solving LPs in
lectures 6 and 7.

Matrices and Linear Systems

A linear system is the system of linear equations

(4.2.1)

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm.

Solving the linear system (4.2.1) means finding the variables x1, x2, . . . , xn that
satisfy all the equations in (4.2.1) simultaneously.

The connection between linear systems and matrices is obvious. Indeed, let

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x =

x1

x2
...
xn

 , and b =

b1
b2
...
bm

 ,
then the linear system (4.2.1) may be rewritten as

Ax = b.

Elementary Row Operations

We develop in the next subsection the Gauss–Jordan method for solving linear
systems. Before studying it, we need to define the concept of an Elementary
Row Operation (ERO). An ERO transforms a given matrix A into a new
matrix Ã via one of the following operations:

ERO1 Ã is obtained by multiplying a row of A by a non-zero number λ :

λa•i ã•i.

All other rows of Ã are the same as in A .

ERO2 Ã is obtained by multiplying a row of A by a non-zero number λ (as
in ERO1), and then adding some other row, multiplied by a non-zero
number µ of A to that row:

λa•i + µa•j ã•i

(i 6= j). All other rows of Ã are the same as in A .

Solving Linear Systems 49

ERO3 Ã is obtained from A by interchanging two rows:

a•i ã•j
a•j ã•i.

All other rows of Ã are the same as in A .

4.2.2 Example. We want to solve the following linear system:

x1 + x2 = 2,
2x1 + 4x2 = 7.

To solve Example 4.2.2 by using EROs we may proceed as follows: First we
replace the second equation by −2(first equation)+second equation by using
ERO2. We obtain the system

x1 + x2 = 2,
2x2 = 3.

Next we multiply the second equation by 1/2 by using ERO1. We obtain the
system

x1 + x2 = 2,
x2 = 3/2.

Finally, we use ERO2: We replace the first equation by −(second equation)+first
equation. We obtain the system

x1 = 1/2,
x2 = 3/2.

We have solved Example 4.2.2: x1 = 1/2 and x2 = 3/2 .
Now, let us rewrite what we have just done by using augmented matrix

notation. Denote

A =
[

1 1
2 4

]
and b =

[
2
7

]
,

and consider the augmented matrix

[A |b] =
[

1 1 2
2 4 7

]
.

This is the matrix representation of the linear system of Example 4.2.2, and
the three steps we did above to solve the system can be written in the matrix
representation as[

1 1 2
2 4 7

]

[
1 1 2
0 2 3

]

[
1 1 2
0 1 3/2

]

[
1 0 1/2
0 1 3/2

]

Matrices as Linear Functions* 50

The usefulness of EROs and the reason why the Gauss–Jordan methdod
works come from the following theorem:

4.2.3 Theorem. Suppose the augmented matrix [Ã|b̃] is obtained from the
augmented matrix [A|b] via series of EROs. Then the linear systems Ax = b
and Ãx = b̃ are equivalent.

We shall not prove Theorem 4.2.3. However, Example 4.2.2 above should
make Theorem 4.2.3 at least plausible.

Gauss–Jordan Method

We have already used the Gauss–Jordan method in this course — look how we
solved Example 4.2.2. Now we present the general Gauss–Jordan method for
solving x from Ax = b as a three-step algorithm (steps 1 and 3 are easy; Step
2 is the tricky one):

Step 1 Write the problem Ax = b in the augmented matrix form [A|b] .

Step 2 Using EROs transform the first column of [A|b] into [1 0 · · · 0]′ . This
may require the interchange of two rows. Then use EROs to transform
the second column of [A|b] into [0 1 · · · 0]′ . Again, this may require the
change of two rows. Continue in the same way using EROs to transform
successive columns so that ith column has the ith element equal to 1
and all other elements equal to 0 . Eventually you will have transformed
all the columns of the matrix A , or you will reach a point where there
are one or more rows of the form [0′|c] on the bottom of the matrix.
In either case, stop and let [Ã|b̃] denote the augmented matrix at this
point.

Step 3 Write down the system Ãx = b̃ and read the solutions x — or the
lack of solutions — from that.

4.2.4 Remark.* the Gauss–Jordan method can also be used to calculate
inverse matrices: To calculate the inverse of A construct the augmented matrix
[A|I] and transform it via EROs into [I|B] . Then B = A−1 .

4.3 Matrices as Linear Functions*

This section is not needed later in the course; it just explains a neat way of
thinking about matrices. If you are not interested in thinking about matrices
as functions you may omit this section.

Matrices as Linear Functions* 51

Function Algebra

We only consider function between Euclidean spaces Rm although the defini-
tions can be easily extended to any linear spaces.

4.3.1 Definition. Let f, g : Rn → Rm , and let α ∈ R .

(a) The function sum f + g is defined pointwise as

(f + g)(x) = f(x) + g(x).

(b) The scalar multiplication αf is defined pointwise as

(αf)(x) = αf(x).

4.3.2 Example. Let f : R2 → R map a point to its Euclidean distance
from the origin and let g : R2 → R project the point to its nearest point
in the x1 -axis. So,

f(x) = ‖x‖ =
√
x2

1 + x2
2,

g(x) = x2.

Then
(f + 2g)(x) = ‖x‖+ 2x2 =

√
x2

1 + x2
2 + 2x2.

So, e.g.,

(f + 2g)
([

1
1

])
=
√

2 + 2.

4.3.3 Definition. Let f : Rn → Rm and g : Rk → Rn . The composition f ◦ g
is the function from Rk to Rm defined as

(f ◦ g)(x) = f(g(x)).

The idea of composition f ◦ g is: The mapping f ◦ g is what you get if you
first map x through the mapping g into g(x) , and then map the result g(x)
through the mapping f into f(g(x)) .

Matrices as Linear Functions* 52

4.3.4 Example. Let g : R2 → R2 reflect the point around the x1 -axis,
and let f : R2 → R be the Euclidean distance of the point from the
point [1 2]′ . So,

g

([
x1

x2

])
=

[
x1

−x2

]
,

f

([
x1

x2

])
=

√
(x1 − 1)2 + (x2 − 2)2.

Then

(f ◦ g)
([

x1

x2

])
= f

(
g

([
x1

x2

]))
= f

([
x1

−x2

])
=

√
(x1 − 1)2 + (−x2 − 2)2.

So, e.g.,

(f ◦ g)
([

1
1

])
= 3.

4.3.5 Definition. The identity function idm : Rm → Rm is defined by

idm(x) = x.

Sometimes we write simply id instead of idm .

The idea of an identity map id is: If you start from x , and map it through
id , you stay put — id goes nowhere.

4.3.6 Definition. Let f : Rm → Rn . If there exists a function g : Rn → Rm

such that
g ◦ f = idm and f ◦ g = idn

then f is invertible and g is its inverse function. We denote g = f−1 .

The idea of an inverse function is: If you map x through f , then mapping
the result f(x) through f−1 gets you back to the starting point x .

Matrices as Linear Functions* 53

4.3.7 Example. Let f : R → R be f(x) = x3 . Then f−1(x) = 3
√
x .

Indeed, now

f(f−1(x)) = f
(

3
√
x
)

=
(

3
√
x
)3 = x,

and in the same way one can check that f−1(f(x)) = x .

Matrix Algebra as Linear Function Algebra

Recall the definition of a linear function:

4.3.8 Definition. A function f : Rn → Rm is linear if

(4.3.9) f(αx + βy) = αf(x) + βf(y)

for all x,y ∈ Rn and α, β ∈ R .

The key connection between linear functions and matrices is the following
theorem which says that for every linear function f there is a matrix A that
defines it, and vice versa.

4.3.10 Theorem. Let f : Rn → Rm . The function f is linear if and only if
there is a (m× n)-matrix A such that

f(x) = Ax.

Proof. The claim of Theorem 4.3.10 has two sides: (a) if a function f is defined
by f(x) = Ax then it is linear, and (b) if a function f is linear, then there is
a matrix A such that f(x) = Ax .

Let us first prove the claim (a). We have to show that (4.3.9) holds for f .
But this follows from the properties of the matrix multiplication. Indeed,

f(αx + βy) = A(αx + βy)
= A(αx) + A(βy)
= αAx + βAy

= αf(x) + βf(y).

Let us then prove the claim (b). This is a bit more difficult than the claim
(a), since mow we have to construct the matrix A from the function f . The
trick is to write any vector x ∈ Rn as

x =
n∑
i=1

xi ei,

Matrices as Linear Functions* 54

where ei = [ei1 ei2 · · · ein]′ is the ith coordinate vector: eij = 1 if i = j and
0 otherwise. Then, since f is linear, we have

f(x) = f

(
n∑
i=1

xi ei

)
=

n∑
i=1

xi f(ei) .

So, if we can write
n∑
i=1

xi f(ei) = Ax

for some matrix A we are done. But this is accomplished by defining the
matrix A by its columns as

a•i = f(ei) .

This finishes the proof of Theorem 4.3.10.

Since a row vector [c1 c2 · · · cn] is an (1×n)-matrix, we have the following
corollary:

4.3.11 Corollary. A function f : Rn → R is linear if and only if there is a
vector c ∈ Rn such that

f(x) = c′x.

Finally, let us interpret the matrix operations as function operations.

4.3.12 Theorem. Let Ah denote the matrix that corresponds to a linear func-
tion h. Let f and g be linear functions, and let λ be a real number. Then
Âă

Aλf = λAf ,

Af+g = Af + Ag,

Af◦g = AfAg,

Aid = I,

Af−1 = A−1
f .

The proof of Theorem 4.3.12 is omitted.

Chapter 5

Linear Programs and Their Optima

The aim of this chapter is, one the one hand, to give a general picture of
LPs, and, on the other hand, to prepare for the Simplex method introduced in
Chapter 6. If there is a one thing the student should remember after reading
this chapter, that would be: The optimal solution of an LP is found in one of
the corners of the region of all feasible solutions.

There are many theoretical results, i.e. theorems, in this lecture. The
proofs of the theorems are collected in the last subsection, which is omitted in
the course.

This lecture is adapted from [2, Ch. 2].

5.1 Form of Linear Program

Linear Program as Optimization Problem

Let us start by considering optimization in general. Optimization problems can
be pretty diverse. The next definition is, for most practical purposes, general
enough.

5.1.1 Definition. An optimization problem is: maximize (or minimize) the
objective function

z = f(x1, . . . , xn)

subject to the constraints

l1 ≤ g1(x1, . . . , xn) ≤ u1
...

lm ≤ gm(x1, . . . , xn) ≤ um

5.1.2 Remark. In some optimization problems some of the lower bounds
l1, . . . , lm may be missing. In that case we may simply interpret the missing
lower bounds to be −∞ . Similarly, some of the upper bounds u1, . . . , um may
be missing, and in that case we may interpret the missing upper bounds to
be +∞ . Also, when one formulates an optimization problem, it may turn out

Form of Linear Program 56

that the lower or upper bounds depend on the decision variables x1, . . . , xn .
In that case one can remove this dependence easily by using the following
transformation:

li(x1, . . . , xn) ≤ gi(x1, . . . , xn) ≤ ui(x1, . . . , xn)

{
0 ≤ gi(x1, . . . , xn)− li(x1, . . . , xn)

gi(x1, . . . , xn)− ui(x1, . . . , xn) ≤ 0

So, the constraint i becomes two constraints, neither of which has bounds that
depend on the decision x1, . . . , xn .

The variables x1, . . . , xn in Definition 5.1.1 are called decision variables:
They are the ones the optimizer seeks for — together with the value of the
objective function, or course. Indeed, solving the optimization problem 5.1.1
means:

1. Finding the optimal decision x∗1, . . . , x
∗
n under which the objective z∗ =

f(x∗1, . . . , x
∗
n) is optimized — maximized or minimized, depending on

the problem — among all possible decisions x1, . . . , xn that satisfy the
constraints of the problem.

2. Finding, under the constraints, the optimal value z∗ = f(x∗1, . . . , x
∗
n) —

maximum or minimum, depending on the problem — of the objective.

It may look silly that we have split the solution criterion into two points, but
sometimes it is possible to find the optimal value z∗ = f(x∗1, . . . , x

∗
n) without

finding the optimal decision x∗1, . . . , x∗n — or vice versa. In this course, however,
we shall not encounter this situation.

5.1.3 Example. Mr. K. wants to invest in two stocks, #1 and #2 .
The following parameters have been estimated statistically:

r1 = 10% is the return of stock #1 ,
r2 = 5% is the return of stock #2 ,
σ1 = 4 is the standard deviation of stock #1 ,
σ2 = 3 is the standard deviation of stock #2 ,
ρ = −0.5 is the correlation between the stocks #1 and #2 .

Mr. K. wants to maximize the return of his portfolio while keeping the
risk (measured as standard deviation) of the portfolio below 3.5 .

How should Mr. K. distribute his wealth between the two stocks?

Mr. K.’s problem in Example 5.1.3 is an optimization problem. Indeed, let
w1 and w2 denote the portions of Mr. K.’s wealth put in stocks #1 and #2 ,

Form of Linear Program 57

respectively. So, w1 and w2 are the decision variables of this problem. Then
Mr. K.’s objective function to be maximized is the total return of his portfolio:

z = f(w1, w2)
= r1w1 + r2w2

= 10w1 + 5w2.

The constraints are:

g1(w1, w2) =
√
σ2

1w
2
1 + 2ρσ1σ2w1w2 + σ2

2w2

=
√

16w2
1 − 12w1w2 + 9w2

2

≤ 3.5,

for the risk,
g2(w1, w2) = w1 + w2 ≤ 1,

for the total wealth to be invested, and — if short-selling is not allowed — then
there are the sign constraints

0 ≤ g3(w1, w2) = w1,

0 ≤ g4(w1, w2) = w2.

Let us then consider linear optimization problems.

Let us denote

x =

 x1
...
xn

 , l =

 l1
...
lm

 , u =

 u1
...
um

 , and g(x) =

 g1(x)
...

gm(x)

 .
Then Definition 5.1.1 can be written in a compact form as:

5.1.4 Definition. A general optimization problem is to either maximize or
minimize the objective function

z = f(x)

subject to the constraints

l ≤ g(x) ≤ u.

An optimization problem is a linear optimization problem — or a linear
program — if the objective function f and the constraint function g are both
linear. Now, any linear form h(x) can be written as Ax , where A is a matrix
uniquely determined by the function h (if you want to see how to construct the
matrix A from the function h , see part (b) of the proof of Theorem 4.3.10).
So, we arrive at the following definition:

Form of Linear Program 58

5.1.5 Definition. A linear optimization problem, or a linear program (LP) is
to either maximize or minimize the objective function

z = c′x

subject to the constraints
l ≤ Ax ≤ u,

and to the sign constraints
x ≥ 0.

5.1.6 Remark. The sign constraints x ≥ 0 in Definition 5.1.5 are somewhat
particular (as opposed to general), and not in line with Definition 5.1.1. How-
ever, in practice the sign constraints are so prevalent that we make it a standing
assumption.

Mr. K.’s optimization problem in Example 5.1.3 was not an LP, since the
constraint function g1 was not linear (everything else in Mr. K.’s problem was
linear).

Assumptions of Linear Programs

Definition 5.1.5 is the mathematical description of an LP. As such it is complete
and perfect, as is the nature of mathematical definitions. Definition 5.1.5 is
also very Laconic and not directly related to the “real world”, as is also the
nature of mathematical definitions. The list below explains the consequences
— or assumptions, if you like — of Definition 5.1.5 for the non-Spartans living
in the “real world”:

Proportionality The contribution to the objective function from each de-
cision variable is proportional to the value of the decision variable: If,
say, decision variable x2 is increased by ∆ then the value of objective
function is increased by c2∆ . Similarly, the contribution of each deci-
sion variable in restrictions is also proportional to the value of the said
variable. So, e.g., if you double the value of the decision variable x2 the
resources consumed by that decision will also double.

Additivity The contribution to the objective function for any variable is in-
dependent of the values of the other decision variables. For example, no
matter what the value of x1 is increasing x2 to x2 + ∆ will increase the
value of the objective function by c2∆ . Similarly, the resources used by
decision x2 will increase independently of the value of x1 .

Divisibility It is assumed that the decision variables can take fractional val-
ues. For example x1 may be π . This assumption is in many practical
cases not true, but a reasonably good approximation of the reality. In
case this assumption is violated, we have an Integer Program (IP). We
shall learn about IPs in Chapter 11.

Form of Linear Program 59

Certainty It is assumed that all the parameters of the program are known
with certainty. For example, in Giapetto’s problem 3.3.1 it was assumed
that the demands for soldiers and trains were known. This is certainly
almost never the case in practice. Indeed, typically in practice one has to
estimate the parameters of the LP statistically. We shall not talk about
statistical estimation in this course.

5.1.7 Remark. Unlike proportionality, additivity, and divisibility, the cer-
tainty assumption is not particularly “linear”.

Standard Form of Linear Programs

The LP 5.1.5 can be represented in many equivalent forms. In this course we
consider three forms:

1. standard form,
2. slack form,
3. canonical slack form.

The standard form is good for theoretical considerations. The slack form and
the canonical slack form are food (no typo here) for the Simplex algorithm.
In this subsection we consider the standard form. The slack form and the
canonical form will be introduced in Chapter 6 where we study the Simplex
algorithm.

5.1.8 Remark. When you solve LPs with GLPK there is usually no need to
transform them to standard, slack, or canonical forms: GLPK will internally
transform the LP into any form that is suitable for it (which is probably some
kind of a slack form as GLPK uses a revised Simplex algorithm). Also, note
that there is no universal consensus on what is a “standard form”, or a “slack
form”, or a “canonical slack form” of an LP. So, in different textbooks you
are likely to find different definitions. Indeed, e.g. [4] calls the slack form a
standard form.

5.1.9 Definition. A standard form LP is:

max z = c′x
s.t. Ax ≤ b

x ≥ 0

So, an LP is in standard form if:

1. It is a maximization problem
2. There are no lower bound constraints

Any LP of Definition 5.1.5 can be transformed into a standard form LP of
Definition 5.1.9 by using the following three-step algorithm:

Form of Linear Program 60

Step 1: Change into maximization If the LP is a minimization problem,
change it to a maximization problem by multiplying the objective vector
c by −1 :

min c′x max −c′x.

Step 2: Remove double inequalities If there are both lower and upper
bound in a single constraint, change that constraint into two constraints:

li ≤ ai1x1 + · · ·+ ainxn ≤ ui

{
li ≤ ai1x1 + · · ·+ ainxn

ai1x1 + · · ·+ ainxn ≤ ui .

Step 3: Remove lower bounds If there is a lower bound constraint li ,
change it to an upper bound constraint by multiplying the corresponding
inequality by −1 :

li ≤ ai1x1 + · · · ainxn −ai1x1 − · · · − ainxn ≤ −li.

5.1.10 Example. Let us find the standard form of the LP

min z = −2x1 + 3x2

s.t. 1 ≤ x1 + x2 ≤ 9 (1)
2x1 − x2 ≤ 4 (2)

2 ≤ 7x1 + x2 ≤ 100 (3)
x1, x2 ≥ 0 (4)

Step 1: We turn the LP into a maximization problem, and get the objective

max z = 2x1 − 3x2.

Step 2: We remove the double inequalities (1) and (3). From the constraint
(1) we get the constraints

1 ≤ x1 + x2 (1.a)
x1 + x2 ≤ 9 (1.b)

and from the constraint (3) we get the constraints

2 ≤ 7x1 + x2 (3.a)
7x1 + x2 ≤ 100 (3.b)

Before going to Step 3 let us check the status of the LP now:

max z = −2x1 + 3x2

Location of Linear Programs’ Optima 61

s.t. 1 ≤ x1 + x2 (1.a)
x1 + x2 ≤ 9 (1.b)

2x1 − x2 ≤ 4 (2)
2 ≤ 7x1 + x2 (3.a)

7x1 + x2 ≤ 100 (3.b)
x1, x2 ≥ 0 (4)

Step 3: We remove the lower bounds for the inequalities (1.a) and (3.a).
We obtain the standard form

max z = −2x1 + 3x2

s.t. −x1 − x2 ≤ −1 (1.a)
x1 + x2 ≤ 9 (1.b)

2x1 − x2 ≤ 4 (2)
−7x1 − x2 ≤ −2 (3.a)

7x1 + x2 ≤ 100 (3.b)
x1, x2 ≥ 0 (4)

5.2 Location of Linear Programs’ Optima

In this section we consider the region of the admissible decisions in an LP
problem — the so-called feasible region. We also consider the location of the
optimal decision of an LP, which must of course be in the feasible region.

The main result — and a problem — to be remembered is:

The optimal solution of an LP is found in one of the corners of the feasible
region. The decision variables corresponding to the corners are called Basic
Feasible Solutions (BFS). So, the problem is to find the best BFS.

Shape of Feasible Region

Since we now know how to transform any LP into a standard form, we shall
state LPs in their standard forms in the definitions.

5.2.1 Definition. The feasible region K of an LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

is the set of decisions x that satisfy the constraints Ax ≥ b and x ≥ 0 :

K = {x ∈ Rn ; Ax ≤ b,x ≥ 0} .

Location of Linear Programs’ Optima 62

Note that the feasible region K is determined by the technology matrix A
and the constraints b . The objective c has no effect on the feasible region.

5.2.2 Remark. In what follows we use the convention that LP and its feasible
region are like in Definition 5.2.1, and that the said LP has n decision variables
and m constraints, excluding the sign constraints. This means that c is an n-
dimensional column vector, A is an (n×m)-matrix, and b is an m-dimensional
column vector.

Theorem 5.2.3 below says that if you have two feasible solutions, and you
draw a line segment between those two solutions, then every solution in that
line segment is also feasible.

5.2.3 Theorem. The feasible region of an LP is convex: If x and y belong
to the feasible region, then also αx + (1− α)y belong to the feasible region for
all α ∈ [0, 1].

5.2.4 Remark.* Actually the feasible region has more structure than just
convexity: It is a (closed) convex polytope. We shall not give a general definition
of a convex polytope. If the (closed) convex polytope is bounded one can think
it as the result of the following procedure:

1. Take some points p1,p2, . . . ,pk to be corners of the convex polytope.
These points belong to the convex polytope — they are its generators.

2. If some point, say q , is in a line segment connecting any two points of the
convex polytope, then q must be included to the convex polytope also.
This including procedure must be reiterated as new points are included
into the set until the set there are no more new points to be included.

For example, three points will generate a filled triangle as their convex polytope.
The said three points will be the three corners of the polytope. Four points in
a three-dimensional space will generate a filled (irregular) tetrahedron as their
convex polytope with the said four points at its corners.

Optima in Corners

5.2.5 Definition. Consider a feasible solution, or a decision, x of an LP. The
constraint bi is active at the decision x if ai•x = bi .

Constraint i being active at decision x means that the resource i is fully
consumed, or utilized, with decision x .

5.2.6 Definition. A feasible solution, or decision, of an LP is

Inner point if there are no active constraints at that decision,
Boundary point if there is at least one active constraints at that decision,

http://en.wikipedia.org/wiki/Polytope#Convex_polytopes

Location of Linear Programs’ Optima 63

Corner point if there are at least n linearly independent active constraints
at that decision. Corner points are also called Basic Feasible Solutions
(BFS).

Note that corner points are also boundary points, but not vice versa.

5.2.7 Remark. Linear independence means that the constraints are genuinely
different. For example, the constraints

2x1 + 3x2 ≤ 2
x1 + x2 ≤ 4

are linearly independent, but the constraints

2x1 + 3x2 ≤ 2
6x1 + 9x2 ≤ 6

are not.

The next picture illustrates Definition 5.2.6. In that picture: None of the
constraints (1) , (2) , or (3) is active in the “Inner point”. In the “Boundary
point” one of the constraints, viz. (1) , is active. In the “Corner point” two
(which is the number of the decision variables) of the constraints, viz. (1) and
(3) , are active.

Karush–Kuhn–Tucker Conditions* 64

0

1

2

3x2

0 1 2 3
x1

Boundary point

Inner point

Corner point

(1)

(2)

(3)

5.2.8 Theorem. Let x∗ be an optimal solution to an LP. Then x∗ is a bound-
ary point of the feasible region.

Theorem 5.2.8 can be refined considerably. Indeed, the next theorem tells
us that in seeking the optimum we do not have to check the entire boundary
— it is enough to check the corners!

5.2.9 Theorem. An optimal solution x∗ of an LP can be found — when it
exists — in one of the corner points of the feasible region, i.e., an optimal
solution is a BFS.

5.3 Karush–Kuhn–Tucker Conditions*

Sometimes one can make an educated guess about the optimal corner of an
LP. In that case one asks if the guess is correct. The following Karush–Kuhn–
Tucker theorem provides a way to check the correctness of one’s guess.

Proofs* 65

5.3.1 Theorem. Consider the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

Let x be a BFS of the LP. Suppose there are vectors s,u,v such that

(i) Ax + s = b,
(ii) c = A′v − u,
(iii) u′x + v′s = 0,
(iv) s,u,v ≥ 0 .

Then x is an optimal solution to the LP.

The vectors s , u , v in the Karush–Kuhn–Tucker theorem 5.3.1 have the
following interpretation:

s is the slack vector: si tells how much of the resource i is unused. If
si = 0 then the constraint i is active, i.e., the resource i is completely
used. This interpretation is obvious if you look condition (i) of Theorem
5.3.1.

u is connected to the sign constraint x ≥ 0 : if xi > 0 then the ith sign
constraint is not active and ui = 0 .

v is connected to the resource constraints. If there is slack si > 0 in the
resource i then vi = 0 .

5.3.2 Remark. The KKT.PE, KKT.PB, KKT.DE, and KKT.DB in the glpsol’s
report are related to the conditions (i), (ii), (iii), and (iv) of the Karush–Kuhn–
Tucker theorem 5.3.1. If the Karush–Kuhn–Tucker conditions are satisfied the
values in the glpsol’s Karush–Kuhn–Tucker section should all be zero.

5.4 Proofs*

Proof of Theorem 5.2.3. Let α ∈ [0, 1] . It is obvious that if x ≥ 0 and y ≥ 0 ,
then also αx + (1 − α)y ≥ 0 . So, it remains to show that if Ax ≥ b and
Ay ≥ b then also A(αx + (1− αy)) ≥ b . But this follows from basic matrix
algebra:

A(αx + (1− α)y) = αAx + (1− α)Ay

≥ αb + (1− α)b
= b.

Proofs* 66

Proof of Theorem 5.2.8. This is a proof by contradiction: Suppose there is an
optimal point x∗ that is an inner point of the feasible region. Then, for a small
enough r , all points that are not further away from x∗ than the distance r
belong to the feasible region. In particular, the point

w = x∗ +
r

2
c
‖c‖

will belong to the feasible region. Here ‖c‖ denotes the Euclidean distance:

‖c‖ =

√√√√ n∑
i=1

c2i ,

and thus c/‖c‖ is a unit-length vector pointing at the same direction as c .
Now, at point w we get for the objective function f(x) = c′x that

(5.4.1) c′w = c′x∗ +
r

2
c′c
‖c‖ = c′x∗ +

r

2
‖c‖ > c′x∗,

since
c′c = ‖c‖2.

But inequality (5.4.1) is a contradiction, since x∗ was optimal. So the assump-
tion that x∗ was an inner point must be wrong.

Proof of Theorem 5.2.9. This proof requires rather deep knowledge of linear
algebra, and of linear spaces, although the idea itself is not so complicated if
you can visualize n-dimensional spaces. (Taking n = 3 should give you the
idea.)

Let x∗ be an optimal solution, and let z∗ = c′x∗ be the optimal value. We
already know, by Theorem 5.2.8, that x∗ is in the boundary of the feasible
region. So, at least one constraints is active. Let now V be the subspace of
Rn spanned by the active constraints at point x∗ . Let k be the dimension
of V . If k = n , then x∗ is a boundary point, and we are done. Suppose
then that k < n . Then V is a proper subspace or Rn and any vector in Rn

can be written as an orthogonal sum of a vector from the subspace V and a
vector from the orthogonal complement V ⊥ . Let us write the vector c this
way: c = cV + cV ⊥ .

Next we show that c belongs to the subspace V , i.e., cV ⊥ = 0 . Suppose
the contrary: cV ⊥ 6= 0 . This means that there is a small ε > 0 such that
x+ = x∗ + εcV ⊥ is a feasible solution. But now

z+ = c′x+

= c′x∗ + εc′cV ⊥
= z∗ + εc′V cV ⊥ + εc′V ⊥cV ⊥
= z∗ + ε‖cV ⊥‖2
> z∗,

Proofs* 67

which is a contradiction, since z∗ was the optimal value.
Since k < n there is a non-zero point w in V ⊥ such that x̃ = x∗ + αw

is feasible when α > 0 is small enought, and not feasible when α > 0 is too
large. Now, let α be just small enough for x to be feasible. Then at point x̃
at least one more constraint will become active. So, the space Ṽ associated
to the point x̃ has at least the dimension k + 1 . Moreover, the point x̃ is at
least as good as the point x∗ , since

z̃ = c′x̃

= c′(x∗ + αw)
= z∗ + αc′w

= z∗.

(Here we used the fact that c belongs to V .)
Now, x̃ is “closer to a corner” than x∗ , since it has k+1 active constraints.

By taking x̃ to be the new x∗ and repeating the procedure described above
n− k − 1 times we will find an optimal solution in a corner.

Proof of Theorem 5.3.1. Let y be some BFS of the LP. Theorem 5.3.1 is proved
if we can show that c′y ≤ c′x .

Now, since y is feasible there is t ≥ 0 such that Ay + t = b . Denote
w = x− y . Then Aw = s− t , and

cy = c′(x + w)
= c′x + c′w

= c′x + v′Aw − u′w

= c′x + v′s− v′t− u′w

= c′x + v′s− v′t− u′y + u′x

= c′x− v′t− u′y

≤ c′x.

So, x was indeed optimal.

Chapter 6

Simplex Method

This chapter is the very hard core of this course!

Here we learn how to solve LPs manually. You may think that it is useless
to know such arcane things: We should use computers, you might say —
especially since the practical LPs are so large that no-one really solves them
manually. This criticism is valid. But, we do not study how to solve LPs
manually in order to solve them manually in practical problems (although it is
not a completely useless skill). We study how to solve them manually in order
to understand them!

This lecture is adapted from [2, Ch. 2] and [4, Ch. 4].

6.1 Towards Simplex Algorithm

Checking Corners

Theorem 5.2.9 told us that the optimal solution of an LP is in one of the corners
of the feasible region. So, it seems that we have a very simple algorithm for
finding the optimum: Just check all the corners! And, indeed, this naïve
approach works well with such petty examples that we have in this course.
The problem with this naïve approach in practice is the so-called combinatorial
curse, a.k.a. the curse of dimensionality: An LP with n decision variables and
m constraints has (

n

m

)
=

n!
(n−m)!m!

corners.
Let us consider the curse of dimensionality more closely: Consider an LP

with 30 decision variables and 15 constraints. This LP has(
30
15

)
= 155,117,520

corners. Suppose you have a computer that checks 100 corners per second (this
is pretty fast for today’s computers, and right-out impossible if you program

Towards Simplex Algorithm 69

with JavaTM). Then it would take almost three weeks for the computer to check
all the 155,117,520 corners. You may think this is not a problem: Maybe three
weeks is not such a long time, and a problem with 30 decision variables is way
bigger than anything you would encounter in the real life anyway. Well, think
again! Three weeks is a long time if you need to update your optimal solution
in a changing environment, say, daily, and LPs with at 30 decision variables
are actually rather small. Indeed, let us be a bit more realistic now: Consider a
shop owner who has 200 different products in her stock (a rather small shop).
Suppose the shop owner has 100 constraints (not unreasonable) and a super-
computer that checks 100 million corners per second (very optimistic, even if
one does not program with JavaTM). Then checking all the corners to optimize
the stock would take 6.89 × 1044 years. The author doubts that even the
universe can wait that long!

The bottom line is that checking all the corners will take too much time
even with a fast computer and a good programmer.

Simplex Idea

The general idea of the Simplex algorithm is that you do not check all the
corners. The following list explains the Simplex algorithm in a meta-level. We
call the steps Meta-Steps since they are in such a general level that they are
not immediately useful. In the same way the three Meta-Step algorithm could
be called a Meta-Simplex algorithm.

We shall see later how the Meta-Steps can be implemented in practice.

Meta-Step 1 Start with some corner.
Meta-Step 2 Check if the corner is optimal. If so, you have found the opti-

mum, and the algorithm terminates. Otherwise go to the next Meta-Step.
Meta-Step 3 Move to an adjacent corner. Of all the adjacent corners choose

the best one. Go back to Meta-Step 2.

One hopes that in moving around the corners one hits the optimal corner
pretty soon so that one does not have to check all the corners.

To use the meta-algorithm described above we have to:

• identify the corners analytically,
• know how to tell if a chosen corner is optimal,
• know how to go to the best adjacent corner.

Once the points raised above are solved we have a genuine algorithm. This
algorithm is given in the next section. Before that we have to discuss how to
prepare an LP before it can be used in the Simplex algorithm.

Towards Simplex Algorithm 70

Slack Forms

Before we can use the Simplex algorithm we must transform the LP into a
so-called canonical slack form.

We start with the slack form. Here is an informal definition of the slack
form: An LP is in slack form, if

1. It is a maximization problem.
2. The constraints are equalities, rather than inequalities.
3. The Right Hand Side (RHS) of each constraint is non-negative.

6.1.1 Example.

max z = 4x1 + 8x2 (0)
s.t. x1 + 2x2 ≤ 500 (1)

x1 + x2 ≥ 100 (2)
x1, x2 ≥ 0 (3)

Let us transform the LP in Example 6.1.1 above into a slack form.
This is a maximization problem already, so we do not have to touch the

line (0) .
Line (1) is an inequality. We can transform it into an equality by adding an

auxiliary non-negative slack (or surplus) variable s1 : We obtain the constraint

x1 + 2x2 + s1 = 500 (1′)

and, since we assumed that the slack s1 was non-negative, we have the sign
constraints

x1, x2, s1 ≥ 0 (3′)

The interpretation of the slack variable s1 is that it tells how much of the
resource (1) is unused.

Let us then consider line (2) . We see that the LP is not in standard form.
We could change it into a standard form by multiplying the inequality (2) by
−1 . But that would make the RHS of (2) negative, which is not good. Instead
we ad — or actually subtract — an auxiliary non-negative excess variable e2
to the inequality. We obtain the equality

x1 + x2 − e2 = 100 (2′)

and the sign constraints

x1, x2, s1, e2 ≥ 0 (3′′).

Towards Simplex Algorithm 71

The interpretation of the excess is opposite to that of the slack: Excess e2 tells
how much the minimal requirement (2) is, well, excessed.

Now, the LP in 6.1.1 is transformed into a slack form:

max z = 4x1 + 8x2 (0)
s.t. x1 + 2x2 + s1 = 500 (1′)

x1 + x2 − e2 = 100 (2′)
x1, x2, s1, e2 ≥ 0 (3′′)

Solving this slack form with decisions x1, x2, s1, e2 is equivalent to solving
the original LP with decisions x1, x2 .

Here is the formal definition of the slack form:

6.1.2 Definition. An LP is in slack form if it is of the type

max z = c′x

s.t. [A S]
[

x
s

]
= b

x, s ≥ 0

where b ≥ 0 . Here s is the vector of slacks/excesses and S is the diagonal
matrix containing the coefficients of the slacks and the excesses: +1 for slack
and −1 for excess.

Here is an algorithm for transforming a standard form LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

into a slack form:

Step 1: Add slacks If the bi in the constraint i is non-negative add a slack
(or surplus):

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

 ai1x1 + ai2x2 + · · ·+ ainxn + si = bi.

Step 2: Add excesses If the bi in the constraint i is negative change the
direction of the inequality (thus making the RHS −bi non-negative), and
add an excess:

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

 −ai1x1 − ai2x2 − · · · − ainxn − ei = −bi.

Steps 1 and 2 must be done to each constraint.

Towards Simplex Algorithm 72

6.1.3 Remark. The index i of the slack/excess refers to resources. For ex-
ample, if s3 = 2 it means that 2 units of the resource 3 is unused.

6.1.4 Remark. We have two kinds of auxiliary variables: slacks (or surpluses)
and excesses. Mathematically there is no need to differentiate between them:
Excess is just negative slack (or negative surplus). Indeed, in some textbooks
slacks are used for both the surpluses and the excesses. However, making
the sign difference makes the problem, and the solution, easier to interpret,
especially since typically the all the coefficients of an LP are non-negative.

Finally, let us give the definition of the canonical slack form.

6.1.5 Definition. A slack form LP is canonical slack form if each constraint
equation has a unique variable with coefficient 1 that does not appear in any
other constraint equation.

6.1.6 Remark. Note that the slack form we constructed in Example 6.1.1 is
not a canonical one. This is basically due to “wrong sign” −1 of the excess
variable. Indeed, if there were a slack instead of an excess in the constraint (2)
we would have a canonical form: The slacks would be the unique variables with
coefficient 1 that do not appear in any other constraint equation. We shall see
in Chapter 7 how to transform the slack form of 6.1.1 into a canonical form by
using the Big M method. In this lecture we shall have to confine ourselves to
more simple problems.

Basic Feasible Solutions, Basic Variables, and Non-Basic Variables

There is still one more concept — or two, or three, depending on how you
count — that we have to discuss before we can present the Simplex algorithm:
That of Basic Variables (BV) and Non-Basic Variables (NBV).

Basic variables (BV) and non-basic variables (NBV) are related to the
corners, or the basic feasible solutions (BFS), of an underdetermined linear
system. So, what we are discussing in this subsection is related to the Meta-
Step 1 of the Meta-Simplex algorithm.

Before going into formal definitions let us consider the following problem:

6.1.7 Example. Leather Ltd. manufactures two types of belts: the
regular model and the deluxe model. Each type requires 1 unit of
leather. A regular belt requires 1 hour of skilled labor and deluxe belt
requires 2 hours of of skilled labor. Each week 40 units of leather and
60 hours of skilled labor are available. Each regular belt contributes
=C3 to profit, and each deluxe belt contributes =C4 to profit.

Leather Ltd. wants to maximize its profit.

Towards Simplex Algorithm 73

Let us build the LP for Leather Ltd.
First, we have to choose the decision variables. So, what is there for Leather

Ltd. to decide? The number of products to produce! So, Leather Ltd. has the
following decision variables:

x1 = number of regular belts manufactured
x2 = number of deluxe belts manufactured

Second, we have to find the objective function. What is it that Leather Ltd.
wants to optimize? The profit! What is the Leather Ltd.’s profit? Well, each
regular belt contributes =C3 to the profit, and each deluxe belt contributes =C4
to the profit. Since we denoted the number of regular belts produced by x1

and the number of deluxe belts produced by x2 the profit to be maximized is

z = 3x1 + 4x2.

Finally, we have to find the constraints. So, what are the restrictions Leather
Ltd. has to satisfy in making the belts? There are two restrictions: available
labor and available leather. Let us consider the leather restriction first. There
are only 40 units of leather available, and producing one regular belt requires
1 unit of leather. So does producing one deluxe belt. So, the leather constraint
is

x1 + x2 ≤ 40.

Let us then consider the labor constraint. There are only 60 hours of labor
available. Each regular belt produced consumes 1 hour of labor and each
deluxe belt produced consumes 2 hours of labor. So, the labor constraint is

x1 + 2x2 ≤ 60.

Putting what we have just obtained together we obtain the LP for Leather
Ltd. Here it is:

max z = 3x1 + 4x2

s.t. x1 + x2 ≤ 40
x1 + 2x2 ≤ 60

x1, x2 ≥ 0

Following the algorithm given after Definition 6.1.2 we can transform the
LP above into a slack form. Here is what we get:

max z = 3x1 + 4x2

s.t. x1 + x2 + s1 = 40
x1 + 2x2 + s2 = 60

x1, x2, s1, s2 ≥ 0

Let us then solve this slack form by using the method of Brutus Forcius
(108–44 BC), which corresponds to checking all the corners. The Brutus’s
method is based on the following observation, listed here as Remark 6.1.8:

Towards Simplex Algorithm 74

6.1.8 Remark. Consider the constraints of an LP in slack form. This is
a linear system with m equations and n + m unknowns: n actual decision
variables and m slacks. Since n+m > m this linear system is underdetermined.
In principle, to solve a system of m equations requires only m variables. The
remaining n variables can be set to zero.

So, according to Remark 6.1.8, we choose successively 2 = m of the 4 = n−
m variables x1, x2, s1, s2 to be our basic variables (BV) and set the remaining
2 = n variables to be zero (NBV) and solve the constraint system. If the
solution turns out to be feasible (it may not be since we are omitting the non-
negativity constraints here) we check the value of the objective at this solution.
Since we this way check all the BFSs of the system we must find the optimal
value.

The next table lists the results:

BVs Linear system x1 x2 s1 s2 BFS z Pt

s1, s2
0 + 0 + s1 = 40
0 + 0 + s2 = 60

0 0 40 60 Yes 0 F

x2, s2
0 + x2 + 0 = 40
0 + 2x2 + s2 = 60

0 40 0 20 Yes 120 B

x2, s1
0 + x2 + s1 = 40
0 + 2x2 + 0 = 60

0 60 −20 0 No – D

x1, s2
x1 + 0 + 0 = 40
x1 + 0 + s2 = 60

40 0 0 −20 No – A

x1, s1
x1 + 0 + s1 = 40
x1 + 0 + 0 = 60

30 0 10 0 Yes 120 C

x1, x2
x1 + x2 + 0 = 40
x1 + 2x2 + 0 = 60

20 20 0 0 Yes 140 E

From this table we read that the decision

x1 = 20, x2 = 20, s1 = 0, s2 = 0

is optimal. The corresponding optimal value is

z = =C140.

So, we have solved Leather Ltd.’s problem. Note that both of the slacks, s1
and s2 , are NBV, i.e. zeros, at the optimal decision. This means that at the
optimal solution the resources, leather and skilled labor, are fully utilized. This
full utilization of the resources is not uncommon in LPs, but it is not always
the case. Sometimes it may be optimal not to use all your resources.

Next picture illustrates the situation. The centers of the red balls are the
candidate BFSs (Pts in the previous table). Note that only the points B , C ,
E , and F are actual BFSs. The optimal BFS is the point E .

Simplex Algorithm 75

0

10

20

30

40

50

60x2

0 10 20 30 40 50 60
x1

A

B

C

D

E

F

6.2 Simplex Algorithm

Simplex Steps

Step 1: Transform the LP into canonical slack form Transforming LP
into a slack form has been explained in the previous section. For now,
let us just hope that the said slack form is also a canonical one. It will
be if there are no excesses. If there are excesses then the slack form most
likely will not be canonical — unless you are extremely lucky. From the
canonical slack form we construct the first Simplex Tableau. The first
Simplex tableau is the canonical slack form where

• The 0th row represents the objective function as a 0th constraint
as

z − c′x = 0.

• The variables that have unique row with 1 as coefficient, and 0 as
coefficient in all other rows, will be chosen to be the BVs. Typically,
the slacks are chosen to be the BVs. In that case the decisions are

Simplex Algorithm 76

set to be zero, and thus the first Simplex tableau will be solved for
the slacks.

So, most typically, the slack form LP

max z = c1x1 + · · ·+ cnxn
s.t. a11x1 + · · ·+ a1nxn +s1 = b1

a21x1 + · · ·+ a2nxn +s2 = b2
...

...
am1x1 + · · ·+ amnxn · · · +sm = bm

x1, . . . , xn, s1, . . . , sm ≥ 0

becomes

max z
s.t. z − c1x1 − · · ·− cnxn = 0

a11x1 + · · ·+ a1nxn +s1 = b1
a21x1 + · · ·+ a2nxn +s2 = b2

...
...

am1x1 + · · ·+ amnxn · · · +sm = bm
x1, . . . , xn, s1, . . . , sm ≥ 0

Since we have to keep track of the BVs, this form is then represented as
the Simplex tableau

Row z x1 · · · xn s1 s2 · · · sm BV RHS
0 1 −c1 · · · −cn 0 0 · · · 0 z = 0
1 0 a11 · · · a1n 1 0 · · · 0 s1 = b1
2 0 a21 · · · a2n 0 1 · · · 0 s2 = b2
...

...
...

. . .
...

...
...

. . .
...

...
...

m 0 am1 · · · amn 0 0 · · · 1 sm = bm

From this tableau one readily reads the BFS related to the BVs
s1, . . . , sm : [s1 · · · sm]′ = [b1 · · · bm]′ ; and [x1 · · · xn]′ = [0 · · · 0]′ .

Step 2: Check if the current BFS is optimal In the first Simplex
tableau the BVs are s1, . . . , sm , and a BFS related to this solution
is x1 = 0, . . . , xn = 0 , s1 = b1, . . . , sm = bm . The value of the objective
can be read from the 0th row:

Row z x1 · · · xn s1 s2 · · · sm BV RHS
0 1 −c1 · · · −cn 0 0 · · · 0 z = 0

This solution is hardly optimal. Indeed, suppose that the coefficients
ci are non-negative (as is usually the case). But now all the decisions
xi related to the coefficients ci are zero, as they are NBVs. But then,

Simplex Algorithm 77

obviously increasing the value of any xi will increase the value of the
objective z .

Let us then consider the general case. Suppose that, after some steps, we
have come up with a Simplex tableau with the 0th row

Row z x1 · · · xn s1 s2 · · · sm BV RHS
0 1 d1 · · · dn dn+1 dn+2 · · · dn+m z = z∗

where all the coefficients di are non-negative for all the NBVs. Then
making any NBV a BV would decrease the value of the objective. So,
the criterion for the optimality is: The Simplex tableau is optimal,
if in the 0th row there are no negative coefficients in any NBVs.

If the tableau is optimal the algorithm terminates, and the op-
timal value and decision can be read from the BV and RHS
columns.

Step 3: Determine the entering variable If the BFS is not optimal, we
have to change the BVs. One of the NBVs will become a BV (entering),
and one of the old BVs will become a NBV (leaving). The entering
variable will be the one with smallest coefficient in the 0th row.
Indeed, this way we increase the value of the objective z the most.

Step 4: Determine the leaving variable In Step 3 we chose some variable
to enter as a new BV. Now we have to make one of the old BVs to leave
to be a NBV. Now each BV in a Simplex tableau is associated to some
row. The leaving BV will the one associated to the row that wins
the ratio test (the smallest value is the winner)

RHS of row
Coefficient of entering varaible in row

.

The idea of the ratio test is, that we shall increase the entering variable
as much as possible. At some point the increasing of the entering variable
will force one of the BVs to become zero. This BV will then leave. The
ratio test picks up the row associated to the leaving variable.

Step 5: Find a new BFS Now we have a new system of BVs. Next we have
to solve the Simplex tableau in terms of the new BVs. This can be
done by using the Gauss–Jordan method. Then we have a new Simplex
tableau, and we go back to Step 2.

6.2.1 Remark. The Step 1 above corresponds to the Meta-Step 1. The Step
2 corresponds to the Meta-Step 2. The Steps 3–5 correspond to the Meta-Step
3.

Simplex Algorithm 78

Dakota Furniture’s Problem

6.2.2 Example. The Dakota Furniture Company manufactures desks,
tables, and chairs. The manufacture of each type of furniture requires
lumber and two types of skilled labor: finishing labor and carpentry
labor. The amount of each resource needed to make each type of fur-
niture is given in the table below:

Resource Desk Table Chair
Lumber 8 units 6 units 1 unit
Finishing hours 4 hours 2 hours 1.5 hours
Carpentry hours 2 hours 1.5 hours 0.5 hours

At present, 48 units of lumber, 20 finishing hours, and 8 carpentry
hours are available. A desk sells for =C60 , a table for =C30 , and a
chair for =C20 . Dakota believes that demand for desks and chairs is
unlimited, but at most 5 tables can be sold.

Since the available resources have already been purchased, Dakota
wants to maximize total revenue.

As a modelling problem Dakota’s problem is very similar to Giapetto’s
problem 3.3.1. After making some comparisons on how we modelled Giapetto’s
problem we notice that we should define the decision variables as

x1 = number of desks produced
x2 = number of tables produced
x3 = number of chairs produced

and that Dakota should solve the following LP:

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 1.5x2 + 0.5x3 ≤ 8

x2 ≤ 5
x1, x2, x3 ≥ 0

Dakota Furniture’s Solution with Simplex

Simplex Algorithm 79

Step 1: We start by transforming the Dakota’s LP into a slack form. Since
all the inequalities are of type ≤ we have no excesses, and consequently we
obtain the canonical slack form

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 + s1 = 48
4x1 + 2x2 + 1.5x3 + s2 = 20
2x1 + 1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5
x1, x2, x3, s1, s2, s3, s4 ≥ 0

Taking s1, s2, s3, s4 to be our first BVs our first Simplex tableau for Dakota is

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 −60 −30 −20 0 0 0 0 z = 0
1 0 8 6 1 1 0 0 0 s1 = 48
2 0 4 2 1.5 0 1 0 0 s2 = 20
3 0 2 1.5 0.5 0 0 1 0 s3 = 8
4 0 0 1 0 0 0 0 1 s4 = 5

Step 2: We check if the current Simplex tableau is optimal. The 0th row
is now

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 −60 −30 −20 0 0 0 0 z = 0

We see that there is a NBV x1 with negative coefficient −60 . So the first
Simplex tableau is not optimal. (Well, one does not expect to get an optimal
solution by slacking off!)

Step 3: We determine the entering variable. Since x1 has the smallest
coefficient in row 0 , increasing x1 will allow the objective z to increase most.
So, x1 will enter as a new BV.

Step 4: We determine the leaving variable. The ratio test gives us

Row 1 limit in on x1 = 48/8 = 6
Row 2 limit in on x1 = 20/4 = 5
Row 3 limit in on x1 = 8/2 = 4
Row 4 limit in on x1 = No limit, since xi’s coefficient is non-positive

So, Row 3 wins the ratio test. Since s3 the the BV associated to row 3, s3 is
no longer a BV.

Step 5: Now we have new BVs: s1, s2, x1, s4 (remember x1 replaced s3).
This means we have the unsolved Simplex tableau

Simplex Algorithm 80

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 −60 −30 −20 0 0 0 0 z = 0
1 0 8 6 1 1 0 0 0 s1 = 48
2 0 4 2 1.5 0 1 0 0 s2 = 20
3 0 2 1.5 0.5 0 0 1 0 x1 = 8
4 0 0 1 0 0 0 0 1 s4 = 5

Now we have to solve this Simplex tableau in terms of the BVs. This
means that each row must have coefficient 1 for its BV, and that BV must
have coefficient 0 on the other rows. This can be done with EROs in the
following way:

ERO1: We create a coefficient of 1 for x1 in row 3 by multiplying row 3
by 0.5 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 −60 −30 −20 0 0 0 0 z = 0
1 0 8 6 1 1 0 0 0 s1 = 48
2 0 4 2 1.5 0 1 0 0 s2 = 20
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

ERO2: To create a 0 coefficient for x1 in row 0 , we replace the row 0 with
60(row 3) + row 0 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 15 −5 0 0 30 0 z = 240
1 0 8 6 1 1 0 0 0 s1 = 48
2 0 4 2 1.5 0 1 0 0 s2 = 20
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

ERO2: To create a 0 coefficient for x1 in row 1 , we replace row 1 with
−8(row3) + row 1 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 15 −5 0 0 30 0 z = 240
1 0 0 0 −1 1 0 −4 0 s1 = 16
2 0 4 2 1.5 0 1 0 0 s2 = 20
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

ERO2: To create a 0 coefficient for x1 in row 2 , we replace row 2 with
−4(row 3) + row 2 . Now we have the tableau

Simplex Algorithm 81

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 15 −5 0 0 30 0 z = 240
1 0 0 0 −1 1 0 −4 0 s1 = 16
2 0 0 −1 0.5 0 1 −2 0 s2 = 4
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

Now we see that this Simplex tableau is solved: Each of the BVs have
coefficient 1 on their own rows and coefficient 0 in other rows. So, we go now
back to Step 2.

Step 2: We check if the Simplex tableau above is optimal. It is not, since
the NBV x3 has negative coefficient on row 0 .

Step 3: We determine the entering variable. In this case it is obvious: x3

enters.

Step 4: We determine the leaving variable. The ratio test gives us

Row 1 limit in on x3 = No limit
Row 2 limit in on x3 = 4/0.5 = 8
Row 3 limit in on x3 = 4/0.25 = 16
Row 4 limit in on x3 = No limit

So, row 2 wins the ratio test. Since s2 was the BV of row 2 , s2 will leave and
become a NBV.

Step 5 : Now we have new BVs: s1, x3, x1, s4 , since s2 was replaced with
x3 in the previous step. So, we have the following unsolved Simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 15 −5 0 0 30 0 z = 240
1 0 0 0 −1 1 0 −4 0 s1 = 16
2 0 0 −1 0.5 0 1 −2 0 x3 = 4
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

To solve this tableau we must invoke the Gauss–Jordan method again:
ERO1: To create a coefficient of 1 for x3 in row 2 , we multiply the row 2

by 2 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 15 −5 0 0 30 0 z = 240
1 0 0 0 −1 1 0 −4 0 s1 = 16
2 0 0 −2 1 0 2 −4 0 x3 = 8
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

Simplex Algorithm 82

ERO2: To create a coefficient 0 for x3 in row 0 , we replace row 0 with
5(row 2) + row 0 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 5 0 0 10 10 0 z = 280
1 0 0 0 −1 1 0 −4 0 s1 = 16
2 0 0 −2 1 0 2 −4 0 x3 = 8
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

ERO2: To create a coefficient 0 for x3 in row 1 , we replace row 1 with
row 2 + row 1. Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 5 0 0 10 10 0 z = 280
1 0 0 −2 0 1 2 −8 0 s1 = 24
2 0 0 −2 1 0 2 −4 0 x3 = 8
3 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
4 0 0 1 0 0 0 0 1 s4 = 5

ERO2: To create a coefficient 0 for x3 in row 3 , we replace row 3 with
−0.25(row 3) + row 3 . Now we have the tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 5 0 0 10 10 0 z = 280
1 0 0 −2 0 1 2 −8 0 s1 = 24
2 0 0 −2 1 0 2 −4 0 x3 = 8
3 0 1 1.25 0 0 −0.5 1.5 0 x1 = 2
4 0 0 1 0 0 0 0 1 s4 = 5

Now we see that this Simplex tableau is solved: Each of the BVs have
coefficient 1 on their own rows and coefficient 0 in other rows. So, we go now
back to Step 2.

Step 2: We check if the Simplex tableau is optimal. We see that it is!
Indeed, all the NBVs x2, s2, s3 have non-negative coefficients in row 0 .

Finally, let us interpret the result: The number of desks, tables, and chairs
Dakota Furniture should manufacture is 2 , 0 , and 8 . With this decision
Dakota’s revenue is =C280 . Of the resources: 24 units of lumber is left unused:
s1 = 24 . All the other actual resources are fully used: s2 = 0, s3 = 0 , but
the market demand for tables is not used at all s5 = 5 , since no tables are
manufactured.

Simplex Algorithm 83

Dakota Furniture’s Solution with glpsol

We show briefly how to solve the Dakota’s problem of Example 6.2.2 with
glpsol.

Here are the contents of the file dakota.mod, where the Dakota’s problem
is described in GNU MathProg modelling language. There are no slacks here
in the code: GLPK will do the transformations for you internally.

#
Dakota’s problem
#
This finds the optimal solution for maximizing Dakota’s revenue
#

/* Decision variables */
var x1 >=0; /* desk */
var x2 >=0; /* table */
var x3 >=0; /* chair */

/* Objective function */
maximize z: 60*x1 + 30*x2 + 20*x3;

/* Constraints */
s.t. Lumber : 8*x1 + 6*x2 + x3 <= 48;
s.t. Finishing : 4*x1 + 2*x2 + 1.5*x3 <= 20;
s.t. Carpentry : 2*x1 + 1.5*x2 + 0.5*x3 <= 8;
s.t. Demand : x2 <= 40;

end;

So, issue the command

glpsol -m dakota.mod -o dakota.sol

Now, you should get in your console something like the following:

Reading model section from dakota.mod...
21 lines were read
Generating z...
Generating Lumber...
Generating Finishing...
Generating Carpentry...
Generating Demand...
Model has been successfully generated
glp_simplex: original LP has 5 rows, 3 columns, 13 non-zeros
glp_simplex: presolved LP has 3 rows, 3 columns, 9 non-zeros
lpx_adv_basis: size of triangular part = 3
* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)
* 2: objval = 2.800000000e+02 infeas = 0.000000000e+00 (0)
OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (114563 bytes)
lpx_print_sol: writing LP problem solution to ‘dakota.sol’...

Simplex Algorithm 84

The file dakota.sol should now contain the following report:

Problem: dakota
Rows: 5
Columns: 3
Non-zeros: 13
Status: OPTIMAL
Objective: z = 280 (MAXimum)

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 280
2 Lumber B 24 48
3 Finishing NU 20 20 10
4 Carpentry NU 8 8 10
5 Demand B 0 40

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 2 0
2 x2 NL 0 0 -5
3 x3 B 8 0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err. = 7.11e-15 on row 1
max.rel.err. = 7.11e-17 on row 2
High quality

KKT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err. = 3.55e-15 on column 2
max.rel.err. = 9.87e-17 on column 2
High quality

KKT.DB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

End of output

You should compare this output with the last, optimal, Simplex tableau.
Indeed, recall that the optimal Simplex tableau was

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
0 1 0 5 0 0 10 10 0 z = 280
1 0 0 −2 0 1 2 −8 0 s1 = 24
2 0 0 −2 1 0 2 −4 0 x3 = 8
3 0 1 1.25 0 0 −0.5 1.5 0 x1 = 2
4 0 0 1 0 0 0 0 1 s4 = 5

Simplex Algorithm 85

where

x1 = Number of desks produced
x2 = Number of tables produced
x3 = Number of chairs produced
s1 = Amount of lumber unused
s2 = Number of finishing hours unused
s3 = Number of carpentry hours unused
s4 = Demand for tables unused

Now, compare this to the following part of the glpsol’s report

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 280
2 Lumber B 24 48
3 Finishing NU 20 20 10
4 Carpentry NU 8 8 10
5 Demand B 0 40

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 2 0
2 x2 NL 0 0 -5
3 x3 B 8 0

We will talk more about the connection later in Chapter 8 where we talk
about sensitivity analysis. Now we just make some remarks. First, note the
connections

x1 = x1

x2 = x2

x3 = x3

s1 = Lumber (unused)
s2 = Finishing (unused)
s3 = Carpentry (unused)
s4 = Demand (unused)

Whenever a variable is BV in the optimal Simplex tableau glpsol reports
its status in the St column as bounded by the symbol B. So, you see that the
status for x1, x3, z, Lumber, and Demand are bounded, since they are BVs. The
NBVs glpsol will mark as NU or NL. The Marginal column in glpsol’s report
is related to the 0th row in the glpsol’s report. The marginals, or the shadow
prices, are very important in sensitivity analysis. They tell how much the value
of the optimal solution will change if the corresponding constraint is relaxed

Simplex Algorithm 86

by one unit. (The negative marginal with x2 is a slightly different story, since
x2 is not a constraint, but a decision variable.)

Chapter 7

More on Simplex Method

This chapter is adapted from [2, Ch. 2] and [4, Ch. 4].

7.1 Big M Algorithm

Problem with Canonical Slack Form

Recall that the Simplex algorithm requires a starting BFS, i.e., the first Sim-
plex tableau must be solved with some BVs. So far we have not had any
excesses, and consequently the first Simplex tableau was solved with the slack
variables as BVs. If an LP has inequalities of type ≥ with non-negative RHS,
or equalities, then finding the starting BFS can be difficult, or even right out
impossible. The following example illustrates this point.

7.1.1 Example. Bevco manufactures an orange-flavored soft drink
called Oranj by combining orange soda and orange juice. Each unit of
orange soda contains 0.5 units of sugar and 1 mg of vitamin C. Each
unit of orange juice contains 0.25 units of sugar and 3 mg of vitamin
C. It costs Bevco =C0.02 to produce a unit of orange soda and =C0.03
to produce a unit of orange juice. Bevco’s marketing department has
decided that each each bottle of Oranj must be of size 10 units, and
must contain at least 20 mg of vitamin C and at most 4 units of sugar.

How can the marketing department’s requirements be met at minimum
cost?

Let us construct the LP for Bevco.
We have had many examples already that we have modelled as LPs. Re-

member, e.g., Giapetto 3.3.1, Leather Ltd. 6.1.7, and Dakota 6.2.2. In all those
problems we had to decide how many of each products we should produce in

Big M Algorithm 88

order to maximize the profit. Bevco’s problem is different. For starters, there
is only one product.

So, what is the decision Bevco must make? The only thing that is actually
not fixed in Example 7.1.1, and thus open for decision, is the actual mixture
of orange soda and orange juice in a bottle of Oranj. So, the decision variables
are:

x1 = Number of units of orange soda in a bottle of Oranj
x2 = Number of units of orange juice in a bottle of Oranj

What about the objective then? What does Bevco want to maximize or
minimize? We see that Bevco wants to minimize the cost of producing Oranj.
So this is a minimization problem. So, what is the cost of producing one bottle
of Oranj? Well, recall that it costs =C0.02 to produce one unit of orange soda,
and =C0.03 to produce one unit of orange juice. So, the objective function to
be minimized is

z = 2x1 + 3x2

(here we measure in Cents rather than in Euros in order to avoid fractions).
So far we have found out the decision variables and the objective. What

about the constraints then?
Remember the marketing department’s demands: Each bottle of Oranj

must contain at least 20 mg of vitamin C and at most 4 units of sugar.
Let us consider first the sugar demand. Each unit of orange soda has 0.5

units of sugar in it and each unit of orange juice has 0.25 units of sugar in it.
Since a bottle of Oranj must not contain more than 4 units of sugar we obtain
the constraint

0.5x1 + 0.25x2 ≤ 4

(here the fractions cannot be avoided — at least not easily).
The vitamin C constraint is similar to the sugar constraint, but opposite.

Indeed, each unit of orange soda contains 1 mg of vitamin C, and each unit of
orange juice contains 3 mg of vitamin C. Since there must be at least 20 mg
of vitamin C in a bottle of Oranj, we obtain

x1 + 3x2 ≥ 20.

There is still one more constraint. This constraint is not so obvious as
the sugar and vitamin C constraints, but it must be included. Recall that
each bottle of Oranj must be of size 10 units. So, as the bottle of Oranj only
contains orange soda and orange juice, we must have

x1 + x2 = 10.

Big M Algorithm 89

Finally, note the classical sign constraints

x1, x2 ≥ 0.

Indeed, it would be pretty hard to put negative amount of either orange soda
or orange juice in a bottle.

We have found the LP for Bevco:

min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 (sugar constraint)
x1 + 3x2 ≥ 20 (vitamin C constraint)
x1 + x2 = 10 (10 units in a bottle of Oranj)

x1, x2 ≥ 0

Let us then try to apply the Simplex method to this LP. First we turn the
LP into a slack form (note that this is a minimization problem). We obtain

(7.1.2)

max −z
s.t. −z + 2x1 + 3x2 = 0 (0)

0.5x1 + 0.25x2 + s1 = 4 (1)
x1 + 3x2 − e2 = 20 (2)
x1 + x2 = 10 (3)

x1, x2, s1, e2 ≥ 0 (4)

The problem now is that the slack form above is not in canonical form.
We have three genuine constraint equations (1)–(3) , but there are no three
variables in the set x1, x2, s1, e2 that could be taken as BVs under which the
constraint system above could be solved while keeping the RHSs still non-
negative.

7.1.3 Remark. There are two reasons why Bevco’s slack form turned out to
be non-canonical. One is the vitamin C constraint

x1 + 3x2 ≥ 20.

This is a lower-bound constraint that will give us an excess variable — and
excess variables have “wrong” signs. The other is the equality constraint

x1 + x2 = 10.

This constraint does not give us any slacks or excesses. So, we fall short of
variables.

Solution with Artificial Variables

The problem with the system (1)–(3) is that we do not have enough variables.
So, the solution is obvious: We introduce new artificial variables where needed.

Big M Algorithm 90

Now, row (1) in (7.1.2) is fine: It has s1 . Rows (2) and (3) of (7.1.2), on
the other hand, are not fine: They lack variables with coefficient 1 that do not
appear in any other row. So, we introduce artificial variables: a2 will enter
row (2) and a3 will enter row (3) . We get the system

(7.1.4)

max −z
s.t. −z + 2x1 + 3x2 = 0 (0)

0.5x1 + 0.25x2 +s1 = 4 (1)
x1 + 3x2 −e2 +a2 = 20 (2)
x1 + x2 +a3 = 10 (3)

x1, x2, s1, e2, a2, a3 ≥ 0 (4)

Now we have a BFS. Indeed, taking s1, a2, a3 to be the BVs we obtain

z = 0, s1 = 4, a2 = 20, a3 = 10.

But now we have a small problem. What would guarantee that an optimal
solution to (7.1.4) is also an optimal solution to (7.1.2)? Well, actually, noth-
ing! Indeed, we might find an optimal solution to (7.1.4) where some of the
artificial variables are strictly positive. In such case it may turn out that the
corresponding solution to (7.1.2) is not even feasible. For example, in (7.1.4)
it can be shown that the solution

z = 0, s1 = 4, a2 = 20, a3 = 10, x1 = 0, x2 = 0

is optimal. But this solution is not feasible for the original problem. Indeed,
this solution contains no vitamin C, and puts 0 units of soda and juice in a
bottle. So, this solution cannot possibly be optimal in the original problem, as
it is not even a solution.

The critical point is: In the optimal solution all the artificial variables must
be zero. How is this achieved? By changing the objective function! Recall that
the original objective function for Bevco was (in max form)

max −z = −2x1 − 3x2.

Now, let M be a very very very very very very very very very very very big
number — if you approve that 0 × ∞ = 0 , you may think that M = +∞ .
Consider then the objective function

max −z = −2x1 − 3x2 −Ma2 −Ma3.

Now allowing a2 or a3 be strictly positive should penalize the value of −z
so much that the solution could not possibly be optimal. This means that an

Big M Algorithm 91

optimal solution to the system,
(7.1.5)

max −z
s.t. −z + 2x1 + 3x2 +Ma2 +Ma3 = 0 (0)

0.5x1 + 0.25x2 +s1 = 4 (1)
x1 + 3x2 −e2 +a2 = 20 (2)
x1 + x2 +a3 = 10 (3)

x1, x2, s1, e2, a2, a3 ≥ 0 (4)

should have a2 = 0 and a3 = 0 . But then an optimal solution of (7.1.5) is also
an optimal solution to the original problem (7.1.2) of Example 7.1.1.

The system (7.1.5) is not yet in canonical slack form. There is one more
trick left. To solve (7.1.5) in terms of the prospective BVs s1, a2, a3 we must
remove a2 and a3 from row 0 . This is done by using the ERO2 (two times):
Replace row 0 with row 0 −M(row 2) −M(row 3) . This way we obtain the
system
(7.1.6)
max −z
s.t. −z + (2−2M)x1 + (3−4M)x2 +Me2 = −30M (0)

0.5x1 + 0.25x2 +s1 = 4 (1)
x1 + 3x2 −e2 +a2 = 20 (2)
x1 + x2 +a3 = 10 (3)

x1, x2, s1, e2, a2, a3 ≥ 0 (4)

This is a canonical slack form. The BVs are s1, a2, a3 .
Now we have a canonical slack form (7.1.6). So, we can carry out the

Simplex algorithm. The next steps are the Simplex algorithm steps.

Step 1: Our first Simplex — or Simplex/Big M — tableau is the system
(7.1.6):

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 2− 2M 3− 4M 0 M 0 0 −z = −30M
1 0 0.5 0.25 1 0 0 0 s1 = 4
2 0 1 3 0 −1 1 0 a2 = 20
3 0 1 1 0 0 0 1 a3 = 10

Step 2: We check for optimality. Our Simplex tableau is not optimal since
there are negative coefficients in row 0 for the NBVs x1 and x2 (remember
that M is a very very very very big number).

Step 3: We determine the entering variable. Now, when M is big enough
— and M is always big enough — we have that

3− 4M ≤ 2− 2M.

Big M Algorithm 92

So, x2 will enter as a new BV.

Step 4: We determine the leaving variable. The ratio tests give us

Row 1 limit in on x2 = 4/0.25 = 16
Row 2 limit in on x2 = 20/3 = 6.667
Row 3 limit in on x2 = 10/1 = 10

So, Row 2 wins the ratio test. Since a2 the the BV associated to row 2, a2 is
no longer a BV.

Step 5: Now we have new BVs: s1, x2, a3 (remember x2 replaced a2). This
means we have the unsolved Simplex tableau

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 2− 2M 3− 4M 0 M 0 0 −z = −30M
1 0 0.5 0.25 1 0 0 0 s1 = 4
2 0 1 3 0 −1 1 0 x2 = 20
3 0 1 1 0 0 0 1 a3 = 10

We have to solve this tableau in terms of the BVs s1, x2, a3 by using the Gauss–
Jordan method. Applying the Gauss–Jordan method here is a bit tricky since
we have the symbol M . So, we cannot just count with numbers — we have to
do some algebra. Let us start. First we eliminate x2 from row 0 . As a first
step to that direction we use ERO1 and multiply row 2 by 1/3 . We obtain
the tableau

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 2− 2M 3− 4M 0 M 0 0 −z = −30M
1 0 0.5 0.25 1 0 0 0 s1 = 4
2 0 1

3 1 0 −1
3

1
3 0 x2 = 20

3
3 0 1 1 0 0 0 1 a3 = 10

Next, we eliminate x2 from row 0 . This is done by adding (4M−3)row 2 to
to row 0 . Our new Simplex tableau is then

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 3−2M

3 0 0 3−M
3

4M−3
3 0 −z = −60−10M

3

1 0 0.5 0.25 1 0 0 0 s1 = 4
2 0 1

3 1 0 −1
3

1
3 0 x2 = 20

3
3 0 1 1 0 0 0 1 a3 = 10

Next two steps are to eliminate x1 from the rows 1 and 3 . We omit the details,
and just state the solved Simplex tableau:

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 3−2M

3 0 0 3−M
3

4M−3
3 0 −z = −60−10M

3

1 0 5
12 0 1 1

12
−1
12 0 s1 = 7

3
2 0 1

3 1 0 −1
3

1
3 0 x2 = 20

3
3 0 2

3 0 0 1
3

−1
3 1 a3 = 10

3

Big M Algorithm 93

Step 2: We check for optimality. The tableau above is not optimal: The
NBV x1 has negative coefficient.

Step 3: WE determine the entering variable. The NBV x1 has the smallest
coefficient among all NBVs, so it enters.

Step 4: We determine the leaving variable. The ratio test gives us

Row 1 limit in on x1 = 7
3

/
5
12 = 5.6

Row 2 limit in on x1 = 20
3

/
1
3 = 20

Row 3 limit in on x1 = 10
3

/
2
3 = 5

So, Row 3 wins the ratio test. Since a3 the BV associated to row 2, a3 is no
longer a BV.

Step 5: Now we have new BVs: s1, x2, x1 , and a new Simplex tableau
we have to solve with the Gauss–Jordan method. We omit the cumbersome
details. Here is the solved tableau:

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 0 0 0 1

2
2M−1

2
2M−3

2 −z = −25
1 0 0 0 1 −1

8
1
8

−5
8 s1 = 1

4
2 0 0 1 0 −1

2
1
2

−1
2 x2 = 5

3 0 1 0 0 1
2

−1
2

3
2 x1 = 5

Step 2: We check for optimality. We see that the tableau is optimal! Indeed,
there are no strictly negative coefficients in the 0th row for NBVs.

So, the solution for Bevco is to put equal amount — 5 units and 5 units
— of orange soda and orange juice in a bottle of Oranj. Then the production
cost of a bottle is minimized, and it is =C0.25 (remember we counted in Cents).
At the optimal solution s1 = 0.25 , which means that there is only 3.75 units
sugar in a bottle of Oranj (remember that the maximal allowed sugar content
was 4 units). The excess variable e2 = 0 . This means that there is exactly
20 mg of vitamin C in the bottle of Oranj. Finally, note that the artificial
variables a2 and a3 are both zero, as they should be.

7.1.7 Remark. It may turn out that in solving the Big M analog of an LP
the optimal solution has non-zero artificial variables. If this happens, it means
that the original LP does not have any feasible solutions.

Simplex Algorithm with Non-Unique Optima 94

Big M Steps

Let us formalize, or algorihmize, the Big M method we explained by an example
in the previous subsection.

Step 1: Start with a slack form The slack form is constructed in the same
way as in the plain Simplex case. Remember that the RHSs must be non-
negative, and that the problem must be a maximization problem.

Step 2: Add artificial variables To each constraint row, say i , that does
not have a slack variable si , add an artificial variable ai . For each
artificial variable ai subtract the value Mai from the objective function
z . This means, for each of the artificial variables ai , adding the value
Mai in the 0th row in the column corresponding the BV ai .

Step 3: Construct the first Simplex tableau Solve the system you got in
Step 2 in terms of the slacks and the artificial variables. This is done by
subtracting from the 0th row M times each row that has an artificial
variable. Now, the slacks and the artificial variables will be the BVs, and
the system is solved in terms of the BVs. Otherwise the first Simplex
tableau is the same as in the plain Simplex case.

Step 4: Carry out the Simplex algorithm In Step 3 we constructed the
first Simplex tableau. Now this tableau is solved for the slacks and artifi-
cial variables, and we may start the Simplex algorithm. Find the optimal
BFS of the system by using the Simplex algorithm.

Step 5: Check feasibility Check that in the optimal solution obtained by
the Simplex algorithm the artificial variables are zero. If this is the case
we have a solution. If at least one of the artificial variables is strictly
positive the original LP does not have feasible solutions.

7.2 Simplex Algorithm with Non-Unique Optima

All the LP examples we have had so far had a unique optimal point (probably,
I haven’t really checked that properly). In this subsection we discuss what
happens with the Simplex — or the Simplex/Big M — algorithm if there are
many optima, unbounded optimum, or no optima at all.

In this section we shall give all the examples simply as LPs, without any
associated story.

Simplex Algorithm with Non-Unique Optima 95

Many Bounded Optima

7.2.1 Example. Consider the LP

min z = −6x1 − 2x2

s.t. 2x1 + 4x2 ≤ 9 (1)
3x1 + x2 ≤ 6 (2)

x1, x2 ≥ 0 (3)

This is a minimization problem. So, before we do anything else, we trans-
form it into a maximization problem. Here is the transformed problem:

(7.2.2)

max z = 6x1 + 2x2

s.t. 2x1 + 4x2 ≤ 9 (1)
3x1 + x2 ≤ 6 (2)

x1, x2 ≥ 0 (3)

Here is the graphical representation of the LP of Example 7.2.1 (or actually,
of the transformed problem (7.2.2) where we have switched z to −z). The
isoprofit lines are dashed.

Simplex Algorithm with Non-Unique Optima 96

0

1

2

3

4

x2

0 1 2 3 4
x1

A B

C

D

(1)

(2)

Feasible region

Optimum

From the picture it is clear that the are many optimal points. Indeed, all
the points in the line segment from B to C are optimal — and only the points
in the line segment from B to C are optimal. Let us see now what the Simplex
algorithm says about this.

First, we transform the LP of Example 7.2.1 — actually the LP (7.2.2) —
into a slack form. We obtain

max z
s.t. z − 6x1 − 2x2 = 0

2x1 + 4x2 + s1 = 9
3x1 + x2 + s2 = 6

x1, x2, s1, s2 ≥ 0

We see that this slack form is canonical, and we get the first Simplex tableau
without resorting to the Big M method:

Simplex Algorithm with Non-Unique Optima 97

Row z x1 x2 s1 s2 BV RHS
0 1 −6 −2 0 0 z = 0
1 0 2 4 1 0 s1 = 9
2 0 3 1 0 1 s2 = 6

From the tableau we read that x1 should enter and s2 should leave. Solving,
by using the Gauss–Jordan, the resulting tableau in terms of the BVs s1, x2

gives us the tableau

Row z x1 x2 s1 s2 BV RHS
0 1 0 0 0 2 z = 12
1 0 0 3.333 1 −0.667 s1 = 5
2 0 1 0.333 0 0.333 x1 = 2

We see that the tableau is optimal. The BFS found corresponds to the point
B in the previous picture. So, we have found the optimal solution x1 = 2 ,
x2 = 0 , and z = 12 . So, everything is fine. Except that we know — from the
picture — that the found optimum is not unique. There are others. How does
the Simplex tableau tell us this? Well, there is a NBV decision variable x2 with
coefficient 0 in the 0th row. This means that making the decision variable x2

to enter as BV would not change the value of the objective. So let us — just
for fun — make x2 to enter, and s1 leave. We get, after Gauss–Jordan, the
following tableau

Row z x1 x2 s1 s2 BV RHS
0 1 0 0 0 2 z = 12
1 0 0 1 0.3 −0.2 x2 = 1.5
2 0 1 0 −0.1 0.4 x1 = 1.5

We see that we have a new optimum. This time x1 = 1.5 and x2 = 1.5 . This
optimum corresponds to the point C in the previous picture. All the other
optima are convex combinations of the optima we have just found, i.e. they
are in the line segment from B to C .

The bottom line is:

Whenever there is a NBV with coefficient 0 on the 0th row of an optimal
tableau, there are many optima.

Simplex Algorithm with Non-Unique Optima 98

Unbounded Optimum

7.2.3 Example. Consider the LP

max z = x1 + x2

s.t. x1 − x2 ≥ 1 (1)
6x2 ≥ 2 (2)

x1, x2 ≥ 0 (3)

Here is the graphical representation of the LP of Example 7.2.1. The iso-
profit lines are dashed.

−1

0

1

2

3

4x2

0 1 2 3 4 5
x1

A

D

(1)

(2)

Feasible region

From the picture we see that this LP has unbounded optimum. Indeed,
since the feasible region continues in the right up to infinity, one finds better
and better solutions as one moves the isoprofit line further away from the origin
(remember, no matter how far the isoprofit line is from the origin it will cross
the x1 -axis somewhere).

Let us then see what the Simplex algorithm have to say about unbounded
optimum.

Simplex Algorithm with Non-Unique Optima 99

First, we transform the LP of Exercise 7.2.3 into a slack form. We obtain

(7.2.4)

max z
s.t. z − x1 − x2 = 0

x1 − x2 − e1 = 1
6x2 + s2 = 2

x1, x2 ≥ 0

We see that we should use the Big M method here. That would indeed
work. We do not go that way, however. Instead, we will be clever this time.
We note that the system (7.2.4) is equivalent to the system

max z
s.t. z − 2x2 − e1 = 1

x1 − x2 − e1 = 1
6x2 + s2 = 2

x1, x2 ≥ 0

which is a canonical slack form if one chooses x1 and s2 as BVs. So, we obtain
the first Simplex tableau

Row z x1 x2 e1 s2 BV RHS
0 1 0 −2 −1 0 z = 1
1 0 1 −1 −1 0 x1 = 1
2 0 0 6 0 1 s2 = 2

Now it is obvious that x2 should enter as BV, and that s2 should leave. After
solving the Tableau with x1 and x2 as BVs we obtain the Tableau

Row z x1 x2 e1 s2 BV RHS
0 1 0 0 −1 2 z = 5
1 0 1 0 −1 1 x1 = 3
2 0 0 1 0 1 x2 = 2

Now it is obvious that e1 should enter as a new BV. So, let us try to determine
the leaving variable. But the ratio test will give no limit. This means that no
matter how much we increase the value of e1 the old BVs will remain positive,
never reaching the boundary 0 and thus becoming NBVs. So, the conclusion
is:

Whenever the ratio test fails to identify a leaving variable the LP in question
has an unbounded optimum.

No Optima

Let us agree that what does not exist is non-unique.
The only way an LP may fail to have an optimal solution is that it has no

feasible solutions at all.

Simplex Algorithm with Non-Unique Optima 100

7.2.5 Example.

min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 (1)
x1 + 3x2 ≥ 36 (2)
x1 + x2 = 10 (3)

x1, x2 ≥ 0 (4)

Here is the picture that illustrates the LP of Example 7.2.5. The isoprofit
line is dashed.

0

10

20x2

0 10 20
x1

(1)

(2)

(3)

Note that there are no arrows associated to the constraint line (3) . This
is because (3) is an equality, not an inequality. So, all the feasible solutions
of the LP of Example 7.2.5 must be on the line (3) . So, from the picture it is
clear that the constraint (3) makes the feasible region empty, since lines (1)

Simplex Algorithm with Non-Unique Optima 101

and (2) don’t touch line (3) at the same point. Actually, line (2) does not
touch the line (3) at all.

Let us then see what the Simplex algorithm has to say about the LP of
Example 7.2.5

To transform this LP into a canonical slack form we need artificial vari-
ables. This due to the ≥ constraint (2) and the = constraint (3) . The first
Simplex/Big M tableau for the LP of Example 7.2.5 is

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 2−2M 3−4M 0 M 0 0 z = −46M
1 0 0.5 0.25 1 0 0 0 s1 = 4
2 0 1 3 0 −1 1 0 a2 = 36
3 0 1 1 0 0 0 1 a3 = 10

Next we invoke the Simplex/Big M machinery in search for the optimal tableau.
We omit the details here. Our final Simplex tableau will be

Row −z x1 x2 s1 e2 a2 a3 BV RHS
0 1 2M−1 0 0 M 0 4M−3 z = −6M−30
1 0 0.25 0 1 0 0 −0.25 s1 = 1.5
2 0 −2 0 0 −1 1 −3 a2 = 6
3 0 1 1 0 0 0 1 x2 = 10

We see that this is indeed the final Simplex tableau: All the NBVs have
non-negative coefficients in the 0th row. But there is a problem: The artificial
variable a2 is BV and a2 = 6 6= 0 . But the artificial variables should be 0
in the final solution. Indeed, they were penalized heavily by the very very
very very big number M in the objective function. Why did not the Simplex
algorithm put them to be 0 . The reason why the Simplex algorithm failed
to put the artificial variables 0 was that otherwise there would not be any
solutions. But in the original problem the artificial variables are 0 — or do
not exist, which is the same thing. So, the conclusion is:

Whenever there are non-zero artificial variables as BVs in the final Simplex
tableau, the original LP does not have any feasible solutions.

Simplex/Big M Checklist 102

7.3 Simplex/Big M Checklist

The following list combines the algorithms presented in this and the previous
lectures as checklist on how to solve LPs with Simplex/Big M method. It
should be noted that in solving LPs in practice the may be many shortcuts —
the checklist presented here is meant to be general rather than efficient.

Step 1: Prepare the first canonical Simplex tableau

Step 1-1: Transform the LP into a standard form.
Step 1-2: Transform the standard form LP into a slack form.
Step 1-3: Transform, if necessary, the slack form into a canonical slack

form by adding artificial variables to each constraint row that lacks
slacks. After this subtract M times the artificial variables from the
objective function, and solve the system — by using the Gauss–
Jordan method — in terms of the slacks and the artificial variables.

Step 2: Carry out the Simplex algorithm

Step 2-1: Transform the LP into canonical slack form. (Actually, this
is what we just did in Step 1.)

Step 2-2: Check if the current BFS is optimal. There are, omitting the
possibility of multiple optimal solutions, three possibilities:
(a) All the NBVs have non-negative coefficients, and all the artificial

variables have zero coefficient: The algorithm terminates,
and an optimum was found. The optimum can be read from
the columns BV and RHS.

(b) All the NBVs have non-negative coefficients, but some of the
artificial variables have non-zero coefficients: The algorithm
terminates, and the LP has no solutions.

(c) Some of the NBVs have strictly negative coefficients: The algo-
rithm moves to Step 2-3 (the next step).

Step 2-3: Determine the entering variable. The NBV with smallest co-
efficient in 0th row will enter.

Step 2-4: Determine the leaving variable. To do this perform the ratio
test. Now there are two possibilities
(a) Some BV wins the ratio test (gets the smallest number). That

variable will leave. The algorithm then continues in Step 2-5.
(b) All the ratios are either negative of ±∞ . In this case the

algorithm terminates, and the LP has an unbounded
solution.

Step 2-5: Find the new BFS for the new BVs by using the Gauss–Jordan
method, and go back to Step 2-2.

Chapter 8

Sensitivity and Duality

The most important topic of linear programming is of course solving linear
programs. We have just covered the topic in the previous lectures. The second-
most important topics in linear programming are sensitivity analysis and dual-
ity. (In [4, Ch 5] the author claims that sensitivity analysis and duality are the
most important topics of linear programming. This author disagrees!) This
lecture covers – at least the rudiments — of those.

While sensitivity and duality are two distinct topics their connection is so
close and profound that the Jane Austen type title “Sensitivity and Duality” is
reasonable.

This chapter is adapted from [2, Ch. 2] and [4, Ch. 5].

8.1 Sensitivity Analysis

What and Why is Sensitivity Analysis

When one uses a mathematical model to describe reality one must make ap-
proximations. The world is more complicated than the kind of optimization
problems that we are able to solve. Indeed, it may well be that the short-
est model that explains the universe is the universe itself. Linearity assump-
tions usually are significant approximations. Another important approxima-
tion comes because one cannot be sure of the data one puts into the model.
One’s knowledge of the relevant technology may be imprecise, forcing one to
approximate the parameters A , b and c in the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

Moreover, information may change.
Sensitivity Analysis is a systematic study of how, well, sensitive, the solu-

tions of the LP are to small changes in the data. The basic idea is to be able
to give answers to questions of the form:

Sensitivity Analysis 104

1. If the objective function c changes in its parameter ci , how does the
solution change?

2. If the resources available change, i.e., the constraint vector b change in
its parameter bi , how does the solution change?

3. If a new constraint is added to the problem, how does the solution change?

We shall give answers to the questions 1 and 2 . Question 1 is related to the
concept of reduced cost, a.k.a. the opportunity cost. Question 2 is related to
the concept of shadow price, a.k.a. the marginal price. The question 3 will be
completely ignored in these lectures.

One approach to these questions is to solve lots and lots of LPs: One LP to
each change in the parameters. For example, in Giapetto’s problem 3.3.1 there
might be uncertainty in what is the actual market demand for soldiers. It was
assumed to be 40 , but it could be anything between 30 and 50 . We could
then solve the Giapetto’s LP separately for market demands 30, 31, . . . , 49, 50 .
So, we would solve 20 different LPs (21 , actually, but who’s counting). If it
is also assumed that the the profit for soldiers might not be exactly =C3 but
could be anything between =C2.5 and =C3.5 , then we could also solve the LP
separately for profits =C2.5,=C2.6, . . . ,=C3.4,=C3.5 . Combining this with the
different LPs we got from the uncertainty in the market demand we would
then have 20×10 = 200 different LPs to solve (well, 21×11 = 231 if you
count correctly). This “checking the scenarios” method would work, and it is
indeed widely used in practice. This method has only two problems: (1) It
is inelegant, and (2) it would involve a large amount of calculations. These
problems are, however, not critical. Indeed, solving hundreds of LPs is not
that time-consuming with modern computers and efficient algorithms like the
Simplex. As for the inelegance of the scenario-based method: Who cares about
elegance these days? Nevertheless, we shall try to be at least a little bit elegant
in this chapter.

Shadow Prices

There are two central concepts in sensitivity analysis. They are so important
that LP solvers will typically print their values in their standard reports. These
are the shadow prices for constraints and reduced costs for decision variables.
In this subsection we consider the shadow prices, and show where they are
represented in the glpsol reports.

8.1.1 Definition. The Shadow Price of a constraint is the amount that the
objective function value would change if the said constraint is changed by
one unit — given that the optimal BVs don’t change. The shadow prices are
typically denoted as the vector π = [π1 · · · πm]′ .

The following remarks of Definition 8.1.1 should help you to understand
the concept.

Sensitivity Analysis 105

8.1.2 Remark. Note the clause “given that the optimal BVs don’t change”.
This means that the shadow price is valid for small changes in the constraints.
If the optimal corner changes when a constraint is changed, then the inter-
pretation of the shadow price is no longer valid. It is valid, however, for all
changes that are small enough, i.e., below some critical threshold.

8.1.3 Remark. Shadow prices are sometimes called Marginal Prices. E.g.,
GLPK calls them marginals. This is actually a much more informative name
than the nebulous shadow price. Indeed, suppose you have a constraint that
limits the amount of labor available to 40 hours per week. Then the shadow
price will tell you how much you would be willing to pay for an additional hour
of labor. If your shadow price is =C10 for the labor constraint, for instance,
you should pay no more than =C10 an hour for additional labor. Labor costs
of less than =C10 per hour will increase the objective value; labor costs of more
than =C10 per hour will decrease the objective value. Labor costs of exactly
=C10 will cause the objective function value to remain the same.

If you like mathematical formulas — and even if you don’t — the shadow
prices can be defined as follows: Consider the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

Now, the optimal solution z∗ of this LP is a function of the objective vector
c , the technology matrix A , and the constraint vector b . So,

z∗ = z∗(c,A,b).

Then the shadow price πi associated to the constraint bi is the partial deriva-
tive

πi =
∂z∗

∂bi
,

or, in vector form,

π =
∂z∗

∂b
,

where

π =

 π1
...
πm

 and
∂z∗

∂b
=

∂z∗

∂b1
...
∂z∗

∂bm

 .
Suppose now that ε = [ε1 · · · εm]′ is a small vector, and

z∗ε = z∗(c,A,b + ε)

Sensitivity Analysis 106

is the optimal value, when the constraints b are changed by ε . Then the first
order “Taylor approximation” for the new optimal value is

z∗ε = z∗ + ε′
∂z∗

∂b
= z∗ + ε′π, .(8.1.4)

The equality (8.1.4) is valid as long as the elements εi of ε are small enough
(in absolute value). If some of the elements of ε are too big, then the equality
(8.1.4) may fail to be true.

Let us see now how to use formula (8.1.4) in sensitivity analysis.

8.1.5 Example. Consider the LP

max z = 4x1 + 3x2 (0)
s.t. 2x1 + 3x2 ≤ 6 (1)

−3x1 + 2x2 ≤ 3 (2)
2x2 ≤ 5 (3)

2x1 + x2 ≤ 4 (4)
x1, x2 ≥ 0

Here is the picture representing the LP. You have seen this picture before.

Sensitivity Analysis 107

0

1

2

3

4x2

0 1 2 3 4
x1

A
B

C

D

E

(1)

(2)

(3)

(4)

Redundant

Feasible region

Optimum

Isoprofit lines

From the picture we read — by moving the isoprofit line away from the
origin — that the optimal point for the decision x = [x1 x2]′ is

C = (1.5, 1).

Therefore, the optimal value is of the objective is

z = 4×1.5 + 3×1 = 9.

We also see that the constraints (1) and (4) are active at the optimum. So,
changing them should change the optimal value. Indeed, they should have
positive shadow prices. In contrast, the constraints (2) and (3) are not active
at the optimum. So, changing them — slightly — should have no effect on the
optimum. So, both of them should have 0 as their shadow price.

Let us then calculate the shadow prices. We could read the shadow prices
from the final Simplex tableau. This would require much work, so we use
GLPK instead. Here is the code that solves Example 8.1.5:

Sensitivity Analysis 108

Sensitivity analysis for Example 8.1.7
Part 1 - The original problem

Decision variables
var x1 >=0;
var x2 >=0;

Objective
maximize z: 4*x1 + 3*x2;

Constraints
s.t. r1: 2*x1 + 3*x2 <= 6;
s.t. r2: -3*x1 + 2*x2 <= 3;
s.t. r3: 2*x2 <= 5;
s.t. r4: 2*x1 + x2 <= 4;

end;

And here is the relevant part of the solution:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 9
2 r1 NU 6 6 0.5
3 r2 B -2.5 3
4 r3 B 2 5
5 r4 NU 4 4 1.5

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 1.5 0
2 x2 B 1 0

From the report we read that the shadow prices (called Marginal in the
glpsol report) for the constraints (1) (r1 in the code) and (4) (r4 in the code)
are 0.5 and 1.5 , respectively. All other shadow prices are 0 (number omitted
in the glpsol report). So, the shadow price vector is

π =

0.5

0
0

1.5

 .
Let us then try to use formula (8.1.4) to see what happens if the constraints

(1)–(4) change. Suppose each constraint is relaxed by 0.5 . That means that
in formula (8.1.4) we have ε = [0.5 0.5 0.5 0.5]′ . So, the new optimum should
be

z∗ε = z∗ + ε′π

= 9 + 0.5×0.5 + 0.5×0 + 0.5×0 + 0.5×1.5
= 10.

Sensitivity Analysis 109

Is this correct? Let us see. Let us solve the new LP where the constraints
are relaxed. So, we have to solve

max z = 4x1 + 3x2 (0)
s.t. 2x1 + 3x2 ≤ 6.5 (1)

−3x1 + 2x2 ≤ 3.5 (2)
2x2 ≤ 5.5 (3)

2x1 + x2 ≤ 4.5 (4)
x1, x2 ≥ 0

The GNU MathProg code for this problem is

Sensitivity analysis for Example 8.1.7
Part 2 - r1,r2,r3,r4 relaxed by 0.5

Decision variables
var x1 >=0;
var x2 >=0;

Objective
maximize z: 4*x1 + 3*x2;

Constraints
s.t. r1: 2*x1 + 3*x2 <= 6.5;
s.t. r2: -3*x1 + 2*x2 <= 3.5;
s.t. r3: 2*x2 <= 5.5;
s.t. r4: 2*x1 + x2 <= 4.5;

end;

The relevant part of the glpsol report reads:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 10
2 r1 NU 6.5 6.5 0.5
3 r2 B -3.25 3.5
4 r3 B 2 5.5
5 r4 NU 4.5 4.5 1.5

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 1.75 0
2 x2 B 1 0

So, we see that formula (8.1.4) is correct, when ε ≤ [0.5 0.5 0.5 0.5]′ .
Let us then consider a big change. Let ε = [10 10 10 0]′ . Then formula

(8.1.4) would give us

z∗ε = z∗ + ε′π

= 9 + 10×0.5 + 10×0 + 10×0 + 0×1.5
= 14.

Sensitivity Analysis 110

Let’s see what really happens. The MathProg code for this relaxed LP is

Sensitivity analysis for Example 8.1.7
Part 3 - r1,r2,r3 relaxed by 10; r4 not relaxed

Decision variables
var x1 >=0;
var x2 >=0;

Objective
maximize z: 4*x1 + 3*x2;

Constraints
s.t. r1: 2*x1 + 3*x2 <= 16;
s.t. r2: -3*x1 + 2*x2 <= 13;
s.t. r3: 2*x2 <= 15;
s.t. r4: 2*x1 + x2 <= 4;

end;

And the relevant part of the glpsol report tells us that

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 12
2 r1 B 12 16
3 r2 B 8 13
4 r3 B 8 15
5 r4 NU 4 4 3

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 NL 0 0 -2
2 x2 B 4 0

We see that glpsol reports the optimum to be 12 . The formula (8.1.4)
gave us the optimum 14 . So, the change [10 10 10 0]′ is not small enough
for the formula (8.1.4) to be valid. What actually happened here was that the
optimal point jumped corners.

Reduced Costs

Let us then consider the reduced costs. Remember that the shadow prices
were associated to the constraints, or — if you like Simplex language — to the
slacks. The reduced costs are associated to the decision variables.

8.1.6 Definition. The Reduced Cost ui for an NBV decision variable xi is
the amount the objective value would decrease if xi would be forced to be 1 ,
and thus a BV — given that the change from xi = 0 to xi = 1 is small.

8.1.7 Remark. Here are some interpretations and remarks of reduced costs
that should help you to understand the concept:

Sensitivity Analysis 111

• The clause “given that the change from xi = 0 to xi = 1 is small” is a
similar clause that the clause “given that the optimal BVs don’t change”
was in Definition 8.1.1 of shadow price. Indeed, it may be, e.g., that
forcing xi ≥ 1 will make the LP infeasible. Remember: In sensitivity
analysis we are talking about small changes — whatever that means.
The analysis may, and most often will, fail for big changes.
• Decision variables that are BVs do not have reduced costs, or, if you like,

their reduced costs are zero.
• The reduced cost is also known as Opportunity Cost. Indeed, suppose we

are given the forced opportunity (there are no problems — only opportu-
nities) to produce one unit of xi that we would not otherwise manufac-
ture at all. This opportunity would cost us, since our optimized objective
would decrease to a suboptimal value. Indeed, we have now one more
constraint — the forced opportunity — in our optimization problem. So,
the optimal solution can only get worse. The decrease of the objective
value is the opportunity cost.
• The reduced cost ui of xi is the amount by which the objective coefficient
ci for xi needs to change before xi will become non-zero.
• As an example of the point above, consider that you are producing
x1, . . . , xn that will give you profits c1, . . . , cn . You have some con-
straints, but the actual form of them does not matter here. Now, you
form the LP to optimize your profit, and you solve it. You get optimal
solution for productions: x∗1, x∗2, . . . , x∗n , and you get your optimal profit
z∗ . You notice that, say, x∗2 = 0 . So, obviously the profit c2 for x2 is
not big enough. Then you ask yourself: How big should the profit c2
for x2 be so that it becomes more profitable to produce x2 , at least a
little, rather than not to produce x2 at all? The answer is c2 + u2 . This
means that the profit must increase at least by the reduced cost before
it becomes more profitable to produce a product you would not produce
otherwise.

Let us now consider the reduced cost with GLPK with the example:

8.1.8 Example.

max z = 4x1 + 3x2 (0)
s.t. 2x1 + 3x2 ≤ 16 (1)

−3x1 + 2x2 ≤ 13 (2)
2x2 ≤ 15 (3)

2x1 + x2 ≤ 4 (4)
x1, x2 ≥ 0

The GNU MathProg code for Example 8.1.8 is

Sensitivity Analysis 112

Sensitivity analysis for Example 8.1.10
Part 1 - The original problem

Decision variables
var x1 >=0;
var x2 >=0;

Objective
maximize z: 4*x1 + 3*x2;

Constraints
s.t. r1: 2*x1 + 3*x2 <= 16;
s.t. r2: -3*x1 + 2*x2 <= 13;
s.t. r3: 2*x2 <= 15;
s.t. r4: 2*x1 + x2 <= 4;

end;

The relevant part of the glpsol report says

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 12
2 r1 B 12 16
3 r2 B 8 13
4 r3 B 8 15
5 r4 NU 4 4 3

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 NL 0 0 -2
2 x2 B 4 0

So, where are the reduced costs for x1 and x2? They are in the Marginal
column. So, glpsol calls reduced costs and shadow prices with the same name
“marginal”. How strange! Well, it is actually not at all so strange once we
have learnt about duality. For now, let us just accept this as a mystery to be
solved later. Back to the glpsol report: For x1 there is the reduced cost of
2 (glpsol uses a non-standard sign). For the decision variable x2 there is no
reduced cost, since x2 is a BV.

Let us then test the interpretation

“reduced cost is the decrease in the value of the objective if we
are forced to produce one unit where we otherwise would produce
none”.

Sensitivity Analysis 113

We test the interpretation with the following LP:

max z = 4x1 + 3x2 (0)
s.t. 2x1 + 3x2 ≤ 16 (1)

−3x1 + 2x2 ≤ 13 (2)
2x2 ≤ 15 (3)

2x1 + x2 ≤ 4 (4)
x1 ≥ 1 (5)

x1, x2 ≥ 0

So, we have added to the LP of Example 8.1.8 the requirement that we must
have at least one x1 in the solution. This is the constraint (5) . Remember
that without this requirement we would have zero x1 ’s in the solution.

So, here is the GNU MathProg code for this problem:

Sensitivity analysis for Example 8.1.10
Part 2 - x1 forced to be at least one

Decision variables
var x1 >=0;
var x2 >=0;

Objective
maximize z: 4*x1 + 3*x2;

Constraints
s.t. r1: 2*x1 + 3*x2 <= 16;
s.t. r2: -3*x1 + 2*x2 <= 13;
s.t. r3: 2*x2 <= 15;
s.t. r4: 2*x1 + x2 <= 4;
s.t. r5: x1 >= 1;

end;

Here is the glpsol report:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 z B 10
2 r1 B 8 16
3 r2 B 1 13
4 r3 B 4 15
5 r4 NU 4 4 3
6 r5 NL 1 1 -2

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 x1 B 1 0
2 x2 B 2 0

We see that the interpretation is indeed correct: The previous optimal value
12 dropped by 2 into 10 .

Sensitivity Analysis 114

Sensitivity Analysis with Simplex with Matrices

We have learned how to perform sensitivity analysis with GLPK. Let us then
consider how sensitivity analysis works with the Simplex tableaux. To be more
precise we explain how the shadow prices and the reduced costs can be read
from the final optimal Simplex tableau. It would actually be very easy to just
to give you the answer. Instead, we will try to explain why the answer is what
it is. So we shall revisit the Simplex algorithm, now in matrix form. The
answer to the critical question

“how to read shadow prices and reduced costs from the optimal
Simplex tableau”

is deferred to the end of the subsection.
Before we start let us introduce some matrix notation for the Simplex

method. In doing this we also explain a little why the Simplex method works.
It is best, at least here in the beginning, to consider an example:

8.1.9 Example. Consider the Giapetto’s LP 3.3.1 in slack form:

max z = 3x1 + 2x2

s.t. 2x1 + x2 + s1 = 100
x1 + x2 + s2 = 80
x1 + s3 = 40

x1, x2, s1, s2, s3 ≥ 0

Define

c =

3
2
0
0
0

 , x =

x1

x2

s1
s2
s3

 , A =

 2 1 1 0 0
1 1 0 1 0
1 0 0 0 1

 , b =

 100
80
40

 .
Then the Giapetto’s slack form LP in Example 8.1.9 can be written neatly in
the matrix form as

(8.1.10)
max z = c′x
s.t. Ax = b

x ≥ 0

Now, the first Simplex tableau for Example 8.1.9 is

Sensitivity Analysis 115

Row z x1 x2 s1 s2 s3 BV RHS
0 1 −3 −2 0 0 0 z = 0
1 0 2 1 1 0 0 s1 = 100
2 0 1 1 0 1 0 s2 = 80
3 0 1 0 0 0 1 s3 = 40

This tableau corresponds to the augmented matrix[
1 −c′ 0
0 A b

]
.

The last (optimal) Simplex tableau is

Row z x1 x2 s1 s2 s3 BV RHS
0 1 0 0 1 1 0 z = 180
1 0 0 1 −1 2 0 x2 = 60
2 0 0 0 −1 1 1 s3 = 20
3 0 1 0 0 −1 0 x1 = 20

This tableau corresponds to the augmented matrix

(8.1.11)
[

1 −c∗BV
′ −c∗NBV

′ z∗

0 B∗ N∗ x∗BV

]
,

Sensitivity Analysis 116

where we have used the denotations

x∗BV =

 x2

s3
x1

 =

 60
20
20

= the BV component of the optimal BFS x∗,

x∗NBV =
[
s1
s2

]
=

[
0
0

]
= the NBV component of the optimal BFS x∗,

B∗ = I =

 1 0 0
0 1 0
0 0 1

= the BV columns of

the “augmented constraint matrix at optimum”,

N∗ =

 −1 2
−1 1

0 −1

= the NBV columns of

the “augmented constraint matrix at optimum”,

c∗BV =

 0
0
0

= the BV coefficients at optimum,

c∗NBV =
[

1
1

]
= the NBV coefficients at optimum.

8.1.12 Remark. The columns in (8.1.11) are in different order than in the
corresponding optimal Simplex tableau. This is unfortunate, but cannot be
avoided, since we want to list first the BVs and then the NBVs. This is not a
problem, however. Indeed, it is obvious that the original optimal tableau

Row z x1 x2 s1 s2 s3 BV RHS
0 1 0 0 1 1 0 z = 180
1 0 0 1 −1 2 0 x2 = 60
2 0 0 0 −1 1 1 s3 = 20
3 0 1 0 0 −1 0 x1 = 20

and the column-changed tableau

Row z x2 s3 x1 s1 s2 BV RHS
0 1 0 0 0 1 1 z = 180
1 0 1 0 0 −1 2 x2 = 60
2 0 0 1 0 −1 1 s3 = 20
3 0 0 0 1 0 −1 x1 = 20

Sensitivity Analysis 117

are the same. And this latter tableau should look very similar to the augmented
matrix (8.1.11), indeed.

Now, using the obvious non-starred analog of the notation we have just
introduced the matrix form LP (8.1.10) can be stated in matrix form as

(8.1.13)
max z = c′BVxBV + c′NBVxNBV

s.t. BxBV + NxNBV = b
xBV,xNBV ≥ 0

In augmented matrix form (8.1.13) reads

(8.1.14)
[

1 −c′BV −c′NBV 0
0 B N b

]
.

(Note that we are now back in the initial problem, or the first tableau.)
Now, we show how the last simplex tableau is found analytically from

the LP (8.1.13), or from the first simplex tableau, which is nothing but the
augmented matrix form (8.1.14). First, we multiply the constraint equation
from the left by the inverse B−1 . At this point you may wonder how does one
find the inverse B−1 . Well, actually we found it in the Simplex Step 5, where
we solved the tableau. So, the Step 5 was actually finding the inverse of the
BV part B of the matrix A . So, the constraint

BxBV + NxNBV = b

becomes
xBV + B−1NxNBV = B−1b.

Now, recall that the NBVs are all zeros. So, B−1NxNBV = 0 , and we actually
have the constraint

xBV = B−1b.

What have we found out? We have found out that the optimization problem
(8.1.13), that was equivalent to the problem (8.1.10), is actually equivalent to
the problem

(8.1.15)
max z = c′BVxBV + c′NBVxNBV

s.t. xBV = B−1b
xBV,xNBV ≥ 0

Now, look at the objective row “constraint”

z = c′BVxBV + c′NBVxNBV.

With a little bit of matrix algebra we see that this is equivalent to

z = c′BVB−1b.

Sensitivity Analysis 118

Indeed, the c′NBVxNBV part vanishes, since xNBV = 0 , and we know already
that xBV = B−1b . So, we have found that the LP (8.1.10), or the LP (8.1.13),
or the LP (8.1.15), is actually equivalent to the LP

(8.1.16)
max z = c′BVB−1b
s.t. xBV = B−1b

xBV,xNBV ≥ 0

It may not be obvious at this point, but we have actually seen the vector
c′BVB−1 — or actually the vector −c′BVB−1 — already. They are the shadow
prices:

π′ = c′BVB−1.

Actually, defined this way, the shadow prices are associated to all BVs, not
only to BVs that are slacks, and thus related to the constraints only.

Let us now collect what we have found out — at least to some extend —
of the Simplex algorithm as a theorem.

8.1.17 Theorem. Let xBV be a BFS of the LP (8.1.10). Then

xBV = B−1b,

and the corresponding value of the objective is

z = c′BVB−1b = π′b.

Moreover, the coefficients in the 0th row of the NBV part of the Simplex tableau
are π′N− c′NBV.

The point x is feasible if B−1b ≥ 0, and the point x is optimal if it is
feasible and the reduced cost vector satisfies π′N− c′NBV ≥ 0′.

Now, finally, comes the answer you have been waiting for. Well, not yet!
We still need some notation. We shall split the coefficients in the final Simplex
tableau in two parts. Here we also use different notation for decision variables
and slacks: previously the vector x contained both the decision variables and
the slack. Now, the vector x will denote only the decision variables, and the
slacks (and excesses) will be denoted by the vector s . The matrix A will still
denote the extended matrix that includes the slacks.

Let

u = coefficients of the decision variables at the 0th row,
v = coefficients of the slacks at the 0th row.

Now, we have just learned that

if the decision variable xj is BV, then uj = 0,
if the decision variable xj is NBV, then uj = π′a•j − cj .

Sensitivity Analysis 119

We have also just learned that

if the slack si is BV, then vi = 0,
if the slack si is NBV, then vi = π′a•(n+i) = πi.

With the notation introduced above, the 0th row of the optimal Simplex
tableau represents the equation

(8.1.18) z +
n∑
j=1

ujxj +
m∑
i=1

visi = z∗,

or — if you like matrix notation — the equation

z + u′x + v′s = z∗.

Suppose then that we change the situation so that a NBV xk becomes a
BV with value xk = 1 . This of course requires changing the values of BVs,
but the bottom line is that the equation (8.1.18) will now have an additional
term ukxk = uk on its LHS (Left Hand Side). This is the only change in the
0th row since the BVs had coefficients 0 in the optimal 0th row, as they were
eliminated from the 0th row by the Simplex algorithm. Consequently the RHS
has decreased by uk . The conclusion is that

uk is the reduced cost of the NBV xk.

Suppose then that some resource constraint bk is increased to bk+1 . Since
cBV and B−1 remain unchanged, remains π = c′BVB−1 also unchanged. So,
the new optimum must be

znew∗ = π′bnew

=
n∑
i=1

πib
new
i

=
n∑

i=1,i 6=k
πibi + πk(bk + 1)

=
n∑
i=1

πibi + πk

= zold∗ + πk

= zold∗ + vk.

The conclusion is that

vk is the shadow price of the resource bk.

Sensitivity Analysis 120

(Until now the association π′ = c′BVB−1 was just notation. Now we have just
justified that if π is defined this way, then it actually is the vector of shadow
prices in the sense of Definition 8.1.1.)

So, back to the Giapetto’s problem 8.1.9 with the final optimal Simplex
tableau:

Row z x1 x2 s1 s2 s3 BV RHS
0 1 0 0 1 1 0 z = 180
1 0 0 1 −1 2 0 x2 = 60
2 0 0 0 −1 1 1 s3 = 20
3 0 1 0 0 −1 0 x1 = 20

For the 0th row we read that

u =
[

0
0

]
and v =

 1
1
0

 .
So, the shadow prices for the NBV slacks s1 and s2 are 1 for both. So,
additional carpentry and finishing hours are worth 1 Euro per hour both for
Giapetto. Since s3 is a non-zero BV additional unit of market demand for
soldiers is worthless to Giapetto. Indeed, in the optimal solution Giapetto is
not meeting the market demand. Finally, we see that the reduced costs are
zero, since all the decision variables are BVs.

Let us end this section with yet another example that illustrates how
shadow prices and reduced costs can be read from the optimal Simplex tableau.
The following Example is actually the Dakota Furniture’s problem 6.2.2 with-
out the market demand constraint x2 ≤ 5 (that turned out to be redundant
anyway).

8.1.19 Example. We want to perform sensitivity analysis to the LP

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 3x2 + 0.5x3 ≤ 8

x1, x2, s1, s2, s3 ≥ 0

by using the Simplex method.

We see that the LP in Example 8.1.19 Has only inequalities of type ≤ , and
all the RHSs are non-negative. So, we will only have surplus type slacks, and

Dual Problem 121

we obtain immediately a canonical slack form. So, our first simplex tableau is
(was)

Row z x1 x2 x3 s1 s2 s3 BV RHS
0 1 −60 −30 −20 0 0 0 z = 0
1 0 8 6 1 1 0 0 s1 = 48
2 0 4 2 1.5 0 1 0 s2 = 20
3 0 2 3 0.5 0 0 1 s3 = 8

Next we have to perform the Simplex algorithm to find the optimal tableau.
After long and tedious tableau-dancing in Chapter 6 we obtained the optimal
tableau:

Row z x1 x2 x3 s1 s2 s3 BV RHS
0 1 0 5 0 0 10 10 z = 280
1 0 0 −2 0 1 2 −8 s1 = 24
2 0 0 −2 1 0 2 −4 x3 = 8
3 0 1 1.25 0 0 −0.5 1.5 x1 = 2

Now we can read sensitivity information from the 0th row:

u =

 0
5
0

 and v =

 0
10
10

 .
We see that the reduced cost for the not-produced product x2 (tables) is

5 . This means, e.g., that the profit for making tables should increase at least
=C5 before it makes sense to produce them. Or, if you like, producing one
table would decrease the profit =C280 by =C5 . The reduced costs for x1 and
x3Âăare zero, since they are BVs. The shadow prices are: 0 for the slack s1
(lumber), since it is not active, and 10 for both the active constraints s2 and
s3 (finishing and carpentry). So, additional carpentry and finishing hours are
both worth =C10 for Dakota and additional lumber is worthless.

8.2 Dual Problem

Finding Dual

Associated with any LP there is another LP, called the dual — and then the
original LP is called the primal. The relationship between the primal and
dual is important because it gives interesting economic insights. Also, it is
important because it gives a connection between the shadow prices and the
reduced costs.

In general, if the primal LP is a maximization problem, the dual is a min-
imization problem — and vice versa. Also, the constraints of the primal LP
are the coefficients of the objective of the dual problem — and vice versa. If

Dual Problem 122

the constraints of the primal LP are of type ≤ then the constraints of the dual
LP are of type ≥ — and vice versa.

Let us now give the formal definition of the dual. We assume that the primal
LP is in standard form of Definition 5.1.9. Since all LPs can be transformed
into a standard form this assumption does not restrict the generality of the
duality. The assumption is made only for the sake of convenience.

8.2.1 Definition. The dual of the standard form LP

(8.2.2)

max z = c1x1 + c2x2 + · · · + cnxn
s.t. a11x1 + a12x2 + · · · + a1nxn ≤ b1,

a21x1 + a22x2 + · · · + a2nxn ≤ b2,
...

...
...

...
. . .

...
...

...
...

am1x1 + am2x2 + · · · + amnxn ≤ bm,
x1, x2, . . . , xn ≥ 0.

is

(8.2.3)

minw = b1y1 + b2y2 + · · · + bmym
s.t. a11y1 + a21y2 + · · · + am1ym ≥ c1,

a11y1 + a22y2 + · · · + am2xm ≥ c2,
...

...
...

...
. . .

...
...

...
...

a1ny1 + a2ny2 + · · · + amnym ≥ cn,
y1, y2, . . . , ym ≥ 0.

In matrix form the duality can be written as: The dual of the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

is
min w = b′y
s.t. A′y ≥ c

y ≥ 0

Dual Problem 123

8.2.4 Example. Consider the LP

max z = [1 2 3]

 x1

x2

x3

s.t.
[

4 5 6
7 8 9

] x1

x2

x3

 ≤
[

10
11

]
.

The dual LP is

minw = [10 11]
[
y1

y2

]

s.t.

 4 7
5 8
6 9

[y1

y2

]
≥

 1
2
3

 .

8.2.5 Remark. Let us discuss briefly about concept of duality in general and
the duality of Definition 8.2.1 in particular.

• In general, dual is a transformation with the following property: Trans-
forming twice you get back. This is the abstract definition of duality. In
mathematics a function is f is called involution if it is its own inverse,
i.e., f−1 = f . So, duality is a meta-mathematical involution.
• Looking at Definition 8.2.1 one sees the dual is LP itself. So, it can be

transformed into a standard form, and the one can construct the dual of
the dual. When one does so one gets back to the original primal LP, i.e.,
the dual of the dual is primal. So, the dual of Definition 8.2.1 deserves
its name.
• We have already seen one duality between LPs before: A minimization

problem is in duality with a maximization problem with the transform
where the objective function is multiplied by −1 . The usefulness of this
simple duality was that we only need to consider maximization problems,
and the solution of the minimization problem is −1 times the solution
of the corresponding maximization problem in this simple duality. Also,
the optimal decisions in the maximization and minimization problems
are the same.
• The duality of Definition 8.2.1 is more complicated than the simple “mul-

tiply by −1 duality” of the previous point. This makes the duality of
Definition 8.2.1 in some sense more useful than the simple “multiply by
−1 duality”. Indeed, since the transformation is more complicated, our

Dual Problem 124

change of perspective is more radical, and thus this transformation gives
us better intuition of the original problem.
• The duality of Definition 8.2.1 is very useful because of the following

theorems: The weak duality theorem states that the objective function
value w of the dual at any feasible solution y is always greater than
or equal to the objective function value z of the primal at any feasible
solution x :

w = b′y ≥ c′x = z.

The weak duality theorem can be used to get upper bounds to the primal
LP. The strong duality theorem states that if the primal has an optimal
solution, x∗ , then the dual also has an optimal solution, y∗ , such that

z∗ = c′x∗ = b′y∗ = w∗.

The strong duality theorem can be used to solve the primal LP. We shall
prove the weak and strong duality theorems later in this lecture.

Let us find a dual of an LP that is not in standard form.

8.2.6 Example. Consider the LP

min z = 50x1 + 20x2 + 30x3

s.t. 2x1 + 3x2 + 4x3 ≥ 11
12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

The LP of Example 8.2.6 is not in standard form. So, before constructing
its dual, we transform it into standard form. This is not necessary. Sometimes
we can be clever, and find the dual without first transforming the primal into
standard form. But we don’t feel clever now. So, here is the standard form:

max −z = −50x1 − 20x2 − 30x3

s.t. −2x1 − 3x2 − 4x3 ≤ −11
12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 ≤ 1
−x1 − x2 − x3 ≤ −1

x1, x2, x3 ≥ 0

Now we are ready to present the dual:

(8.2.7)

min −w = −11y1 + 111y2 + y3 − y4

s.t. −2y1 + 12y2 + y3 − y4 ≥ −50
−3y1 + 13y2 + y3 − y4 ≥ −20
−4y1 + 14y2 + y3 − y4 ≥ −30

y1, y2, y3, y4 ≥ 0

Dual Problem 125

(we used variable −w in the dual because there was variable −z in the stan-
dard form primal). Note now that th dual LP (8.2.7) in in “dual standard
form”: It is a minimization problem with only inequalities of type ≥ . The
original primal LP was a minimization problem. So, it is natural to express
the dual LP as a maximization problem. Also, inequalities of type ≤ are more
natural to maximization problems than the opposite type inequalities ≥ . So,
let us transform the dual LP (8.2.7) into a maximization problem with ≤ type
inequalities. In fact, let us transform the dual LP (8.2.7) into a standard form.
We obtain

max w = 11y1 − 111y2 − y3 + y4

s.t. 2y1 − 12y2 − y3 + y4 ≤ 50
3y1 − 13y2 − y3 + y4 ≤ 20
4y1 − 14y2 − y3 + y4 ≤ 30

y1, y2, y3, y4 ≥ 0

Economic Interpretation of Dual

Let us recall — again — the Dakota Furniture’s problem 6.2.2 (without the
market demand constraint that turned out to be irrelevant anyway):

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48 (lumber)
4x1 + 2x2 + 1.5x3 ≤ 20 (finishing)
2x1 + 1.5x2 + 0.5x3 ≤ 8 (carpentry)

x1, x2, x3 ≥ 0

where

x1 = number of desks manufactured
x2 = number of tables manufactured
x3 = number of chairs manufactured

Now, the dual of this problem is

(8.2.8)

min w = 48y1 + 20y2 + 8y3

s.t. 8y1 + 4y2 + 2y3 ≥ 60 (desk)
6y1 + 2y2 + 1.5y3 ≥ 30 (table)
x1 + 1.5y2 + 0.5y3 ≥ 20 (chair)

y1, y2, y3 ≥ 0

We have given the constraints the names (desk), (table), and (chair). Those
were the decision variables x1 , x2 and x3 in the primal LP. By symmetry, or
duality, we could say that y1 is associated with lumber, y2 with finishing, and
y3 with carpentry. What is going on here? It is instructive to represent the

Dual Problem 126

data of the Dakota’s problem in a table where we try to avoid taking Dakota’s
point of view:

Desk Table Chair Availability
Lumber 8 units 6 units 1 unit 48 units
Finishing 4 hours 2 hours 1.5 hours 20 hours
Carpentry 2 hours 1.5 hours 0.5 hours 8 hours
Price =C60 =C30 =C20

Now, the table above can be read either horizontally of vertically. You should
already know how the read the table above horizontally. That is the Dakota’s
point of view. But what does it mean to read the table vertically? Here is the
explanation, that is also the economic interpretation of the dual LP:

Suppose you are an entrepreneur who wants to purchase all of Dakota’s re-
sources — maybe you are a competing furniture manufacturer, or maybe you
need the resources to produce soldiers and trains like Giapetto. Then you must
determine the price you are willing to pay for a unit of each of Dakota’s re-
sources. But what are the Dakota’s resources? Well they are lumber, finishing
hours, and carpentry hours, that Dakota uses to make its products. So, the
decision variables for the entrepreneur who wants to buy Dakota’s resources
are:

y1 = price to pay for one unit of lumber
y2 = price to pay for one hour of finishing labor
y3 = price to pay for one hour of carpentry labor

Now we argue that the resource prices y1 , y2 , y3 should be determined by
solving the Dakota dual (8.2.8).

First note that you are buying all of Dakota’s resources. Also, note that
this is a minimization problem: You want to pay as little as possible. So, the
objective function is

minw = 48y1 + 20y2 + 8y3.

Indeed, Dakota has 48 units of lumber, 20 hours of finishing labor, and 8
hours of carpentry labor.

Now we have the decision variables and the objective. How about con-
straints? In setting the resource prices y1 , y2 , and y3 , what kind of con-
straints do you face? You must set the resource prices high enough so that
Dakota would sell them to you. Now Dakota can either use the resources itself,
or sell them to you. How is Dakota using its resources? Dakota manufactures
desks, tables, and chair. Take desks first. With 8 units of lumber, 4 hours of
finishing labor, and 2 hours of carpentry labor Dakota can make a desk that
will sell for =C60 . So, you have to offer more than =C60 for this particular
combination of resources. So, you have the constraint

8y1 + 4y2 + 2y3 ≥ 60.

Dual Problem 127

But this is just the first constraint in the Dakota dual, denoted by (desk).
Similar reasoning shows that you must pay at least =C30 for the resources
Dakota uses to produce one table. So, you get the second constraint, denoted
by (table), of the Dakota dual:

6y1 + 2y2 + 1.5y3 ≥ 30.

Similarly, you must offer more than =C20 for the resources the Dakota can use
itself to produce one chair. That way you get the last constraint, labeled as
(chair), of the Dakota dual:

y1 + 1.5y2 + 0.5y3 ≥ 20.

We have just interpreted economically the dual of a maximization problem.
Let us then change our point of view to the opposite and interpret economically
the dual of a minimization problem.

8.2.9 Example. My diet requires that all the food I eat come from
the four “basic food groups”: chocolate cake, ice cream, soda, and
cheese cake. At present four foods are available: brownies, chocolate
ice cream, cola, and pineapple cheesecake. The costs of the foods (in
Cents) and my daily nutritional requirements together with their calo-
rie, chocolate, sugar, and fat contents are listed in the table below this
box.

I want to minimize the cost of my diet. How should I eat?

Calories Chocolate Sugar Fat Price
Brownie 400 3 2 2 50
Chocolate ice cream 200 2 2 4 20
Cola 150 0 4 1 30
Pineapple cheesecake 500 0 4 5 80
Requirement 500 6 10 8

Let us then find the LP for the Diet problem of Example 8.2.9. As always,
we first determine the decision variables. The decision to be made is: how much
each type of food should be eaten daily. So, we have the decision variables

x1 = number of brownies eaten daily,
x2 = number (of scoops) of chocolate ice creams eaten daily,
x3 = number (of bottles) of cola drunk daily,
x4 = number (of pieces) of pineapple cheesecake eaten daily.

Dual Problem 128

Next we define the objective. We want to minimize the cost of the diet. So,
the objective is

min z = 50x1 + 20x2 + 30x3 + 80x4.

Finally, we define the constraints. The daily calorie intake requirement gives

400x1 + 200x2 + 150x3 + 500x4 ≥ 500.

The daily chocolate requirement gives

3x1 + 2x2 ≥ 6.

The daily sugar requirement gives

2x1 + 2x2 + 4x3 + 4x4 ≥ 10,

and the daily fat requirement gives

2x1 + 4x2 + x3 + 5x4 ≥ 8.

So, we see that the Diet problem of Example 8.2.9 is the LP
(8.2.10)

min z = 50x1 + 20x2 + 30x3 + 80x4

s.t. 400x1 + 200x2 + 150x3 + 500x4 ≥ 400 (calorie)
3x1 + 2x2 ≥ 6 (chocolate)
2x1 + 2x2 + 4x3 + 4x4 ≥ 10 (sugar)
2x1 + 4x2 + x3 + 5x4 ≥ 8 (fat)

x1, x2, x3, x4 ≥ 0

What about the dual of (8.2.10) then. Now, the LP (8.2.10) is not in
standard form. So, in principle we should first transform it into standard form,
and then construct the dual. We shall not do that, however. Instead, we
remember that the dual of the dual is primal. So, we read the Definition 8.2.1
backwards, and obtain immediately the dual of (8.2.10):
(8.2.11)

maxw = 500y1 + 6y2 + 10y3 + 8y4

s.t. 400y1 + 3y2 + 2y3 + 2y4 ≤ 50 (brownie)
200y1 + 2y2 + 2y3 + 4y4 ≤ 20 (ice cream)
150y1 + 4y3 + y4 ≤ 30 (soda)
500y1 + 4y3 + 5y4 ≤ 80 (cheesecake)

y1, y2, y3, y4 ≥ 0

What is then the economic interpretation of this dual? Well, reading the
table

Dual Problem 129

Calories Chocolate Sugar Fat Price
Brownie 400 3 2 2 50
Chocolate ice cream 200 2 2 4 20
Cola 150 0 4 1 30
Pineapple cheesecake 500 0 4 5 80
Requirement 500 6 10 8

vertically, instead of horizontally, we see that we can consider a “nutrient”
salesperson who sells calories, chocolate, sugar, and fat. The salesperson wishes
to ensure that a dieter will meet all of his daily requirements by purchasing
calories, sugar, fat, and chocolate from the the salesperson. So, the salesperson
must determine the prices of her products:

y1 = price of a calorie,
y2 = price of a unit of chocolate,
y3 = price of a unit of sugar,
y4 = price of a unit of fat.

The salesperson wants to maximize her profit. So, what is the salesperson
selling? She is selling daily diets. So, the objective is

maxw = 500y1 + 6y2 + 10y3 + 8y4.

What are the constraints for the salesperson? In setting the nutrient prices
she must set the prices low enough so that it will be in the dieter’s economic
interest to purchase as his nutrients from her. For example, by purchasing a
brownie for =C0.50 , the dieter can obtain 400 calories, 3 units of chocolate, 2
units of sugar, and 2 units of fat. So, the salesperson cannot charge more than
=C0.50 for this combination of nutrients. This gives her the brownie constraint

400y1 + 3y2 + 2y3 + 2y4 ≤ 50

(remember, we counted in Cents). In the similar way the salesperson will have
the ice cream, soda, and cheesecake constraints listed in the dual LP (8.2.11).

Duality Theorem

In this subsection we discuss one of the most important results in linear pro-
gramming: the Duality Theorem. In essence, the Duality Theorem states that
the primal and the dual have equal optimal objective function values — given
that the problems have optimal solutions. While this result is interesting in its
own right, we will see that in proving it we gain many important insights into
linear programming.

As before, we assume — for the sake of convenience — that the primal is in
standard form. So, the primal will be a maximization problem, and the dual

Dual Problem 130

will be a minimization problem. For the sake of reference you may think that
we are dealing with the Dakota’s problem 6.2.2 (without the irrelevant market
demand constraint) and its dual (8.2.8).

The next theorem is the Weak Duality Theorem.

8.2.12 Theorem. Let x be any BFS of the primal LP and let y be any BFS
of the dual LP. Then

z = c′x ≤ b′y = w.

Let us actually prove the Weak Duality Theorem 8.2.12:

Proof. Consider any of the dual decision variable yi , i = 1, . . . ,m . Since yi ≥ 0
we can multiply the ith primal constraint by yi without changing the direction
of the constraint number i . (Moreover, the system remains equivalent, but
that’s not important here). We obtain

(8.2.13) yiai1x1 + · · ·+ yiainxn ≤ biyi for all i = 1, . . . ,m.

Adding up all the m inequalities (8.2.13), we find that

(8.2.14)
m∑
i=1

n∑
j=1

yiaijxj ≤
m∑
i=1

biyi.

Similarly, if we consider any of the primal decision variables xj , j = 1, . . . , n ,
we have that xj ≥ 0 . So, we can multiply the j th dual constraint by the
decision xj without changing the direction of the constraint. We obtain

(8.2.15) xja1jy1 + · · ·+ xjamjym ≥ cjxj .

Adding up all the n inequalities (8.2.15), we find that

(8.2.16)
m∑
i=1

n∑
j=1

yiaijxj ≥
n∑
j=1

cjxj .

Combining (8.2.14) and (8.2.16), we obtain double-inequality

n∑
j=1

cjxj ≤
m∑
i=1

n∑
j=1

yiaijxj ≤
m∑
i=1

biyi.

But, that’s it!

Let us then consider the consequences — or corollaries — of the Weak
Duality Theorem 8.2.12.

8.2.17 Corollary. If the primal LP and dual LP both are feasible, then the
their optimal solutions are bounded.

Dual Problem 131

Proof. Let y be a BFS for the dual problem. Then the Weak Duality Theorem
8.2.12 shows that b′y is an upper bound for any objective value c′x associated
with any BFS x of the primal LP:

c′x ≤ b′y.

Since this is true for any primal decision x , it is true for an optimal primal
decision x∗ also. So,

z∗ = c′x∗

= max
{
c′x ; Ax ≤ b,x ≥ 0

}
≤ max

{
b′y ; Ax ≤ b,x ≥ 0

}
≤ b′y

< ∞
is bounded. Now, change the rôles of the primal and the dual, and you see
that the claim of Corollary 8.2.17 is true.

8.2.18 Corollary. Suppose x∗ is a BFS for the primal and y∗ is a BFS for
the dual. Suppose further that c′x∗ = b′y∗ . Then both x∗ and y∗ are optimal
for their respective problems.

Proof. If x is any BFS for the primal, then the Weak Duality Theorem 8.2.12
tells us that

c′x ≤ b′y∗ = c′x∗.

But this means that x∗ is primal optimal. Now, change the rôles of the primal
and dual, and you see that the claim of the Corollary 8.2.18 is true.

Here is the Duality Theorem, or the Strong Duality Theorem. To understand
the notation, recall Theorem 8.1.17 earlier in this Chapter.

8.2.19 Theorem. Let
xBV = B−1b

be the optimal BFS to the primal with the corresponding optimal objective value

z∗ = c′BVB−1b = π′b.

Then π is the optimal BFS for the dual. Also, the values of the objectives at
the optimum are the same:

w∗ = π′b = c′BVxBV.

We shall not prove Theorem 8.2.19 in these notes. Instead, we leave it as
an exercise. The author is well aware that this is a very demanding exercise,
but not all of the exercises have to be easy! Also, there will be no proofs in the
final exam, so it is justified that there is at least one proof in the exercises.

Dual Problem 132

Complementary Slackness

It is possible to obtain an optimal solution to the dual when only an optimal
solution to the primal is known using the Theorem of Complementary Slack-
ness. To state this theorem, we assume that the primal is in standard form
with non-negative RHSs and objective coefficients. The primal decision vari-
ables are x = [x1 · · · xn]′ and the primal slacks are s = [s1 · · · sm]′ . The dual
is then a minimization problem with decision variables y = [y1 · · · ym]′ , and
with n constraints of type ≥ with non-negative RHSs. Let e = [e1 · · · en]′

be the excesses of the dual problem associated with the constraints.
So, in slack form the primal LP is

max z = c1x1 + · · ·+ cnxn
s.t. a11x1 + · · ·+ a1nxn +s1 = b1

a21x1 + · · ·+ a2nxn +s2 = b2
...

...
...

. . .
...

am1x1 + · · ·+ amnxn +sm = bm
x1, . . . , xn, s1, . . . , sm ≥ 0

Similarly, the dual LP in slack — or rather excess — form is

minw = b1y1 + · · ·+ bmym
s.t. a11y1 + · · ·+ am1ym −e1 = c1

a12y1 + · · ·+ am2ym −e2 = c2
...

...
...

. . .
...

a1ny1 + · · ·+ amnym −en = cn
y1, . . . , ym, e1, . . . , en ≥ 0

Here is the Theorem of Complementary Slackness.

8.2.20 Theorem. Let x be a primal BFS, and let y be a dual BFS. Then x
is primal optimal and y is dual optimal if and only if

siyi = 0 for all i = 1, . . . ,m,
ejxj = 0 for all j = 1, . . . , n.

Before going into the proof of the Complementary Slackness Theorem 8.2.20
let us note that:

8.2.21 Remark. Theorem 8.2.20 says that

if a constraint in either the primal or the dual is non-active, then the
corresponding variable in the other — complementary — problem
must be zero.

Hence the name complementary slackness.

Dual Problem 133

Proof. The theorem 8.2.20 is of the type “if and only if”. So, there are two
parts in the proof: the “if part” and the “only if part”. Before going to those
parts let us note that

si = 0 if and only if
m∑
j=1

aijx
∗
j = bi,(8.2.22)

ej = 0 if and only if
n∑
i=1

aijy
∗
i = cj .(8.2.23)

If part: By (8.2.22) we see that

m∑
i=1

biy
∗
i =

m∑
i=1

y∗i

n∑
j=1

aijx
∗
j

=
m∑
i=1

n∑
j=1

y∗i aijx
∗
j

In the same way, by using (8.2.23) we see that

n∑
j=1

cjx
∗
j =

m∑
i=1

n∑
j=1

y∗i aijx
∗
j .

So, the conclusion is that

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i ,

and the “if part” follows from the Weak Duality Theorem 8.2.12.

Only if part: Like in the proof of the Weak Duality Theorem 8.2.12 we
obtain

(8.2.24)
n∑
j=1

cjx
∗
j ≤

m∑
i=1

n∑
j=1

y∗i aijx
∗
j ≤

m∑
i=1

biy
∗
i .

Now, by the Strong Duality Theorem 8.2.19, if x∗ and y∗ are optimal, then
the LHS of (8.2.24) is equal to the RHS of (8.2.24). But this means that

(8.2.25)
n∑
j=1

(
cj −

m∑
i=1

y∗i aij

)
x∗j = 0.

Now, both x∗ and y∗ are feasible. This means that the terms in (8.2.25) are
all non-negative. This implies that the terms are all zeros. But this means

Dual Problem 134

that that ejxj = 0 . The validity of siyi = 0 can be seen in the same way by
considering the equality

m∑
i=1

bi − m∑
j=1

aijx
∗
j

 y∗i = 0.

This finishes the proof of the Complementary Slackness Theorem 8.2.20.

As an example of the use of the Complementary Slackness Theorem 8.2.20,
let us consider solving the following LP:

8.2.26 Example. You want to solve the LP

min w = 4y1 + 12y2 + y3

s.t. y1 + 4y2 − y3 ≥ 1
2y1 + 2y2 + y3 ≥ 1

y1, y2, y3 ≥ 0

Now, suppose you have already solved, e.g. graphically — which is chal-
lenging for the LP in 8.2.26 — the much easier LP

max z = x1 + x2

s.t. x1 + 2x2 ≤ 4
4x1 + 2x2 ≤ 12
−x1 + x2 ≤ 1

x1, x2 ≥ 0

The solution to this dual is

x∗1 = 8/3
x∗2 = 2/3

with the optimal value

z∗ = x∗1 + x∗2

= 10/3.

This means that you have already solved the dual — or primal, if you take the
opposite point of view — of the Example 8.2.26.

Now, how can the solution above, combined with the Complementary Slack-
ness Theorem 8.2.20, help you to solve the LP of Example 8.2.26?

Here is how: First note that x∗1 > 0 and x∗1 > 0 . So, the Complementary
Slackness Theorem 8.2.20 tells us that the optimal solution y∗ = [y∗1 y

∗
2 y
∗
3]′ of

Dual Problem 135

the LP in Example 8.2.26 must have zero excesses. So, the inequalities in 8.2.26
are actually equalities at the optimum. Also, if we check the optimum x∗ in the
first three constraints of the maximum problem, we find equalities in the first
two of them, and a strict inequality in the third one. So, the Complementary
Slackness Theorem 8.2.20 tells us that y∗3 = 0 . So, in the optimum y∗ of the
LP in Example 8.2.26 we must have

y∗1 + 4y∗2 = 1
2y∗1 + 2y∗2 = 1

y∗3 = 0

But this is a very easy system to solve. We obtain

y∗1 = 1/3,
y∗2 = 1/6,
y∗3 = 0

with the optimal value

w∗ = 4y∗1 + 12y∗2 + y3

= 10/3.

Primal and Dual Sensitivity 136

8.3 Primal and Dual Sensitivity

By now it should be clear — although we have not stated it explicitly — what
is the connection between sensitivity and duality. Let us be explicit. To put it
shortly, it is:

x∗primal = πdual,

πprimal = y∗dual,

s∗primal = udual,

uprimal = e∗dual,

z∗primal = w∗dual.

In the above uprimal and udual denote the vectors of reduced costs in the
primal and dual, respectively. Also, s∗primal and e∗dual denote the slacks and ex-
cesses of the primal and dual at optimum, respectively. All the other notations
should be clear.

8.3.1 Remark. The equality

πprimal = y∗dual

explains the name “shadow prices”. Indeed, the dual is a “shadow problem”.
So, the shadow prices of the constraints at the primal optimum are the prices
of the dual variables (that are related to the constraints) at the dual optimum.
Sometimes the shadow prices are called the dual prices.

Part III

Applications of Linear
Programming

Chapter 9

Data Envelopment Analysis

In this chapter we discuss how to apply LP in the problem of evaluating the
relative efficiency of different units, relative only to themselves. This is a nice
application because of three reasons:

1. it is not at all obvious that LP can be used in this problem,
2. the application gives valuable insight to the LP duality,
3. the application itself is extremely useful.

This chapter is adapted from [2, Ch. 2] and from J.E. Beasley’s web notes.

9.1 Graphical Introduction to Data Envelopment Analysis

Data Envelopment Analysis and Decision-Making Units

Data envelopment analysis (DEA), occasionally called frontier analysis, was
introduced by Charnes, Cooper and Rhodes in 1978 (CCR). DEA is a perfor-
mance measurement technique which can be used for evaluating the relative
efficiency of decision-making units (DMUs). Here DMU is an abstract term
for an entity that transforms inputs into outputs. The term is abstract on
purpose: Typically one thinks of DMUs as manufacturers of some goods (out-
puts) who use some resources (inputs). This way of thinking, while correct, is
very narrow-minded: DMU is a much more general concept, and DEA can be
applied in very diverse situations. Indeed, basically the DMUs can be pretty
much anything. The main restrictions are:

1. the DMUs have the same inputs and outputs,
2. the DMUs’ inputs and outputs can be measured numerically.

Indeed, if either one of the points 1. or 2. above fails, it would not make any
sense to compare the DMUs quantitatively, i.e., with numbers.

Examples of DMUs to which DEA has been applied are:

• banks,

http://people.brunel.ac.uk/~mastjjb/jeb/or/dea.html

Graphical Introduction to Data Envelopment Analysis 139

• police stations,
• hospitals,
• tax offices,
• prisons,
• military defence bases,
• schools,
• university departments.

9.1.1 Remark. There are two points of DEA that must be emphasized:

1. DEA is a data oriented. This means that it will only use the data related
to the inputs and outputs of the DMUs under consideration. It does not
use any extra theoretical — or practical, or philosophical — knowledge.
In this respect, it differs from classical comparison methods where DMUs
are compared either to a “representative” DMU or to some “theoretically
best” DMU.

2. DEA is an extreme point method. It does not compare DMUs to any “rep-
resentative” or “average” DMU. No, DEA compares the different DMUs
to the “best” DMU.

Relative Efficiency

DEA is about comparing the relative efficiency of DMUs. Efficiency is defined
by the following meta-mathematical formula:

efficiency =
outputs
inputs

.

There is nothing relative in the definition of efficiency above. Well, not as such.
The relativity comes in later.

In the next subsection we will illustrate DEA by means of a small example
of Kaupþing Bank branches. Note here that much of what you will see below
is a graphical approach to DEA. This is very useful if you are attempting to
explain DEA to those less technically qualified — such as many you might meet
in the management world. There is a mathematical approach to DEA that can
be adopted however — this is illustrated later in the following sections.

Graphical Introduction to Data Envelopment Analysis 140

One Input — One Output

9.1.2 Example. Consider a number of Kaupþing Bank’s branches.
For each branch we have a single output measure: Number of personal
transactions completed per week. Also, we have a single input measure:
Number of staff.

The data we have is as follows:
Branch Personal Number of

transactions staff
Reykjavík 125 18
Akureyri 44 16
Kópavogur 80 17
Hafnarfjörður 23 11

How then can we compare these branches — or DMUs — and measure
their performance using this data? A commonly used method is ratios, which
means that we will compare efficiencies.

For our Kaupþing Bank branch example 9.1.2 we have a single input mea-
sure, the number of staff, and a single output measure, the number of personal
transactions. Hence the meta-mathematical formula

efficiency =
outputs
inputs

=
output
input

is a well-defined mathematical formula — no metas involved.
We have:

Branch Personal transactions
per staff member

Reykjavík 6.94
Akureyri 2.75
Kópavogur 4.71
Hafnarfjörður 2.09

Here we can see that Reykjavík has the highest ratio of personal transactions
per staff member, whereas Hafnarfjörður has the lowest ratio of personal trans-
actions per staff member. So, relative to each others, Reykjavík branch is the
best (most efficient), and the Hafnarfjörður branch is the worst (least efficient).

As Reykjavík branch is the most efficient branch with the highest ratio of
6.94 , it makes sense to compare all the other branches to it. To do this we
calculate their relative efficiency with respect to Reykjavík branch: We divide

Graphical Introduction to Data Envelopment Analysis 141

the ratio for any branch by the Reykjavík’s efficiency 6.94 , and multiply by
100% (which is one) to convert to a percentage. This gives:

Branch Relative Efficiency
Reykjavík 100%× (6.94/6.94) = 100%
Akureyri 100%× (2.75/6.94) = 40%
Kópavogur 100%× (4.71/6.94) = 68%
Hafnarfjörður 100%× (2.09/6.94) = 30%

The other branches do not compare well with Reykjavík. That is, they are
relatively less efficient at using their given input resource (staff members) to
produce output (number of personal transactions).

9.1.3 Remark. We could, if we wish, use the comparison with Reykjavík to
set targets for the other branches:

1. We could set a target for Hafnarfjörður of continuing to process the same
level of output but with one less member of staff. This is an example of
an input target as it deals with an input measure.

2. An example of an output target would be for Hafnarfjörður to increase
the number of personal transactions by 10% — e.g. by obtaining new
accounts.

We could, of course, also set Hafnarfjörður a mix of input and output targets
which we want it to achieve.

One Input — Two Outputs

Typically we have more than one input and one output. In this subsection we
consider the case of one input and two outputs. While the case of one input
and one output was almost trivial, the case of two outputs and one input is still
simple enough to allow for graphical analysis. The analog with LPs would be:
LPs with one decision variable are trivial, and LPs with two decision variables
are still simple enough to allow for graphical analysis.

Let us extend the Kaupþing Bank branch example 9.1.2:

Graphical Introduction to Data Envelopment Analysis 142

9.1.4 Example. Consider a number of Kaupþing Bank’s branches.
For each branch we have a two output measures: Number of personal
transactions completed per week, and number of business transaction
completed per week. We have a single input measure: Number of staff.

The data we have is as follows:
Branch Personal Business Number of

transactions transactions staff
Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

How now can we compare these branches and measure their performance
using this data? As before, a commonly used method is ratios, just as in the
case considered before of a single output and a single input. Typically we take
one of the output measures and divide it by one of the input measures.

For our bank branch example 9.1.4 the input measure is plainly the number
of staff (as before) and the two output measures are number of personal trans-
actions and number of business transactions. Hence we have the two ratios:

Branch Personal transactions Business transactions
per staff member per staff member

Reykjavík 6.94 2.78
Akureyri 2.75 1.25
Kópavogur 4.71 3.24
Hafnarfjörður 2.09 1.09

Here we can see that Reykjavík has the highest ratio of personal transactions
per staff member, whereas Kópavogur has the highest ratio of business trans-
actions per staff member. So, it seems that Reykjavík and Kópavogur are
the best performers. Akureyri and Hafnarfjörður do not compare so well with
Reykjavík and Kópavogur. That is, they are relatively less efficient at using
their given input resource (staff members) to produce outputs (personal and
business transactions).

One problem with comparison via ratios is that different ratios can give
a different picture and it is difficult to combine the entire set of ratios into a
single numeric judgement. For example, consider Akureyri and Hafnarfjörður:

• Akureyri is 2.75/2.09 = 1.32 times as efficient as Hafnarfjörður at per-
sonal transactions,
• Akureyri is 1.25/1.09 = 1.15 times as efficient as Hafnarfjöður at business

transactions.

Graphical Introduction to Data Envelopment Analysis 143

How would you combine these figures — 1.32 and 1.15 — into a single judge-
ment? This problem of different ratios giving different pictures would be espe-
cially true if we were to increase the number of branches or increase the number
of inputs or outputs.

9.1.5 Example. We ad five extra branches, Sellfoss, Hveragerði,
Akranes, Borgarnes, and Keflavík, to Example 9.1.4. The data is now:

Branch Personal transactions Business transactions
per staff member per staff member

Reykjavík 6.94 2.78
Akureyri 2.75 1.25
Kópavogur 4.71 3.24
Hafnarfjörður 2.09 1.09
Sellfoss 1.23 2.92
Hveragerði 4.43 2.23
Akranes 3.32 2.81
Borgarnes 3.70 2.68
Keflavík 3.34 2.96

What can be now said about the efficiencies of the branches?

One way around the problem of interpreting different ratios, at least for
problems involving just two outputs and a single input, is a simple graphical
analysis. Suppose we plot the two ratios for each branch as shown below. In
the picture we have no ticks to express the scale. The ticks are left out on
purpose: DEA is about relative efficiency. So, the scales do not matter.

PT/S

B
T

/S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes
Borgarnes

Keflavik

The positions of Reykjavík and Kópavogur in the graph demonstrate that they
are superior to all other branches: They are the extreme points, other DMUs

Graphical Introduction to Data Envelopment Analysis 144

are inferior to them. The line drawn in the picture is called the efficient frontier.
It was drawn by taking the extreme points, and then connecting them to each
others and to the axes. That was a very vague drawing algorithm, but I hope
you got the picture.

9.1.6 Remark. The name Data Envelopment Analysis arises from the efficient
frontier that envelopes, or encloses, all the data we have.

9.1.7 Definition. We say that any DMU on the efficient frontier is 100%
efficient.

In our Kaupþing Bank branch examples 9.1.4 and 9.1.5, Reykjavík and Kó-
pavogur branches are 100% efficient. This is not to say that the performance
of Reykjavík or Kópavogur could not be improved. It may, or may not, be
possible to do that. However, we can say that, based on the evidence pro-
vided by the different branches, we have no idea of the extent to which their
performance can be improved.

9.1.8 Remark. It is important to note here that:

• DEA only gives relative efficiencies, i.e., efficiencies relative to the data
considered. It does not — and cannot — give absolute efficiencies.
• No extra information or theory was used in determining the relative effi-

ciencies of the DMUs. What happened was that we merely took data on
inputs and outputs of the DMUs we considered, and presented the data
in a particular way.
• The statement that a DMU is 100% efficient simply means that we have

no other DMU that can be said to be better than it.

Now we know when a DMU is 100% efficient: A DMU is 100% efficient
if it is on the efficient frontier. How about the non-efficient DMUs? Can
we associate the DMUs that are not in the efficient frontier with a number
representing their efficiency? We can. How to do this, is explained below. So,
we will now discuss about quantifying efficiency scores for inefficient DMUs.

Let us take Hafnarfjörður as an example of a non-efficient branch. We can
see that, with respect to both of the ratios Reykjavík — and Kópavogur, too
— dominates Hafnarfjörður. Plainly, Hafnarfjörður is less than 100% efficient.
But how much? Now, Hafnarfjörður has

• number of staff 11 ,
• personal transactions 23 ,
• personal transactions per staff member 23/11 = 2.09 ,
• business transactions 12 ,
• business transactions per staff member 12/11 = 1.09 .

Graphical Introduction to Data Envelopment Analysis 145

For Hafnarfjörður we have the ratio

personal transactions
business transactions

=
23
12

= 1.92.

This means that there are 1.92 personal transactions for every business trans-
action. This figure of 1.92 is also the ratio

personal transactions per staff member
business transactions per staff member

.

Indeed,

personal transactions
business transactions

=
personal transactions
business transactions

× number of staff members
number of staff members

=
personal transactions × number of staff members
business transactions × number of staff members

=
personal transactions / number of staff members
business transactions / number of staff members

=
personal transactions per staff member
business transactions per staff member

.

This number, 1.92 , is the business mix of the Hafnarfjörður branch. It can
be also be interpreted that Hafnarfjörður branch weighs its outputs, personal
transactions and business transactions, so that personal transactions get weight
1.92 and business transactions get weight 1 .

Consider now the diagram below. In the diagram we have removed all the
inefficient branches, except Hafnarfjörður. The line with the percentage ruler
attached drawn through Hafnarfjörður represent all the possible — or virtual,
if you like — branches having the same business mix, 1.92 , as Hafnarfjörður.

PT/S

B
T

/S

Reykjavik

Kopavogur

Hafnarfjordur

Best

36%

Graphical Introduction to Data Envelopment Analysis 146

Note the virtual branch Best in the picture above. Best represents a branch
that, were it to exist, would have the same business mix as Hafnarfjörður and
would have an efficiency of 100% . Now, since Best and Hafnarfjörður have
the same business mix, it makes sense to compare them numerically. Here is
how to do it: Hafnarfjörður’s relative position in the ruler line from the worst
branch with the same business mix (the origin) to the best branch with the
same business mix (Best) is 36% . In other words, 36% of the ruler line is
before Hafnarfjörður, and 64% of the ruler line is after Hafnarfjörður. So, it
makes sense to say that Hafnarfjörður is, relative to the best branches, 36%
efficient — or 64% inefficient, if you like.

So, given the graphical consideration above we have the following definition
for the (relative) efficiency of a DMU with two outputs and one input:

9.1.9 Definition. Draw a line segment from the origin through the DMU in
question until you hit the efficient frontier. The efficiency of the DMU is

length of the line segment from the origin to the DMU
total length of the line segment

× 100%.

9.1.10 Remark. The picture — and the definition — above is relative: You
can change the scale of either the PT/S or the BT/S axis, or even switch the
axes, but the relative efficiency of the Hafnarfjörður branch — or any other
branch — won’t change.

In the next picture we have written the relative efficiencies of the DMUs
(Kaupþing Bank’s branches).

PT/S

B
T

/S

Reykjavik 100%

Akureyri 43%

Kopavogur 100%

Hafnarfjordur 36%

Sellfoss 91%

Hveragerdi 74%

Akranes 87%
Borgarnes 82%

Keflavik 92%

The data of the picture above is written in tabular form below. Now it is
up to you to decide which one of these two ways of presenting the data you

Graphical Introduction to Data Envelopment Analysis 147

prefer. The author prefers the picture, and therefore has huge respect for the
“tabular-minded”.

Branch Personal Business transactions Relative
transactions per transactions per efficiency

staff member staff member
Reykjavík 6.94 2.78 100%
Akureyri 2.75 1.25 43%
Kópavogur 4.71 3.24 100%
Hafnarfjörður 2.09 1.09 36%
Sellfoss 1.23 2.92 91%
Hveragerði 4.43 2.23 74%
Akranes 3.32 2.81 87%
Borgarnes 3.70 2.68 82%
Keflavik 3.34 2.96 92%

9.1.11 Remark. Consider the picture with the ruler going from the origin
through Hafnarfjörður to the efficient frontier. The point labelled Best on the
efficient frontier is considered to represent the best possible performance that
Hafnarfjörður can reasonably be expected to achieve. There are a number of
ways by which Hafnarfjörður can move towards that point.

1. It can reduce its input (number of staff) while keeping its outputs (per-
sonal and business transaction) constant. This is an input target.

2. It can increase both its outputs, retaining the current business mix ratio
of 1.92 while keeping its input (number of staff). This is an output
target.

3. It can do some combination of the above.

9.1.12 Remark. It is important to be clear about the appropriate use of the
(relative) efficiencies we have calculated. Here we have, e.g.,

• Reykjavík 100% ,
• Kópavogur 100% ,
• Hafnarfjörður 36% .

This does not automatically mean that Hafnarfjörður is only approximately
one-third as efficient as the best branches. Rather the efficiencies here would
usually be taken as indicative of the fact that other branches are adopting prac-
tices and procedures which, if Hafnarfjörður were to adopt them, would enable
it to improve its performance. This naturally invokes issues of highlighting and
disseminating examples of best practice. Equally there are issues relating to
the identification of poor practice.

We end this subsection by further illustrating the relative nature of the
DEA efficiencies. We shall ad two extra branches to Example 9.1.5 — Surtsey
and Flatey — and see what happens.

Graphical Introduction to Data Envelopment Analysis 148

Let us start with Surtsey:

9.1.13 Example. Suppose we have an extra branch, Surtsey, added
to the branches of Example 9.1.5. Assume that Surtsey has

1. 1 personal transactions per staff member, and
2. 6 business transactions per staff member.

What changes in the efficiency analysis as a result of including the
extra branch Surtsey?

(There are actually no Kaupþing Bank branches in Surtsey. There are no
people in Surtsey: People are not allowed in the Fire-Demon’s island. There
are only puffins is Surtsey.)

The effect of including Surtsey to the graphical Data Envelopment Analysis
can be seen in the next picture:

PT/S

B
T

/S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes
Borgarnes

Keflavik

Surtsey

Graphical Introduction to Data Envelopment Analysis 149

Note that the efficient frontier now excludes Kópavogur. We do not draw
that efficient frontier from Reykjavík to Kópavogur and from Kópavogur to
Surtsey for two reasons:

1. Mathematically the efficient frontier must be convex,
2. although we have not seen any branches on the line from Reykjavík to

Surtsey it is assumed in DEA that we could construct virtual branches,
which would be a linear combination of Reykjavík and Surtsey, and which
would lie on the straight line from Reykjavík to Surtsey.

Also, note that the relative efficiencies of all the inefficient branches have
changed. We have not calculated the new relative efficiencies.

In the above it is clear why Reykjavík and Surtsey have a relative efficiency
of 100% (i.e. are efficient): Both are the top performers with respect to one of
the two ratios we are considering. The example below, where we have added
the Flatey branch, illustrates that a branch can be efficient even if it is not a
top performer. In the diagram below Flatey is efficient since under DEA it is
judged to have “strength with respect to both ratios”, even though it is not the
top performer in either.

9.1.14 Example. Suppose we have an extra branch, Flatey, added to
the branches of Example 9.1.5. Assume that Flatey has

1. 5 personal transactions per staff member, and
2. 5 business transactions per staff member.

What changes as a result of this extra branch being included in the
analysis?

Here is the new picture with Flatey added. Note that Flatey is on the
efficient frontier, i.e., 100% efficient, but it is not at top performer in either of
the criteria “personal transactions per staff” (PT/S) or “business transactions
per staff” (BT/S).

Graphical Introduction to Data Envelopment Analysis 150

PT/S

B
T

/S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes
Borgarnes

Keflavik

Surtsey

Flatey

Multiple Input — Multiple Output

In our simple examples 9.1.4, 9.1.5, 9.1.13, and 9.1.14 of the Kaupþing Bank
branches we had just one input and two outputs. This is ideal for a simple
graphical analysis. If we have more inputs or outputs then drawing simple
pictures is not possible without sculptures. However, it is still possible to carry
out exactly the same analysis as before, but using mathematics rather than
pictures.

In words DEA, in evaluating any number of DMUs, with any number of
inputs and outputs:

1. requires the inputs and outputs for each DMU to be specified,
2. defines efficiency for each DMU as a weighted sum of outputs divided by

a weighted sum of inputs, where
3. all efficiencies are restricted to lie between zero and one (i.e. between 0%

and 100%),
4. in calculating the numerical value for the efficiency of a particular DMU

weights are chosen so as to maximize its efficiency, thereby presenting
the DMU in the best possible light.

Graphical Introduction to Data Envelopment Analysis 151

How to carry out the vague four-point list presented above is the topic of
the next section 9.2.

Charnes–Cooper–Rhodes Model 152

9.2 Charnes–Cooper–Rhodes Model

Now we consider mathematically what we have considered graphically in Sec-
tion 9.1.

We consider n Decision Making Units (DMUs). We call them unimagina-
tively as DMU1 , DMU2 , DMU3 , and so on upto DMUn . We are interested
in assigning a measure of relative efficiency for each DMU without resorting to
any other data than the one provided by the inputs and output of the DMUs
themselves.

Data Envelopment Analysis with Matrices

We assume that each DMU has m inputs and s outputs. So, the m inputs of
the DMUk are

x•k =

 x1k
...

xmk

 .
In the same way the s outputs of the DMUk are

y•k =

 y1k
...
ysk

 .
If we collect the inputs and the outputs into single matrices we have the

input matrix

X = [xjk] = [x•1 · · ·x•n] =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn,

and the output matrix

Y = [yik] = [y•1 · · ·y•n] =

 y11 · · · y1n
...

. . .
...

ys1 · · · ysn

 .
So,

xjk = the input j of the DMUk,

yik = the output i of the DMUk.

Charnes–Cooper–Rhodes Model 153

Charnes–Cooper–Rhodes Fractional Program

Given what we have learnt it seems reasonable to measure the (relative) effi-
ciency of the DMUs as weighted sums. So, let

u =

 u1
...
us

be the weights associated with the s outputs of the DMUs. Similarly, let

v =

 v1
...
vm

be the weights associated with the inputs of the DMUs. Then the weighted
efficiency, with weights u and v , of any DMU, say DMUo (o for DMU under
Observation) is

ho(u,v) = the (u,v) weighted efficiency of DMUo

=
u weighted outputs of DMUo

v weighted inputs of DMUo

=

∑s
j=1 ujyjo∑m
i=1 vixio

=
u′y•o
v′x•o

.(9.2.1)

9.2.2 Example. Consider the Kaupþing Bank’s branches of Example
9.1.4 of the previous section:

Branch Personal Business Number of
transactions transactions staff

Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

Denote the data of Example 9.2.2 by

x1• = number of staff,
y1• = number of personal transactions,
y2• = number of business transactions.

Charnes–Cooper–Rhodes Model 154

So, e.g., x1• is the 4-dimensional row vector consisting of the number of staff
data for the DMUs Reykjavík, Akureyri, Kópavogur, and Hafnarfjörður. Sim-
ilarly, y1• and y2• are the 4-dimensional row vectors indicating the number
of personal and business transactions for each of the four DMUs: Reykjavík
(1), Akureyri (2), Kópavogur (3), and Hafnarfjörður (4). The output matrix
for this example is:

Y =
[

y1•
y2•

]
=

[
y11 y12 y13 y14

y21 y22 y23 y24

]
=

[
125 44 80 23
50 20 55 12

]
.

The input matrix is

X = x1•

= [x11 x12 x13 x14]
= [18 16 17 11] .

Let us then take the Hafnarfjörður branch under consideration. So,
DMUo = DMU4 is Hafnarfjörður. With our vector notation Hafnarfjörður
would have the (weighted) efficiency

ho(u,v) =
u1y1o + u2y2o

v1x1o
=

u1×23 + u2×12
v1×11

.

Now there is the problem of fixing the weight u and v of the outputs and
the inputs. Each DMU would — of course — want to fix the weights u and v
in such a way that they would look best in comparison with the other DMUs.
So, it is in the interests of each and every one of the DMUs to maximize the
weighted efficiency ho(u,v) . In particular, this means that Hafnarfjörður faces
an optimization problem

(9.2.3) max
u,v

ho(u,v) = max
u1,u2,v1

u1×23 + u2×12
v1×11

.

Obviously there must be constraints to the decision variables u and v . In-
deed, otherwise the optimization problem (9.2.3) would yield an unbounded
optimum. So, what are the constraints? Well, obviously we have the sign
constraints

u,v ≥ 0.

This does not help too much yet, though. The optimum of (9.2.3) is still
unbounded. Now, we remember that we are dealing with efficiencies. But, an
efficiency is a number between 0% and 100% . So, we have the constraint

ho(u,v) ≤ 1.

Charnes–Cooper–Rhodes Model 155

This does not help too much either. Indeed, now the optimum for (9.2.3) would
be 1 , or 100% . But we are close now. Remember that the efficiency is always
a number between 0% and 100% . So, the efficiencies of the other DMUs must
also be between 0% and 100% . So, we let Hafnarfjörður set the weights u and
v , and the other DMUs are then measured in the same way. So, the constraints
are

hk(u,v) ≤ 1 for all DMUk, k = 1, . . . , n.

Collecting what we have found above we have found the fractional form of
the Charnes–Cooper–Rhodes (CCR) model

9.2.4 Definition. The CCR Fractional Program for DMUo relative to
DMU1, . . . ,DMUn is

max θ =
u′y•o
v′x•o

(9.2.5)

s.t.
u′y•k
v′x•k

≤ 1 for all k = 1, . . . , n

u,v ≥ 0.

The figure θ is the DMU0 ’s DEA Efficiency.

Charnes–Cooper–Rhodes Linear Program

Consider the optimization problem in Definition 9.2.4. This is not an LP. But
the name of this part of the Chapters is “Applications of Linear Programming”.
So, it seems that we have a misnomer! Also, we do not know how to solve
fractional programs like the (9.2.5) in Definition 9.2.4. Fortunately there is a
way of transforming the fractional program (9.2.5) into an LP.

Before going to the LP let us note that while the efficiency score θ of the
CCR fractional program (9.2.5) is unique, there are many different weights
u,v that give the same efficiency. Indeed, if the weights u,v give the optimal
efficiency, then so do the weights αu, αv for any α > 0 . This is due to the
fact that we are dealing with ratios. Indeed, for any α > 0

ho(u,v) =
u′y•o
v′x•o

=
αu′y•o
αv′x•o

= ho(αu, αv).

There is an easy way out, however. We just normalize the denominator in the
ratio, i.e., we insist that

v′x•o = 1.

Now we are ready to give the LP formulation of the fractional program
9.2.5:

Charnes–Cooper–Rhodes Model 156

9.2.6 Definition. The CCR LP for DMUo relative to DMU1, . . . ,DMUn is

max θ = u′y•o(9.2.7)
s.t. v′x•o = 1,

u′Y ≤ v′X

u,v ≥ 0.

The figure θ is the DMUo ’s DEA Efficiency.

It may not be immediately clear why the LP (9.2.7) is the same optimization
problem as the fractional program (9.2.5). So, we explain a little why this is so.
Consider the fractional program (9.2.5). First, note that the extra assumption
v′x•o = 1 does not change the optimal value of θ in the fractional program.
Indeed, we have already seen that this restriction merely chooses one optimal
choice among many. Next note that in the LP (9.2.7) we have

θ = u′y•o,

while in the fractional program (9.2.5) we have

θ =
u′y•o
v′x•o

.

Remember, that we have now the normalizing assumption v′x0 = 1 . So, we
see that the fractional and linear objectives are actually the same. Finally, let
us look the constraints

u′y•k
v′x•k

≤ 1

of the fractional program (9.2.5) and compare them to the constraints

u′y•k ≤ v′x•k

of the linear program (9.2.7) (written in the matrix form there). If you multiply
both sides of the fractional programs constraints by v′x•k you notice that these
constraints are actually the same. So, we see that the fractional program (9.2.5)
and the linear program (9.2.7) are the same.

Efficiency for Hafnarfjörður and Reykjavík

Let us calculate mathematically, as opposed to graphically, Hafnarfjörður’s
efficiency and Reykjavík’s efficiency in Example 9.2.2 by using the CCR LP
(9.2.7).

Recall the data

Charnes–Cooper–Rhodes Model 157

Branch Personal Business Number of
transactions transactions staff

Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

and the notation

x1• = number of staff,
y1• = number of personal transactions,
y2• = number of business transactions.

9.2.8 Remark. Note that x1•,y1•,y2• are not the decision variables. They
are the data. The decision variables are the weights v1, u1, u2 associated with
the data x1•,y1•,y2• .

Here is the LP for Hafnarfjörður

max θ = 23u1 + 12u2 (DEA Efficiency)
s.t. 11v1 = 1 (Normalization)

125u1 + 50u2 ≤ 18v1 (DMU Reykjavik)
44u1 + 20u2 ≤ 16v1 (DMU Akureyri)
80u1 + 55u2 ≤ 17v1 (DMU Kopavogur)
23u1 + 12u2 ≤ 11v1 (DMU Hafnarfjordur)

u1, u2, v1 ≥ 0

Now, this LP is certainly not in standard form. We shall solve it with GLPK,
however. So, there is no reason to transform it into a standard form.

Charnes–Cooper–Rhodes Model 158

Here is the GNU MathProg code for the Hafnarfjörður’s LP:

DEA efficiency for Hafnarfjordur

Decision variables

var u1 >=0; # weight for personal transactions
var u2 >=0; # weight for business transactions
var v1 >=0; # weight for staff members

Hafnarfjordur’s DEA efficiency
maximize theta: 23*u1 + 12*u2;

normalization constraint
s.t. Norm: 11*v1 = 1;

constraints from the set of DMUs
s.t. Reykjavik: 125*u1+50*u2 <= 18*v1;
s.t. Akureyri: 44*u1+20*u2 <= 16*v1;
s.t. Kopavogur: 80*u1+55*u2 <= 17*v1;
s.t. Hafnarfjordur: 23*u1+12*u2 <= 11*v1;

end;

Here is the “Simplex section” of the glpsol report:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 theta B 0.361739
2 Norm NS 1 1 = 0.361739
3 Reykjavik NU 0 -0 0.106087
4 Akureyri B -0.826561 -0
5 Kopavogur NU 0 -0 0.121739
6 Hafnarfjordur

B -0.638261 -0

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 u1 B 0.00442688 0
2 u2 B 0.0216601 0
3 v1 B 0.0909091 0

We see that the DEA efficiency of Hafnarfjörður is 36% . This is no news to us.
We learnt this in the previous section with graphical analysis. But it is nice to
see that the graphical and the mathematical approach agree of the efficiency.

Charnes–Cooper–Rhodes Model 159

Let us then consider the Reykjavík branch in Example 9.2.2. Here is the
GNU MathProg code for the Reykjavík branch:

DEA efficiency for Reykjavik

Decision variables

var u1 >=0; # weight for personal transactions
var u2 >=0; # weight for business transactions
var v1 >=0; # weight for staff members

Reykjavik’s DEA efficiency
maximize theta: 125*u1 + 50*u2;

normalization constraint
s.t. Norm: 18*v1 = 1;

constraints from the set of DMUs
s.t. Reykjavik: 125*u1+50*u2 <= 18*v1;
s.t. Akureyri: 44*u1+20*u2 <= 16*v1;
s.t. Kopavogur: 80*u1+55*u2 <= 17*v1;
s.t. Hafnarfjordur: 23*u1+12*u2 <= 11*v1;

end;

And here is the “Simplex part” of the glpsol report:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 theta B 1
2 Norm NS 1 1 = 1
3 Reykjavik NU 0 -0 1
4 Akureyri B -0.536889 -0
5 Kopavogur B -0.304444 -0
6 Hafnarfjordur

B -0.427111 -0

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 u1 B 0.008 0
2 u2 NL 0 0 < eps
3 v1 B 0.0555556 0

We see that the mathematical approach agrees with the graphical approach:
Reykjavík is 100% efficient.

Charnes–Cooper–Rhodes Model’s Dual 160

9.3 Charnes–Cooper–Rhodes Model’s Dual

Finding the DEA efficiency of a DMUo in the CCR model is an LP (9.2.7).
So, it must have a dual LP associated with it. In this section we explain how
to construct the dual, and how to interpret it. Also, in the last subsection we
illustrate how to find the DEA efficiencies of the Hafnarfjörður and Reykjavík
branch of Example 9.2.2 by using the the dual of the CCR model.

Finding Dual

In this subsection we will find the dual of the CCR LP (9.2.7) by using brute
force matrix calculus. We throw all intuition to the wind, and simply follow
mathematical algorithms. In the next subsection we shall interpret the dual
we find in this subsection.

Recall the LP form of the CCR model:

max θ = u′y•o(9.3.1)
s.t. v′x•o = 1,

u′Y ≤ v′X

u,v ≥ 0.

To find the dual, we write the LP (9.3.1) in standard form. We could use the
block matrix notation, but the derivation is probably easier to understand if
we do not use the concise matrix notation. So, we abandon matrices in the
derivation.

Without matrices the CCR LP (9.3.1) can be written as

(9.3.2)

max θ = u1y1o + · · ·+ usyso
s.t. v1x1o + · · ·+ vmxmo = 1

u1y11 + · · ·+ usys1 ≤ v1x11 + · · ·+ vmxmo
...

...
...

u1y1n + · · ·+ usysn ≤ v1x1n + · · ·+ vmxmn
u1, . . . , us, v1, . . . , vm ≥ 0.

The LP (9.3.2) is certainly not in standard form. Actually, it is pretty far from
it. As a first step in transforming (9.3.2) into a standard form let us write
it so that the decision variables u = [u1 · · · us]′ and v = [v1 · · · vm]′ are
in the right places, i.e., coefficients are in front of the decision variables, all
the decision variables are represented everywhere, and there are no decision

Charnes–Cooper–Rhodes Model’s Dual 161

variables in the RHSs. We obtain:
(9.3.3)

max θ = y1ou1 + · · ·+ ysous +0v1 + · · ·+ 0vm
s.t. 0u1 + · · ·+ 0us +x1ov1 + · · ·+ xmovm = 1

y11u1 + · · ·+ ys1us −x11v1 − · · ·− xm1vm ≤ 0
...

...
...

...
...

...
...

y1nu1 + · · ·+ ysnus −x1nv1 − · · ·− xmnvm ≤ 0
u1 . . . us v1 . . . vm ≥ 0

Next, we split the equality constraint in (9.3.3) into two ≤ inequalities. We
obtain:
(9.3.4)

max θ = y1ou1 + · · ·+ ysous +0v1 + · · ·+ 0vm
s.t. 0u1 + · · ·+ 0us +x1ov1 + · · ·+ xmovm ≤ 1

−0u1 − · · ·− −0us −x1ov1 − · · ·− −xmovm ≤ −1
y11u1 + · · ·+ ys1us −x11v1 − · · ·− xm1vm ≤ 0

...
...

...
...

...
...

...
y1nu1 + · · ·+ ysnus −x1nv1 − · · ·− xmnvm ≤ 0

u1 . . . us v1 . . . vm ≥ 0

Now it is pretty straightforward to transform the LP (9.3.3) into the dual.
Let ϑ be the objective, and let µ = [µ1 µ2µ3 · · ·µn+2]′ be the decision vari-
ables. We obtain:

(9.3.5)

minϑ = µ1 − µ2

s.t. 0µ1 − 0µ2 +y11µ3 + · · ·+ y1nµn+2 ≥ y1o
...

...
...

...
0µ1 − 0µ2 +ys1µ3 + · · ·+ ysnµn+2 ≥ yso

x1oµ1 − x1oµ2 −x11µ3 − · · ·− x1nµn+1 ≥ 0
...

...
...

...
xmoµ1 − xmoµ2 −xm1µ3 − · · ·− xmnµn+1 ≥ 0

µ1, . . . , µn+2 ≥ 0

We have found the dual (9.3.5) of the CCR LP (9.2.7). Unfortunately, this
dual is not easy to interpret. So, we have to transform it slightly in order to
understand what is going on. This is what we do in the next subsection.

Interpreting Dual

Let us substitute the objective

ϑ = µ1 − µ2

Charnes–Cooper–Rhodes Model’s Dual 162

into the constraints of (9.3.5). In doing so, we actually eliminate all the occur-
rences on µ1 and µ2 in the system. We obtain:

(9.3.6)

minϑ
s.t. y11µ3 + · · ·+ y1nµn+2 ≥ y1o

...
...

...
ys1µ3 + · · ·+ ysnµn+2 ≥ yso

x1oϑ −x11µ3 − · · ·− x1nµn+1 ≥ 0
...

...
...

...
xmoϑ −xm1µ3 − · · ·− xmnµn+1 ≥ 0

µ1, . . . , µn+2 ≥ 0

Next, we shall renumber the remaining decision variables. The new decision
variables will be λ = [λ1 · · · λn]′ , where λ1 = µ3 , λ2 = µ4 , . . . , λn = µn+2 .
So, the LP (9.3.6) becomes

(9.3.7)

minϑ
s.t. +y11λ1 + · · ·+ y1nλn ≥ y1o

...
...

...
+ys1λ1 + · · ·+ ysnλn ≥ yso

x1oϑ −x11λ1 − · · ·− x1nλn ≥ 0
...

...
...

...
xmoϑ −xm1λ1 − · · ·− xmnλn ≥ 0

λ1, . . . , λn ≥ 0

Finally, we reorganize the ≥ inequalities, for a reason that will become appar-
ent later when we get to the interpretation. We obtain:

(9.3.8)

minϑ
s.t. y11λ1 + · · ·+ y1nλn ≥ y1o

...
...

...
ys1λ1 + · · ·+ ysnλn ≥ yso
x11λ1 + · · ·+ x1nλn ≤ x1oϑ

...
...

...
xm1λ1 + · · ·+ xmnλn ≤ xmoϑ

λ1, . . . , λn ≥ 0

We have found out a formulation of the dual of the CCR LP (9.2.7) that
we can understand in a meaningful way: The dual variables

λ =

 λ1
...
λn

Charnes–Cooper–Rhodes Model’s Dual 163

are the weights for a virtual DMU — denoted by DMUvirtual — that will be
the reference point of the DMUo — the DMU under observation. The virtual
DMU, DMUvirtual , is constructed from the actual DMUs — DMU1, . . . ,DMUn

— by weighting the actual DMUk with weight λk :

DMUvirtual =
n∑
k=1

λkDMUk.

So, the the restrictions

y11λ1 + · · ·+ y1nλn ≥ y1o
...

...
...

ys1λ1 + · · ·+ ysnλn ≥ yso

say

All the outputs of the virtual DMU are at least as great as the cor-
responding outputs of the DMU under observation.

The restrictions

x11λ1 + · · ·+ x1nλn ≤ x1oϑ
...

...
...

xm1λ1 + · · ·+ xmnλn ≤ xmoϑ

say

If the inputs of the DMU under observation are scaled down by ϑ ,
then all the inputs are at least as great as the corresponding inputs
of the virtual DMU.

Finally, here is the CCR dual LP (9.3.8) in matrix form:

9.3.9 Definition. The CCR Dual LP for DMUo relative to DMU1, . . . ,DMUn

is

minϑ(9.3.10)
s.t. ϑx•o ≥ Xλ,

Yλ ≥ y•o
λ ≥ 0.

The figure ϑ is the DMUo ’s DEA Efficiency.

Charnes–Cooper–Rhodes Model’s Dual 164

Dual Efficiency for Hafnarfjörður and Reykjavík

Let us see what are the (dual) DEA efficiencies for the Hafnarfjörður and Reyk-
javík in Example 9.2.2. We have already found out the solutions in previous
sections by using the graphical approach and the primal CCR approach: Haf-
narfjörður is 36% DEA efficient and Reykjavík is 100% DEA efficient. So, we
shall now check if this third approach — the dual CCR approach — will give
the same results, as it should.

Here is the GNU MathProg code for the dual CCR LP (9.3.10) for Haf-
narfjörður. Note that we have the objective ϑ as a variable. This is due to
the fact that ϑ does not have an equation in the dual CCR LP (9.3.10). The
solution of declaring ϑ as a decision variable and then equating it with the
objective is not an elegant one, but it works.

Dual DEA efficiency for Hafnarfjordur

Decision variables

var lambda1 >=0; # weight for Reykjavik
var lambda2 >=0; # weight for Akureyri
var lambda3 >=0; # weight for Kopavogur
var lambda4 >=0; # weight for Hafnarfjordur
var theta; # objective has no equation, so it is a variable

Hafnarfjordur’s dual DEA efficiency
minimize obj: theta;

Input constraints
s.t. input1: 18*lambda1 + 16*lambda2 + 17*lambda3 + 11*lambda4

<= theta*11; # number of staff

Output constraints
s.t. output1: 125*lambda1 + 44*lambda2 + 80*lambda3 + 23*lambda4

>= 23; # personal transactions
s.t. output2: 50*lambda1 + 20*lambda2 + 55*lambda3 + 12*lambda4

>= 12; # business transactions

end;

Charnes–Cooper–Rhodes Model’s Dual 165

Here is the relevant part of the glpsol report:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 obj B 0.361739
2 input1 NU 0 -0 -0.0909091
3 output1 NL 23 23 0.00442688
4 output2 NL 12 12 0.0216601

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 lambda1 B 0.106087 0
2 lambda2 NL 0 0 0.826561
3 lambda3 B 0.121739 0
4 lambda4 NL 0 0 0.638261
5 theta B 0.361739

We see that the (dual) DEA efficiency for Hafnarfjörður is 36% , as it should.
We can also read the composition of the virtual DMU associated with Hafnar-
fjörður:

DMUvirtual = λ1DMU1 + λ2DMU2 + λ3DMU3 + λ4DMU4

= 10.6%×DMUReykjavik + 12.2%×DMUKopavogur.

So, one way to interpret the result is:

Consider the virtual DMU that is composed of 10.6% of Reykjavík
and 12.2% of Kópavogur. Then the outputs of this virtual DMU
are the same as those of Hafnarfjörður, but the virtual DMU uses
only 36% of the inputs Hafnarfjörður uses.

Charnes–Cooper–Rhodes Model’s Dual 166

Here is the GNU MathProg code for Reykjavík:

Dual DEA efficiency for Reykjavik

Decision variables

var lambda1 >=0; # weight for Reykjavik
var lambda2 >=0; # weight for Akureyri
var lambda3 >=0; # weight for Kopavogur
var lambda4 >=0; # weight for Hafnarfjordur
var theta; # objective has no equation, so it is a variable

Reykjavik’s dual DEA efficiency
minimize obj: theta;

Input constraints
s.t. input1: 18*lambda1 + 16*lambda2 + 17*lambda3 + 11*lambda4

<= theta*18; # number of staff

Output constraints
s.t. output1: 125*lambda1 + 44*lambda2 + 80*lambda3 + 23*lambda4

>= 125; # personal transactions
s.t. output2: 50*lambda1 + 20*lambda2 + 55*lambda3 + 12*lambda4

>= 50; # business transactions

end;

Here is the relevant part of the glpsol report:

No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 obj B 1
2 input1 NU 0 -0 -0.0555556
3 output1 NL 125 125 0.008
4 output2 B 50 50

No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------

1 lambda1 B 1 0
2 lambda2 NL 0 0 0.536889
3 lambda3 NL 0 0 0.304444
4 lambda4 NL 0 0 0.427111
5 theta B 1

We see that Reykjavík is 100% (dual) DEA efficient. We also see that
the virtual DMU associated with Reykjavík is Reykjavík itself. This is not
surprising: Remember that the virtual DMU was a DMU that “is the same
in outputs” but “uses less or equal inputs”. Since Reykjavík is 100% efficient,
there should not be a virtual DMU that uses less inputs and produces the same
outputs.

Strengths and Weaknesses of Data Envelopment Analysis 167

9.4 Strengths and Weaknesses of Data Envelopment Analysis

Data Envelopment Analysis is a very general framework that draws conclusions
from the data available and makes very few — is any — assumptions of the
context where the data came from. This is its main strength and this its main
weakness.

Strengths

1. DEA is simple enough to be modelled with LPs.
2. DEA can handle multiple input and multiple outputs.
3. DEA does not require an assumption of a functional form relating inputs

to outputs. In particular, one does not have to think that the outputs
are consequences of the inputs.

4. DMUs are directly compared against a peer or (virtual) combination of
peers.

5. Inputs and outputs can have very different units. For example, output y1

could be in units of lives saved and input x1 could be in units of Euros
without requiring an a priori trade-off between the two.

Weaknesses

1. Since a standard formulation of DEA creates a separate LP for each
DMU, large problems can be computationally intensive.

2. Since DEA is an extreme point technique, noise (even symmetrical noise
with zero mean) such as measurement error can cause significant prob-
lems.

3. DEA is good at estimating relative efficiency of a DMU but it converges
very slowly to “absolute” efficiency. In other words, it can tell you how
well you are doing compared to your peers but not compared to a “theo-
retical maximum”.

4. Since DEA is a nonparametric technique, statistical hypothesis tests are
difficult to apply in the DEA context.

5. DEA is very generous: If a DMU excels in just one output (or input) it
is likely to get 100% efficiency, even if it performs very badly in all the
other outputs (or inputs). So, if there are many outputs (or inputs) one
is likely to get 100% efficiency for all the DMUs, which means that DEA
cannot differentiate between the DMUs (it does not mean that all the
DMUs are doing well in any absolute sense).

Chapter 10

Transportation Problems

In this chapter we shall briefly consider a set of so-called transportation prob-
lems that can be modelled as LPs, and thus solved with, say, the Simplex/Big
M algorithm. There is, however, a specific structure in the models that allows
us to use specialized algorithms that are much faster — and more pen-and-
paper-friendly — than the Simplex/Big M algorithm.

This chapter is adapted from [2, Ch. 3], [4, Ch. 6], and T. S. Ferguson’s
web notes.

10.1 Transportation Algorithm

Transportation Problems as Linear Programs

10.1.1 Example. Frábært ehf. produces skyr. It has two production
plants: P1 and P2 . Plant P1 produces 15 tons of skyr per day, and
plant P2 produces 20 tons of skyr per day. All the produced skyr is
shipped to the markets M1 , M2 , and M3 . The market M1 demands
17 tons of skyr, the market M2 demands 8 tons of skyr, and the market
M3 demands 10 tons of skyr.

To ship one ton of skyr from plant P1 to markets M1 , M2 , and M3

costs =C3 , =C4 , and =C6 , respectively. To ship one ton of skyr from plant
P2 to markets M1 , M2 , and M3 costs =C5 , =C7 , and =C5 , respectively.

Frábært ehf. wants to deliver its skyr to the markets with the minimal
possible shipping cost while still meeting the market demands. How
should Frábært ship its skyr?

The next picture illustrates the Frábært ehf.’s situation:

http://www.math.ucla.edu/~tom/LP.pdf

Transportation Algorithm 169

3

4

6

5

7

5

P1

15

P2

20

M1

17

M2

8

M3

10

The Frábært’s problem is a typical transportation problem, and it can be
modelled as an LP.

Let

xij = tons of skyr shipped from plant i to market j.

These are obviously the decision variables for Frábært. Everything else is fixed,
and the only thing that is left open is the actual amounts transported from
ports to markets.

The objective of any transportation problem is to minimize the total ship-
ping cost (while meeting the market demand). So, Frábært’s objective is

min z =
2∑
i=1

3∑
j=1

cijxij(10.1.2)

where

cij = the cost of shipping one ton of skyr from plant i to market j.

Transportation Algorithm 170

The objective (10.1.2) is a linear objective: Sums are linear, and double-sums
doubly so.

What about the constraints then?
There are of course the sign constraints

xij ≥ 0 for all plants i and markets j.

Indeed, it would be pretty hard to transport negative amount of skyr.
There are also the supply and demand constraints.
Each plant Pi has only so many tons of skyr it can supply. So, if si is the

supply limit for plant Pi then we have the supply constraints

3∑
j=1

xij ≤ si for all plants i.

Each market demands so many tons of skyr, and according to the problem
we are committed to meet the market demands. So, if dj is the demand for
skyr in the market Mj then we have the demand constraints

2∑
i=1

xij ≥ dj for all markets j.

Here is the LP for Frábært ehf.:
(10.1.3)

min z = 3x11 +4x12 +6x13 +5x21 +7x22 +5x23

s.t. x11 +x12 +x13 ≤ 15
x21 +x22 +x23 ≤ 20

x11 +x21 ≥ 17
x12 +x22 ≥ 8

x13 +x23 ≥ 10
xij ≥ 0

The LP (10.1.3) can be solved by using, e.g., the Simplex/Big M method.
There is, however, a much more efficient specialized algorithm for solving LPs
of type (10.1.3). We shall learn this method later in this Chapter. For now, let
us end this subsection by noting the form of a general transportation problem
as an LP and note its dual LP:

10.1.4 Definition. The transportation problem with

ports Pi , i = 1, . . . ,m ,
markets Mj , j = 1, . . . , n ,
shipping costs cij , i = 1, . . . ,m , j = 1, . . . , n ,
supplies sj , j = 1, . . . ,m , and

Transportation Algorithm 171

demands di , i = 1, . . . , n

is

min z =
m∑
i=1

n∑
j=1

cijxij (total shipping cost)

subject to
n∑
j=1

xij ≤ si for all i = 1, . . . ,m, (supply)

m∑
i=1

xij ≥ dj for all j = 1, . . . , n, (demand)

xij ≥ 0 for all i = 1, . . . ,m, j = 1, . . . , n.

The dual LP of the transportation problem of Definition 10.1.4 is

(10.1.5)
max w =

n∑
j=1

djvj +
m∑
i=1

siui

s.t. vj − ui ≤ cij for all i = 1, . . . ,m and j = 1, . . . , n
ui, vj ≥ 0 for all i = 1, . . . ,m and j = 1, . . . , n

Balancing Transportation Problems

Example 10.1.1 is balanced : Total supply equals total demand, i.e.,
m∑
i=1

si =
n∑
j=1

dj .

This is essential in transportation problems. Also, note that with balanced
problems it follows that all the products will be shipped, and that the market
demands will be met exactly. So, the supply and demand constraints will realize
as equalities rather than inequalities. So, we can, for balanced problems, restate
Definition 10.1.4 as

10.1.6 Definition. The transportation problem with

ports Pi , i = 1, . . . ,m ,
markets Mj , j = 1, . . . , n ,
shipping costs cij , i = 1, . . . ,m , j = 1, . . . , n ,
supplies sj , j = 1, . . . ,m , and
demands di , i = 1, . . . , n

is

min z =
m∑
i=1

n∑
j=1

cijxij (total shipping cost)

Transportation Algorithm 172

subject to
n∑
j=1

xij = si for all i = 1, . . . ,m, (supply)

m∑
i=1

xij = dj for all j = 1, . . . , n, (demand)

xij ≥ 0 for all i = 1, . . . ,m, j = 1, . . . , n.

What about non-balanced transportation problems then? There are two
possible cases:

More supply than demand In this case we can introduce an imaginary
market called the dump. The dump has just enough demand so that you
can — dump — you excess supply there. Shipping to dump is costless.
This solution may seem silly to you, but remember that the objective was
to minimize the transportation cost while meeting the market demand. So,
you are allowed to lose your shipments, if it helps.

More demand than supply In this case the problem is infeasible: You can-
not meet the market demands if you do not have enough to supply. One
can of course generalize the transportation problem so that if the supply
does not meet the demand there is a (linear) penalty associated with each
market whose demand is not satisfied. E.g., one could subtract value

M

(
dj −

m∑
i=1

xij

)
from the objective for each market j whose demand dj is not met. We
shall not consider penalized transportation problems here, however.

Specialized Algorithm for Transportation Problems

The transportation algorithm is a tableau-dance with transportation tableaux.
An empty transportation tableau is a tabular representation of the transport
problem’s 10.1.4 data:

M1 M2 · · · Mn

P1
c11 c12 c1n s1

P2
c21 c22 c2n s2

...
...

Pm
cm1 cm2 cmn sm

d1 d2 · · · dn

Transportation Algorithm 173

The Frábært’s transportation problem’s 10.1.1 tabular representation is

M1 M2 M3

P1
3 4 6

15

P2
5 7 5

20

17 8 10

The transportation algorithm fills the empty transportation tableau with
the shipping schedule xij :

M1 M2 · · · Mn

P1
c11

x11

c12

x12

c1n
x1n

s1

P2
c21

x21

c22

x22

c2n
x2n

s2

...
...

Pm
cm1

xm1

cm2

xm2

cmn
xmn

sm

d1 d2 · · · dn

Transportation Algorithm 174

The general idea of the specialized Transportation Algorithm is the same
as in the Simplex algorithm, viz.

Meta-Step 1: Find a BFS.
Meta-Step 2: Check for optimality. If solution is optimal, the algorithm

terminates. Otherwise move to step 3.
Meta-Step 3: Find a new, improved, BFS. Go back to Meta-Step 2.

Next we explain the metas away from the Meta-Steps 1–3 above.

Finding a BFS The first BFS can be found, e.g., by using the so-called
NW Corner Method. The method is called such since the traditional way of
choosing available squares goes from NW to SE. The method goes as follows:

1. Choose any available square, say (i0, j0) . Specify the shipment xi0,j0 as
large as possible subject to the supply and demand constraints, and mark
this variable.

2. Delete from consideration whichever row or column has its constraint
satisfied, but not both. If there is a choice, do not delete a row (column)
if it is the last row (resp. column) undeleted.

3. Repeat 1. and 2. until the last available square is filled with a marked
variable, and then delete from consideration both row and column.

Now we construct the first BFS for Example 10.1.1. The marked variables
will be in parentheses, and the deleted squares will have 0 .

We start with the NW corner. So (i0, j0) = (1, 1) . We put there as a
big number as possible. This means that we ship all the plant P1 ’s supply to
market M1 , i.e., x11 = 15 . Now there is nothing left in P1 . So, we must have
x12 = x13 = 0 . So, squares (1, 2) and (1, 3) get deleted — or, if you like —
row 1 gets deleted.

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5 7 5

20

17 8 10

Next we move south, since east is deleted. The biggest number we can now
put to square (2, 1) is x21 = 2 , since there is already 15 tons of skyr shipped
to the market M1 that demands 17 tons. No rows or columns will get deleted
because of this operation.

Transportation Algorithm 175

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7 5

20

17 8 10

Next we move east to square (2, 2) . There the biggest number we can put is
x22 = 8 since that is the market demand for M2 . No rows or columns will be
deleted because of this operation.

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7

(8)
5

20

17 8 10

Finally, we move to the last free square (2, 3) . It is obvious that x23 = 10 . We
get the first BFS:

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7

(8)
5

(10) 20

17 8 10

Checking Optimality Given a BFS, i.e., a feasible shipping schedule xij ,
we shall use the Complementary Slackness Theorem 8.2.20 to check whether
the BFS is optimal. This means finding dual variables ui and vj that satisfy

xij > 0 implies that vj − ui = cij .

One method of finding the dual variables ui and vj is to solve the equations

vj − ui = cij

for all (i, j)-squares containing marked variables. There are m+n−1 marked
variables, and so we have m + n − 1 equations with m + n unknowns. This
means that one of the variables ui , vj can be fixed to 0 , say. Some of the ui
or vj may turn out to be negative, which as such is not allowed in the dual
problem, but this is not a problem. Indeed, one can always add a big enough
constant to all the ui s and vj s without changing the values of vj − ui .

Once the dual variables ui and vj are found we can check the optimality
of the BFS by using the following algorithm:

Transportation Algorithm 176

1. Set one of the vj or ui to zero, and use the condition

vj − ui = cij

for squares containing marked variables to find all the vj and ui .
2. Check feasibility,

vj − ui ≤ cij ,

for the remaining squares. If the BFS is feasible, it is optimal for the
problem and its dual, due to the Complementary Slackness Theorem
8.2.20

Let us then find the dual variables ui and vj for the BFS Frábært’s problem
10.1.1. The next tableau is the BFS we found with the, yet unknown, dual
variables in their appropriate places.

v1 v2 v3

u1
3

(15)
4

0
6

0
15

u2
5

(2)
7

(8)
5

(10) 20

17 8 10

To solve ui and vj for the marked variables we put u2 = 0 . Remember we
can choose any one of the ui or vj be zero. We chose u2 because then we see
immediately thatv1 = 5 , v2 = 7 , and v3 = 5 . As for the last unknown u1 , we
have

u1 = v1 − c11 = 5− 3 = 2.

So, we have the following BFS with the duals

5 7 5

2
3

(15)
4

0
6

0
15

0
5

(2)
7

(8)
5

(10) 20

17 8 10

Now we check the remaining squares. For the BFS to be optimal we must have
vj −ui ≤ cij . We see that this is not the case. The culprit is the square (1, 2) :

v2 − u1 = 7− 2 = 5 > 4 = c12.

This means that we must improve our BFS.

Improvement Routine Now we have a BFS that is not optimal. So, we must
have a square (i0, j0) , say, for which

vj0 − ui0 > ci0j0 .

Transportation Algorithm 177

We would like to ship some amount of skyr, say, from the port Pi0 to the
market Mj0 . The current amount xi0j0 = 0 will be changed to a new amount
denoted by ∆ . But if we change xi0j0 to ∆ we must subtract and add ∆ to
other squares containing marked variables. This means that we are looking
forward to a new BFS

M1 M2 M3

P1
3

−∆ (15)
4

+∆ 0
6

0
15

P2
5

+∆ (2)
7

−∆ (8)
5

(10) 20

17 8 10

Now we choose the change ∆ to be as big as possible bearing in mind that
the shipments cannot be negative. This means that ∆ will be the minimum of
the xij s in the squares we are subtracting ∆ . We see that the biggest possible
change is ∆ = 8 , which makes the the shipment x22 zero.

10.1.7 Remark. It may turn out that that we have ∆ = 0 . This means that
the value of the objective won’t change. However, the shipping schedule and
the marked variables will change. While the new shipping schedule is no better
than the old one, one can hope that from this new shipping schedule one can
improve to a better one.

Now we have the new BFS
M1 M2 M3

P1
3

(7)
4

(8)
6

0
15

P2
5

(10)
7

0
5

(10) 20

17 8 10

We have to go back to the previous step and check optimality for this BFS.
So, we have to solve the dual variables ui and vj . We set now u2 = 0 which
gives us immediately that v1 = 5 and v3 = 5 . So, we find out that

u1 = v1 − c11 = 2,

and that
v2 = u1 + c12 = 6.

So, we have the BFS with dual variables

5 6 5

2
3

(7)
4

(8)
6

0
15

0
5

(10)
7

0
5

(10) 20

17 8 10

Transportation Algorithm 178

This solutions passes the optimality test:

vj − ui ≤ cij

for all i and j . So, we have found an optimal shipping schedule. The cost
associated with this shipping schedule can now be easily read from the tableau
above:

z =
2∑
i=1

3∑
j=1

cijx
∗
ij

= 3×7 + 4×8 + 5×10 + 5×10
= 153.

The improvement algorithm can now be stated as

1. Choose any square (i, j) with vj − ui > cij . Set xij = ∆ , but keep the
constraints satisfied by subtracting and adding ∆ to appropriate marked
variables.

2. Choose ∆ to be the minimum of the variables in the squares in which ∆
is subtracted.

3. Mark the new variable xij and remove from the marked variables one of
the variables from which ∆ was subtracted that is now zero.

Assignment Problem 179

10.2 Assignment Problem

In this section we consider assignment problems that are — although it may
not seem so at first sight — special cases of transportation problems.

Assignment Problems as Linear Programs

10.2.1 Example. Machineco has four machines and four jobs to be
completed. Each machine must be assigned to complete one job. The
times required to set up each machine for completing each job are:

Job 1 Job 2 Job 3 Job 4
Machine 1 14 5 8 7
Machine 2 2 12 6 5
Machine 3 7 8 3 9
Machine 4 2 4 6 10

Machineco wants to minimize the total setup time needed to complete
the four jobs.

How can LP be used to solve Machineco’s problem?

The key point in modelling the Machineco’s problem 10.2.1 is to find out the
decision variables — everything else is easy after that. So what are the decisions
Machineco must make? Machineco must choose which machine is assigned
to which job. Now, how could we write this analytically with variables? A
common trick here is to use binary variables, i.e., variables that can take only
two possible values: 0 or 1 . So, we set binary variables xij , i = 1, . . . , 4 ,
j = 1, . . . , 4 , for each machine and each job to be

xij = 1 if machine i is assigned to meet the demands of job j,
xij = 0 if machine i is not assigned to meet the demands of job j.

In other words, the variable xij is an indicator of the claim

“Machine i is assigned to job j ”.

Now it is fairly easy to formulate a program, i.e., an optimization problem,
for Machineco’s problem 10.2.1. Indeed, the objective is to minimize the total

Assignment Problem 180

setup time. With our binary variables we can write the total setup time as

z = 14x11 + 5x12 + 8x13 + 7x14

+2x21 + 12x22 + 6x23 + 4x24

+7x31 + 8x32 + 3x33 + 9x34

+2x41 + 4x42 + 6x43 + 10x44

Note that there will be a lot of zeros in the objective function above.
What about the constraints for Machineco? First, we have to ensure that

each machine is assigned to a job. This will give us the supply constraints

x11 + x12 + x13 + x14 = 1
x21 + x22 + x23 + x24 = 1
x31 + x32 + x33 + x34 = 1
x41 + x42 + x43 + x44 = 1

Second, we have to ensure that each job is completed, i.e., each job has a
machine assigned to it. This will give us the demand constraints

x11 + x21 + x31 + x41 = 1
x12 + x22 + x32 + x42 = 1
x13 + x23 + x33 + x43 = 1
x14 + x24 + x34 + x44 = 1

So, putting the objective and the constraints we have just found together,
and not forgetting the binary nature of the decisions, we have obtained the
following program for Machineco’s problem 10.2.1:

(10.2.2)

min z = 14x11 + 5x12 + 8x13 + 7x14

+2x21 + 12x22 + 6x23 + 4x24

+7x31 + 8x32 + 3x33 + 9x34

+2x41 + 4x42 + 6x43 + 10x44

s.t. x11 + x12 + x13 + x14 = 1 (Machine)
x21 + x22 + x23 + x24 = 1
x31 + x32 + x33 + x34 = 1
x41 + x42 + x43 + x44 = 1
x11 + x21 + x31 + x41 = 1 (Job)
x11 + x21 + x31 + x41 = 1
x12 + x22 + x32 + x42 = 1
x13 + x23 + x33 + x43 = 1
x14 + x24 + x34 + x44 = 1

xij = 0 or xij = 1

In (10.2.2) we have binary constraints xij = 0 or xij = 1 for the decision
variables. So, at first sight it seems that the program (10.2.2) is not a linear

Assignment Problem 181

one. However, the structure of the assignment problems is such that if one
omits the assumption xij = 0 or xij = 1 , and simply assumes that xij ≥ 0 ,
one will get on optimal solution where the decisions x∗ij are either 0 or 1 .
Hence, the program (10.2.2) is a linear one, i.e., it is an LP. Or, to be more
precise, the program (10.2.2) and its linear relaxation

(10.2.3)

min z = 14x11 + 5x12 + 8x13 + 7x14

+2x21 + 12x22 + 6x23 + 4x24

+7x31 + 8x32 + 3x33 + 9x34

+2x41 + 4x42 + 6x43 + 10x44

s.t. x11 + x12 + x13 + x14 = 1 (Machine)
x21 + x22 + x23 + x24 = 1
x31 + x32 + x33 + x34 = 1
x41 + x42 + x43 + x44 = 1
x11 + x21 + x31 + x41 = 1 (Job)
x11 + x21 + x31 + x41 = 1
x12 + x22 + x32 + x42 = 1
x13 + x23 + x33 + x43 = 1
x14 + x24 + x34 + x44 = 1

xij ≥ 0

are equivalent. Equivalence of programs means that they have the same optimal
decision and the same optimal objective value.

Now, notice that the assignment LP (10.2.3) can be considered as a trans-
portation problem. Indeed, consider the four machines as ports and the four
jobs as markets. Then the supplies and demands are all ones. This interpreta-
tion gives us the following definition of an assignment problem:

10.2.4 Definition. An assignment problem is a transportation problem with
equal amount of ports and markets, where the demands and supplies for each
port and market are equal to one.

Since assignment problems are LPs they can be solved as any LP with the
Simplex/Big M method, say. Also, since they are transportation problems,
they can be solved by using the specialized transportation algorithm. There
is, however, an even more specialized algorithm for transportation problems:
The so-called Hungarian method.

Hungarian Method

In the Hungarian method, the data of the assignment problem is presented in
an n×n-table, where n is the number of ports, or markets, which is the same.
For Example 10.2.1 the “Hungarian tableau” is

Assignment Problem 182

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

The Hungarian method is based on the following two observation:

1. The problem is solved if we can choose n squares from the “Hungarian
tableau” so that:
(a) Exactly one square is chosen from each row.
(b) Exactly one square is chosen from each column.
(c) The sum of the costs in the chosen n squares is the smallest possible.

2. If a same number is subtracted from all squares in a row, then the optimal
selection of squares does not change. The same is true, if a same number
is subtracted from all squares in a column.

Here is the Hungarian Algorithm:

Step 1 For each row, subtract the row minimum from each element in the
row.

Step 2 For each column, subtract the column minimum from each element in
the column.

Step 3 Draw the minimum number of lines — horizontal, vertical, or both
— that are needed to cover all the zeros in the tableau. If n lines were
required then the optimal assignment can be found among the covered
zeros in the tableau, and the optimal cost can be read from the first
tableau by summing up the number in the squares corresponding to the
lined-out zeros.

Step 4 Find the smallest non-zero element that is uncovered by lines. Sub-
tract this element from each uncovered element, and add this element to
each square that is covered with two lines. Return to Step 3.

Here are steps 1 and 2 for Example 10.2.1:

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

9 0 3 2

0 10 4 3

4 5 0 6

0 2 4 8

9 0 3 0

0 10 4 1

4 5 0 4

0 2 4 6

Assignment Problem 183

Here are the remaining steps 3 and 4 for Example 10.2.1:

9 0 3 0

0 10 4 1

4 5 0 4

0 2 4 6

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

Now, we go back to Step 3, and line-out zeros:

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

Now we can read the optimal assignment from the covered zeros. First we note
that the only covered zero in column 3 is in square (3, 3) . So, we must have
assignment x33 = 1 . Also, in column 2 the only available zero is in square
(1, 2) . Consequently, x12 = 1 . Now, as we can no longer use row 1 the only
available zero in column 4 is in square (2, 4) . So, x24 = 1 . Finally, we choose
x41 = 1 . Next we read the corresponding setup cost from the first Hungarian
tableau. We obtain

setup cost = 5 + 5 + 3 + 2 = 15.

Transshipment Problem 184

10.3 Transshipment Problem

In this section we consider transportation problems. At first sight the trans-
portation problems are network problems. However, one can think of them
as generalizations of transportation problems. In that sense we are consider-
ing here problems that are opposite to assignment problems in the sense that
assignment problems are special cases of transportation problems and trans-
portation problems are special cases of transshipment problems. It turns out,
however, that we can express transshipment problems as transportation prob-
lems. So the generalization from transportation problems to transshipment
problems is mathematically no generalization at all.

Transshipment Problems as Transportation Problems

10.3.1 Example. The Generic Company produces generic products
and ships them to the markets M1 and M2 from the ports P1 and
P2 . The products can be either shipped directly to the markets, or the
Generic Company can use a transshipment point T1 .

The ports P1 and P2 supply 150 and 200 units, respectively. The mar-
kets M1 and M2 demand both 130 units. The shipment costs from P1

to M1 is 25 , from P1 to M2 it is 28 , from P2 to M1 it is 26 , and from
P2 to M2 it is 22 . The shipping cost from P1 to the transshipment
point T1 is 8 and the shipping cost from P2 to the transshipment point
T1 is 15 . The shipping costs from the transshipment point T1 to the
markets M1 and M2 are 16 and 17 , respectively.

The Generic Company wants to minimize its shipping costs while meet-
ing the market demands. How should the Generic Company ship its
products, if

(a) the transshipment point T1 has infinite capacity,
(b) only 100 products can be transshipped through T1?

Here is the data of Example 10.3.1 in a graph form.

Transshipment Problem 185

25

28

26

22

8

15

16

17

P1

150

P2

200

M1

130

M2

130

T1

∞/100

The general idea in modelling transshipment problems is to model them as
transportation problems where the transshipment points are both ports and
markets. To be more precise:

• A transshipment problem is a transportation problem, where each trans-
shipment point is both a port and a market. The shipping cost from a
transshipment point to itself is, of course, zero.
• If a transshipment point has capacity N , then N will be both demand

and supply for that transshipment point. If the capacity is unlimited
set the demand and supply to be the total supply of the system for that
transshipment point.
• Cost for shipping from transshipment points to the balancing dump is a

very very very very big number M . This ensures that the excess supply
to be dumped is dumped immediately.

Transshipment Problem 186

Solving Transshipment Problems

Solution to Variant (a) of Example 10.3.1 In Example 10.3.1 the total
supply is 350 and the total demand is 260 . So, in order to balance the problem
we need the dump market with demand 90 . Let us denote the dump by D . The
supply and demand for the transshipment point will be 350 , so that everything
can be, if necessary, transported via T1 . We also do not want to transship
anything to the dump via the transshipment point T1 . So, we make the cost of
shipping from T1 to D a very very very very very big number M . The direct
dumping from P1 or P2 to D of costless, of course. So, we have the following
initial transportation tableau

T1 M1 M2 D

P1
8 25 28 0

150

P2
15 26 22 0

200

T1
0 16 17 M

350

350 130 130 90

Now we can apply the transportation algorithm to this tableau. Here is a
(greedy minimal cost) initial BFS

T1 M1 M2 D

P1
8

(150)
25

0
28

0
0

0
150

P2
15

(110)
26

0
22

0
0

(90) 200

T1
0

(90)
16

(130)
17

(130)
M

0 350

350 130 130 90

We leave it as an exercise to carry out the transportation algorithm for this
BFS. We note the optimal transportation tableau:

T1 M1 M2 D

P1
8

(130)
25

0
28

0
0

(20)
150

P2
15

0
26

0
22

(130)
0

(70) 200

T1
0

(220)
16

(130)
17

0
M

0 350

350 130 130 90

Here is a graphical representation of the optimal transportation tableau above
(the costs are in parentheses):

Transshipment Problem 187

130 (22)

130 (8)

130 (16)

P1

150

P2

200

M1

130

M2

130

T1

∞/100

From the picture we see that the total shipping cost is

130× 8 + 130× 16 + 130× 22 = 5980.

We cannot read the transshipment and dump data of the last Transportation
Tableau from the picture above, but that data was auxiliary anyway, i.e. we
might well not be interested in it.

Solution to Variant (b) of Example 10.3.1 In Example 10.3.1 the total
supply is 350 and the total demand is 260 . So, in order to balance the problem
we need the dump market with demand 90 . Let us denote the dump by D .
The supply and demand for the transshipment point will be 100 , so that at
most 100 units can be transported via T1 . We also do not want to transship
anything to the dump via the transshipment point T1 . So, we make the cost of
shipping from T1 to D a very very very very very big number M . The direct
dumping from P1 or P2 to D of costless, of course. So, we have the following
initial transportation tableau

Transshipment Problem 188

T1 M1 M2 D

P1
8 25 28 0

150

P2
15 26 22 0

200

T1
0 16 17 M

100

100 130 130 90

We leave it for the students to carry out the transportation algorithm, and
simply note the solution:

T1 M1 M2 D

P1
8

(100)
25

(30)
28

0
0

(20)
150

P2
15

0
26

0
22

(130)
0

(70) 200

T1
0

0
16

(100)
17

0
M

0 100

100 130 130 90

Here is a graphical representation of the optimal transportation tableau above
(the costs are in parentheses):

Transshipment Problem 189

30 (25)

130 (22)

100 (8)

100 (16)

P1

150

P2

200

M1

130

M2

130

T1

∞/100

From the picture we see that the total shipping cost is

100× 8 + 100× 16 + 30× 25 + 130× 22 = 6010.

We cannot read the transshipment and dump data of the last Transportation
Tableau from the picture above, but that data was auxiliary anyway, i.e. we
might well not be interested in it.

Part IV

Non-Linear Programming

Chapter 11

Integer Programming

In this chapter we lift the divisibility assumption of LPs. This means that we
are looking at LPs where some (or all) of the decision variables are required
to be integers. No longer can Tela Inc. from Example 2.1.1 in Chapter 2
manufacture 566.667 number of product #1 .

This chapter is adapted from [4, Ch. 8].

11.1 Integer Programming Terminology

Integer Programs’ Linear Relaxations

Although the name Integer Program (IP) does not state it explicitly, it is
assumed that

IP is an LP with the additional requirement that some of the deci-
sion variables are integers.

If the additional requirement that some of the decision variables are integers is
lifted, then the resulting LP is called the LP relaxation of the IP in question.

Pure Integer Programs

An IP in which all the decision variables are required to be integers is called a
Pure Integer Program, or simply an Integer Program (IP). For example,

(11.1.1)
max z = 3x1 + 2x2

s.t. x1 + x2 ≤ 6
x1, x2 ≥ 0, integer

is a pure integer program.

Branch-And-Bound Method 192

Mixed Integer Programs

An IP in which some but not all of the decision variables are required to be
integers is called a Mixed Integer Program (MIP). For example,

(11.1.2)
max z = 3x1 + 2x2

s.t. x1 + x2 ≤ 6
x1, x2 ≥ 0, x1 integer

is a pure integer program. Indeed, x1 is required to be an integer, but x2 is
not.

11.2 Branch-And-Bound Method

In this section we provide a relatively fast algorithm for solving IPs and MIPs.
The general idea of the algorithm is to solve LP relaxations of the IP and to
look for an integer solution by branching and bounding on the decision variables
provided by the the LP relaxations.

Branch-And-Bound by Example

Let us solve the following pure IP:

11.2.1 Example. The Integrity Furniture Corporation manufactures
tables and chairs. A table requires 1 hour of labor and 9 units of wood.
A chair requires 1 hour of labor and 5 units of wood. Currently 6 hours
of labor and 45 units of wood are available. Each table contributes =C8
to profit, and each chair contributes =C5 to profit.

Formulate and solve an IP to maximize Integrity Furniture’s profit.

Let

x1 = number of tables manufactured,
x2 = number of chairs manufactured.

Since x1 and x2 must be integers, Integrity Furniture wishes to solve the
following (pure) IP:

(11.2.2)

max z = 8x1 + 5x2

s.t. x1 + x2 ≤ 6 (Labor)
9x1 + 5x2 ≤ 45 (Wood)

x1, x2 ≥ 0, integer

Branch-And-Bound Method 193

The first step in the branch-and-bound method is to solve the LP relaxation
of the IP (11.2.2):

(11.2.3)

max z = 8x1 + 5x2

s.t. x1 + x2 ≤ 6 (Labor)
9x1 + 5x2 ≤ 45 (Wood)

x1, x2 ≥ 0

If all the decision variables (x1 for tables and x2 for chairs in the example we
are considering) in the LP relaxation’s optimum happen to be integers, then
the optimal solution of the LP relaxation is also the optimal solution to the
original IP.

In the branch-and-bound algorithm, we call the LP relaxation (11.2.3) of
the IP (11.2.2) subproblem 1 (SB 1).

After solving SP 1 (graphically, say, cf. the next picture) we find the
solution to be

z = 165/4
x1 = 15/4
x2 = 9/4

This means that we were not lucky: The decision variables turned out to be
fractional. So, the LP relaxation (11.2.3) has (possibly) a better optimum
than the original IP (11.2.2). In any case, we have found an upper bound to
the original IP: Integrity Furniture Corporation cannot possibly have better
profit than =C165/4 .

Branch-And-Bound Method 194

0

1

2

3

4

5

6

x2

0 1 2 3 4 5 6
x1

Isoprofit line z = 20

LP relaxation’s optimum

IP feasible point
LP relaxation’s feasible region

Next we split the feasible region (painted light green in the previous picture)
of the LP relaxation (11.2.3) in hope to find a solution that is an integer one.
We arbitrarily choose a variable that is fractional at the optimal solution of
the LP SP 1 (the LP relaxation). We choose x1 . Now, x1 was 15/4 = 3.75 .
Obviously, at the optimal solution to the IP we have either x1 ≤ 3 or x1 ≥ 4 ,
since the third alternative 3 < x1 < 4 is out of the question for IPs. So, we
consider the two possible cases x1 ≤ 3 and x1 ≥ 4 as separate subproblems.
We denote these subproblems as SP 2 and SP 3. So,

SP 2 = SP 1 + ”x1 ≥ 4”,
SP 3 = SP 1 + ”x1 ≤ 3”.

In the next picture we see that every possible feasible solution of the Integrity
Furniture’s IP (the bullet points) is included in the feasible region of either SP
2 or SP 3. Also, SP 2 and SP 3 have no common points. Since SP 2 and SP
3 were created by adding constraints involving the fractional solution x1 , we
say that SP 2 and SP 3 were created by branching on x1 .

Branch-And-Bound Method 195

0

1

2

3

4

5

6

x2

0 1 2 3 4 5 6
x1

z = 20

IP feasible point
SP 3 feasible region
SP 2 feasible region

We see that SP 3 has an integer solution. Unfortunately, the integer solution
of SP 3, z = 39, x1 = 3, x2 = 3 is suboptimal when compared to the non-integer
solution, z = 41, x! = 4, x2 = 9/4 , of SP 2. So, it is possible that the SP 2 has
a further subproblem that has better integer solution than SP 3. So, we have
to branch SP 2.

Before branching SP 2 let us represent what we have done in a tree. The
colors in the next tree refer to the colors in the previous picture.

Branch-And-Bound Method 196

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4

x2 = 9/5

SP 3
z = 39
x1 = 3
x2 = 3

As pointed out, we must now branch on SP 2. Since x1 = 4 is an integer.
we branch on x2 = 9/5 = 1.8 . So, we have the new subproblems

SP 4 = SP 2 + ”x2 ≥ 2”,
SP 5 = SP 2 + ”x2 ≤ 1”.

When the solutions to these subproblems are added to the tree above we get
the following tree (the color coding is dropped):

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4

x2 = 9/5

x2 ≥ 2 x2 ≤ 1

SP 3
z = 39
x1 = 3
x2 = 3

SP 4

Infeasible

SP 5
z = 365/9
x1 = 40/9
x2 = 1

Branch-And-Bound Method 197

We see that SP 4 is infeasible. So, the optimal solution is not there. How-
ever, SP 5 gives us a non-integer solution that is better than the integer solution
of SP 3. So, we have to branch on SP 5. Since x2 = 1 is already an integer,
we branch on x1 = 40/9 = 4.444 . So, we get two new subproblems

SP 6 = SP 5 + ”x1 ≥ 5”,
SP 7 = SP 5 + ”x1 ≤ 4”.

After this branching we finally arrive at the final solution where all the sub-
problems are either unfeasible. (There is no color coding in the boxes in the
following tree. There is border coding, however. A thick borderline expresses a
feasible IP solution, and a dashing red borderline expresses an infeasible case.)

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4

x2 = 9/5

x2 ≥ 2 x2 ≤ 1

SP 3
z = 39
x1 = 3
x2 = 3

SP 4

Infeasible

SP 5
z = 365/9
x1 = 40/9
x2 = 1

x1 ≥ 5 x1 ≤ 4

SP 6
z = 40
x1 = 5
x2 = 0

SP 7
z = 37
x1 = 4
x2 = 1

From the tree above can read the solution to the IP: The SP 6 is the optimal

Branch-And-Bound Method 198

subproblem with integer solution. So, the solution to the IP (11.2.2) is

z = 40,
x1 = 5,
x2 = 0.

General Branch-And-Bound Algorithm

We have solved a pure IP with branch and bound. To solve MIP with branch-
and-bound one follows the same steps as in the pure IP case except one only
branches on decision variables that are required to be integers. So, solving
MIPs is actually somewhat easier than solving pure IPs!

We have seen all the parts of the branch-and-bound algorithm. The essence
of the algorithm is as follows:

1. Solve the LP relaxation of the problem. If the solution is integer where
required, then we are done. Otherwise create two new subproblems by
branching on a fractional variable that is required to be integer.

2. A subproblem is not active when any of the following occurs:

(a) You used the subproblem to branch on.
(b) All variables in the solution that are required to be integers, are

integers.
(c) The subproblem is infeasible.
(d) You can fathom the subproblem by a bounding argument.

3. Choose an active subproblem and branch on a fractional variable that
should be integer in the final solution. Repeat until there are no active
subproblems.

4. Solution to the (M)IP is the best (M)IP solution of the subproblems you
have created. It is found in one of the leafs of the tree representing the
subproblems.

That’s all there is to branch and bound!

Solving Integer Programs with GNU Linear Programming Kit 199

11.3 Solving Integer Programs with GNU Linear Program-
ming Kit

Solving (pure) IPs and MIPs with GLPK is very easy. The GLPK has all
the necessary routines implemented and all you have to do is to declare which
variables are required to be integers. To declare a decision variable as integer-
valued one simply uses the keyword integer in the declaration.

Here is the GNU MathProg code for the simple IP (11.1.1):

#
The IP (11.1.1)
#

Decision variables
Both x1 and x2 are required to be integers
var x1 >=0, integer;
var x2 >=0, integer;

Objective
maximize z: 3*x1 + 2*x2;

Constraints
s.t. constraint: x1 + x2 <=6;

end;

And here is the glpsol report:

Problem: ip
Rows: 2
Columns: 2 (2 integer, 0 binary)
Non-zeros: 4
Status: INTEGER OPTIMAL
Objective: z = 18 (MAXimum)

No. Row name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------

1 z 18
2 constraint 6 6

No. Column name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------

1 x1 * 6 0
2 x2 * 0 0

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

INT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0

Solving Integer Programs with GNU Linear Programming Kit 200

High quality

End of output

Here is the GNU MathProg code for the simple MIP (11.1.2):

#
The MIP (11.1.2)
#

Decision variables
Only x1 is required to be integer
var x1 >=0, integer;
var x2 >=0;

Objective
maximize z: 3*x1 + 2*x2;

Constraints
s.t. constraint: x1 + x2 <=6;

end;

And here is the glpsol report:

Problem: mip
Rows: 2
Columns: 2 (1 integer, 0 binary)
Non-zeros: 4
Status: INTEGER OPTIMAL
Objective: z = 18 (MAXimum)

No. Row name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------

1 z 18
2 constraint 6 6

No. Column name Activity Lower bound Upper bound
------ ------------ ------------- ------------- -------------

1 x1 * 6 0
2 x2 0 0

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

INT.PB: max.abs.err. = 0.00e+00 on row 0
max.rel.err. = 0.00e+00 on row 0
High quality

End of output

	I Introduction
	On Operations Research
	What is Operations Research
	History of Operations Research*
	Phases of Operations Research Study

	On Linear Programming
	Example towards Linear Programming
	Solving Linear Programs Graphically

	Linear Programming with GNU Linear Programming Kit
	Overview of GNU Linear Programming Kit
	Getting and Installing GNU Linear Programming Kit
	Using glpsol with GNU MathProg
	Advanced MathProg and glpsol*

	II Theory of Linear Programming
	Linear Algebra and Linear Systems
	Matrix Algebra
	Solving Linear Systems
	Matrices as Linear Functions*

	Linear Programs and Their Optima
	Form of Linear Program
	Location of Linear Programs' Optima
	Karush--Kuhn--Tucker Conditions*
	Proofs*

	Simplex Method
	Towards Simplex Algorithm
	Simplex Algorithm

	More on Simplex Method
	Big M Algorithm
	Simplex Algorithm with Non-Unique Optima
	Simplex/Big M Checklist

	Sensitivity and Duality
	Sensitivity Analysis
	Dual Problem
	Primal and Dual Sensitivity

	III Applications of Linear Programming
	Data Envelopment Analysis
	Graphical Introduction to Data Envelopment Analysis
	Charnes--Cooper--Rhodes Model
	Charnes--Cooper--Rhodes Model's Dual
	Strengths and Weaknesses of Data Envelopment Analysis

	Transportation Problems
	Transportation Algorithm
	Assignment Problem
	Transshipment Problem

	IV Non-Linear Programming
	Integer Programming
	Integer Programming Terminology
	Branch-And-Bound Method
	Solving Integer Programs with GNU Linear Programming Kit

